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Abstract
In this research, the peristaltic flow with heat transfer through the two-dimensional horizontal tube of compliant wall 
properties with slip at boundaries is analyzed analytically. An approximated theoretical model is constructed of spring-
backed flexible compliant walls pipe, chosen to move as sinusoidal wave. Perturbation solution of the governing equa-
tions is obtained with small parameter ε, which means the amplitude ratio, and defined as the ratio of wave amplitude 
divided by tube radius. The influence of several parameters of slip conditions, wall properties and heat transfer on the 
dynamics of the liquid through the tube is mathematically studied, resulting in relations describing the fluid flow behav-
ior and the induced net flow rate under the various values of flow parameters as “liquid compressibility, slip flow factor, 
and wave number”, heat transfer parameter like Prandtl number, and elastic wall parameters such as “wall tension, wall 
damping coefficient, wall stiffness, and wall rigidity”. Graphs for net flow rate under the effect of pervious parameters 
are plotted. Results disclose that the parameters of tube wall features, compressibility of liquid, Knudsen number for 
wall slip, and heat transfer in the presence of peristaltic pumping have a significant effect on net flow rate induced. This 
research has numerous related applications in different branches of science such as biological studies for blood flow 
motion in living creatures and also in industry including simulation of induced elastic waves for fluid flow through a tube.
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List of symbols
R  Tube mean radius
�⃗V   The fluid velocity vector
�  Viscous dissipation rate
p  The fluid pressure
�  The fluid density
z  The coordinate in the stream wise direction
r  The coordinate normal to the flow direction
t  The time
vr  The radial velocity
vz  The velocity in the flow direction
µ  The fluid dynamic viscosity coefficient
T  The fluid temperature
Kt  The thermal conductivity

K*  The liquid compressibility factor
�o  The standard density corresponding to refer-

ence pressure pc
�(x, t)  The vertical wall displacement
a  The wave amplitude
�  The wavelength
c  The wave speed
L(�)  The compliant wall differential operator
T  Longitudinal tension per unit width of wall
m  Mass per unit area
D  Damping factor
B  Wall bending coefficient
K  Spring stiffness
po  The external pressure acting on the boundary
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A  Mean free path of molecules
Re  Reynolds number
To  The mean fluid temperature
T1  The uniform temperature
�  The compressibility number
�  The wave number
Pr  Prandtl number
E  Eckert number
Br  Brinkman number
cp  The specific heat at constant pressure
�  The amplitude ratio
Kn  Knudsen number
�o  Kinematic viscosity
Io  The modified Bessel function of first kind zero 

order
I1  The modified Bessel function of first kind first 

order
〈Vz(r)〉  The mean time axial velocity
〈Q〉  The net axial flow rate

1 Introduction

It is a fact to mention that the analysis for the transport 
of biofluids through the peristaltic mechanism draws 
the physiologists’ attention in their investigations due 
to ongoing growth in the biomedical and technological 
applications related to this type of motion. In the begin-
ning, it is relevant to understand the nature of the peristal-
tic flow and how it is formed. Fluid locomotion along the 
path of this mechanism occurs as a result of the dilatation 
and constriction of tube/channel wall due to the elastic 
wall properties. In the biological systems, peristalsis is a 
natural process which is familiar and occurring inside the 
living bodies such as the urine flow through the ureter 
from kidney to the bladder, the movement of intestines, 
gastrointestinal, bile tubes, and many glandular conduits. 
Peristaltic activity appears also in the motion through the 
small blood vessels. The esophagus is elastic muscular 
tube resulting in peristalsis waves causing propulsion of 
the food bolus towards the stomach. Sperm are locomoted 
along the vas deferens by the peristaltic contractions. The 
uterine tubes are the female muscular passages which 
use the peristalsis action to move the ova to the uterus. 
Peristalsis causes the movement of lymph through lym-
phatic tract. Also it is used in biomedical machines as heart 
lung pump which helps to pump the blood. By applying 
the principles of peristalsis in industry, mechanical finger 
and roller pumps were manufactured for transporting 
the corrosive and toxic fluids to avoid any further dam-
age. Introducing heat transfer is very necessary in many 
medical processes like dialysis treatment and oxygenation. 
Heat transfer effect is clearly significant in the treatment 

of cancer cells. Slip phenomenon occurring at the walls 
exist in the case of pumping rarefied gasses and the flow 
of polymers. Literature review for the experimental and 
theoretical studies handling the peristaltic action and 
heat transfer influence and its importance is introduced 
as follows.

In the beginning, Latham [1] performed a number of 
experimental studies using simple geometry of plastic 
tube taking the shape of peristalsis by neglecting the lon-
gitudinal motions of the tube walls and axisymmetric 
models and then compared the results with that obtained 
from the theoretical analysis in which long wave length 
and zero Reynolds number were assumed for the two-
dimensional sinusoidal wave shaped tube. After that, 
Burns and Parkes [2] introduced the axisymmetric models 
of pipes and wavy shaped symmetrical channel for Stokes 
flow with small Reynolds number. Shapiro [3] presented 
theoretical analysis for the peristaltic wave to obtain rela-
tions for flow rate and pressure gradient for Poiseuille flow. 
Shapiro et al. [4] used the long wave length approximation 
with low Reynolds number to obtain calculation for the 
net flow rate resulting from the peristaltic waves and two 
physiological phenomena appeared, one is known as 
“reflux” and the other called “trapping”. Fung and Yih [5] 
verified the analysis of [3]. Srivastava and Srivastava [6–9] 
analyzed the peristaltic transport for different theoretical 
models and applications of human body such as vas def-
erens, small intestines, and reproductive tract. Hina et al. 
[10] have discussed the peristaltic motion of shear-thin-
ning and shear-thickening fluids by considering the elastic 
properties of the curved channel walls using the regular 
perturbation method for the analytical analysis. Hina et al. 
[11] have introduced heat and mass transfer in the pres-
ence of viscous dissipation and thermophoresis effects on 
the peristaltic flow of Powell–Eyring fluid through curved 
passage with complaint walls by using perturbation tech-
nique with long wavelength and low Reynolds number 
and the results disclosed that, the material parameters of 
the Powell–Eyring fluid have a strong effect on the flow 
field. Makinde et al. [12] analyzed the combined effects of 
magnetic field, thermal radiation, heat source, velocity slip 
and thermal jump on peristaltic transport of an electrically 
conducting Walters-B fluid through a compliant walled 
channel with the aid of perturbation method and it was 
found that, the velocity distribution was decreased while 
the fluid temperature raised by the increase in Hartmann 
number, and also the trapping bolus was increased by 
increasing the magnetic parameter. Bhatti and Zeeshan 
[13] have investigated the particle concentration for the 
two phase flow besides the heat and mass transfer in the 
presence of fluid slip at the boundary for Casson fluid 
model moving peristaltically. They have used the analytical 
long wavelength technique and the results showed that 
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the particulate concentration and slip effects have a great 
impact on the velocity distribution. Eldesoky et al. [14] 
have analyzed the different influences of relaxation time, 
slip, elastic features for the flexible channel on the peristal-
tic motion of compressible fluid of Maxwellian model. 
Takabatake et al. [15] presented a numerical investigation 
for evaluation of the efficiency of the peristaltic propaga-
tion through circular passage. E. El-Shehawy et al. [16] 
studied the influence of wall slip on the wavy transport of 
non-Newtonian Maxwell liquid through rectangular chan-
nel.. Kamel et al. [17] have studied the combined effects of 
wall slip and suspension concentration on the peristaltic 
wave. Tang and Rankin [18] presented the asymptotic and 
numerical and analysis for nonlinear peristaltic flow 
through flexible free boundaries. Heat transfer also partici-
pates in the studies related to the peristaltic transport. 
Shen and Ebel [19] analyzed the peristaltic process for heat 
conducting fluid using two different asymptotic tech-
niques. Dar and Elangovan [20] discussed the influence of 
both heat and mass transfer and an inclined magnetic field 
on the peristaltic flow of a couple stress fluid moving in an 
inclined channel by using the methodology of long wave-
length and low Reynolds number to obtain relation for 
temperature distribution, pressure rise and friction force 
under the effect of heat and magnetic field parameters. 
Abd-Alla et al. [21] investigated the various influences of 
space porosity, rotation, heat and mass transfer and com-
pliant wall features on the peristaltic flow of an incom-
pressible Newtonian fluid in a channel. Using long wave-
length and low Reynolds number approximation, solutions 
were obtained for the stream function, temperature, con-
centration field, velocity and heat transfer coefficient and 
the pervious parameters have a strong effect on the 
dynamic flow behaviour. But Tang and Shen [22] analyzed 
the peristaltic mechanism in the existence of heat transfer 
and pressure drop occurring in flexible tube using Stokes 
and long wave techniques. The works [23, 24] analyzed the 
temperature distribution and heat coefficients effect on 
the wavy flow in the rectangular duct. Vajravelu et al. [25] 
used the long wave technique to analyze the heat transfer 
and space porosity for the wavy transport through con-
centric vertical tube. Vasudev et al. [26] discussed also the 
influence of the same heat and porosity parameters of [25] 
on the peristaltic flow through two-dimensional vertical 
channel. Mekheimer [27] studied the combined influences 
of transverse magnetic field and heat flow across the 
boundaries on the travelling wave of Newtonian liquid 
through vertical annuli tube. Nadeem et al. [28] investi-
gated the heat transport process across a non-uniform 
tube carrying out Johnson Segalman fluid which was trav-
elling peristaltically. The elastic wall properties have a 
strong effect on the wavy fluid flow behavior in terms of 
mean axial velocity, pressure, and the net flow rate. These 

wall properties were expressed as flexible wall model sup-
ported by elastic spring to dissipate the vertical wall dis-
placement and wall damper to damp the normal wall 
velocity. Researches relevant to this type are presented in 
the following. Pandey and Chaube [29] investigated the 
influence of flexible wall features on the couple stress fluid 
travelling peristaltically. Hina et al. [30] investigation han-
dled the wall properties impact on the wavy flow of Max-
wellian liquid through duct. Radhakrishnamacharya and 
Srinivasulu [31] took both effects of wall properties and 
heat transfer on the peristaltic transport of fluid via chan-
nel in their study. Srinivas et al. [32] studied the influence 
of several variables of wall slip, magnetic field, wall proper-
ties, and heat transfer on the wavy flow through channel. 
Also Srinivas et al. [33] introduced the mass transfer and 
space porosity effects besides the variables of [32]. Eldabe 
and Abou-Zeid [34] obtained a solution for the tempera-
ture distribution and mean axial velocity for micropolar 
fluid peristaltic locomotion through tube under various 
parameters of viscoelastic wall. Hayat et al. [35] analyzed 
the action of wall features, heat parameters, permeability 
of porous area, and magnetic field parameter on the wavy 
motion of Maxwellian fluid. As the liquid compressibility 
has a significant effect on the nature of the fluid transport, 
then it draws the interest of many researchers. Anderson 
[36] presented the basics of compressible fluid. Aarts and 
Ooms [37] carried out the first try to investigate the trans-
versal wavy pumping of compressible liquid using pertur-
bation approach to obtain relation for calculation of the 
net flux; the results showed that the liquid compressibility 
has a strong effect on the resulting net flux. Acoustic 
source induced an ultrasound and its transport took a peri-
staltic shape and is used for improving oil extraction pro-
cess from porous rock. Mekheimer and Abdel-Wahab [38] 
obtained expressions for mean axial velocity, net velocity 
at channel wall, and mean velocity perturbation function 
in terms of various flow and elastic wall parameters for the 
compressible fluid flow resulting from the surface acoustic 
wave in planar channel. Eldesoky et al. [39] analyzed both 
influences of liquid compressibility and suspension con-
centration on the wavy compressible flow via rectangular 
channel; the results showed that the increase in particle 
concentration causes an increase in the mean flow veloc-
ity, whereas the velocity profile was insensitive to the liq-
uid compressibility. Elshehawey et al. [40] also analyzed 
the behaviour of aviscoelastic compressible liquid moving 
peristaltically via tapered pore. Eldesoky and Mousa [41, 
42] presented investigations handling the peristaltic 
motion of compressible liquid in a tube and its relation to 
aerospace branch, then adding various parameters of 
relaxation time and porous area for Maxwellian model 
travelling through the tube in the second article. Eldesoky 
[43] added the wall slip influence to the other parameters 
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of [42] and the results showed that net flux was sensitive 
to slip coefficient, relaxation time, liquid compressibility, 
and Reynolds number.

To the best of the author’s survey, it is noted that there 
is no previous attempt to study the combined influences 
of wall properties and slip conditions in the presence 
of heat transfer on the net flow rate resulting from the 
induced peristaltic wave through a horizontal tube. So 
that, the present study is the first attempt to combine the 
effects of heat transfer, wall slip and elastic wall properties 
on the peristaltic transport through tube in (r – z) coordi-
nates by using the analytical perturbation methodology. 
The motivation for this research is attempt to reach the 
best description approaching the real model for this kind 
of unsteady and oscillatory flow through tube. In the real 
systems, such types of motion occur due to muscle’s con-
traction and expansion as a result of elastic feature for the 
walls. Then, it is a point of interest to analyze the charac-
teristics of flexibility for compliant walls. The walls of the 
tube have elastic features which can deform and collapse 
causing the motion for the fluid and resulting in a change 
the dynamic behavior of the fluid flow. The flexible wall is 
modeled as a spring-backed plate-membrane-type wall 
to approach the real system. The plate-membrane wall 
executes motion purely perpendicular to the surface. 
And also, most of the fluid flow in the real systems can be 
treated as viscous flow, for instance, in case of blood flow 
through the arteries, the walls are subject to some degree 
of roughness. Interestingly, it is realistic to note that, the 
fluid flow can be treated as a continuous medium through 
micro-domains such as arteries and capillaries which are 
prone to constrictions for various pathological reasons. 
Eventually, introducing the heat transfer is beneficial in the 
treatment for some of diseases that affect the cardiovascu-
lar system, then the heat transfer will change the dynamic 
behaviour for the fluid flow, so that, it is important to add 
the heat transfer to understand the nature of fluid trans-
port. The real application in biology appear obviously in 
the collapsible tubes in the critical positions in the living 
creatures such as the wavy transport in the veins above 
the heart, arteries under the cuff also, biological and engi-
neering examples indicating the compliant wall action 
such as the pressure pulse propagation in the cerebrospi-
nal fluid system and blood flow in cardiovascular system. 
The elastic properties of the collapsing tubes in the real 
physiological systems are related to the muscles effect. 
The former studies did not concentrate on the effects of 
compliant walls for the tube in presence of heat transfer 
for compressible flow.

Then, the main objective of the current study is to ana-
lyze the effect of various parameters of flexible wall such 
as “damping factor, wall tension, wall rigidity, and wall 
elasticity” in addition to the flow factors such as “liquid 

compressibility, slip coefficient, and Reynolds number” 
and heat transfer coefficients like Prandtl number on the 
net flow rate of the travelling wave. Perturbation approach 
with small amplitude is used for obtaining mathematical 
relations describing the mean axial velocity, the net flux, 
the liquid pressure, and the liquid temperature in terms of 
the pervious parameters. The zero-order pressure gradient 
is ignored and the zero-order temperature is supposed to 
be constant. The travelling fluid is compressible. The elas-
tic wall model is constructed to take the form of spring-
backed compliant walls.

2  Problem formulation

Suppose a model of an elastic sinusoidal wave of com-
pressible viscoelastic liquid travelling through tube with 
mean radius R with compliance walls shown in Fig. 1. This 
propagating wave with small amplitude is considered to 
be peristaltic wave with spring-backed compliant walls.

The system of conservation equations (continuity, 
Navier–Stokes and energy, respectively) that govern the 
fluid flow in vector notation form, as following [44]:

Equation of state and its solution were introduced by 
Anderson [36] and Aarts and Ooms [40] as follows.

Walls of channel are taken flexible with elastic features. 
This model is supposed to be spring-backed flexible walls 
model which allows only vertical displacement and hori-
zontal deformation does not exist; thus the model is called 
compliant wall tube. Relation for �(x, t) was obtained by 
[37] as follows:

Equation for compliant wall properties is obtained as 
[38].

(2.1)

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌 �⃗V ) = 0
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𝜕T
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]
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��
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2.1  Boundary conditions

The wavy transport exists under various conditions which 
occur at the tube walls. These conditions determine the 
flow behavior and are introduced at r = (R + �) as follows:

• Slip and impermeability conditions associated with the 
fluid are

• The pressure gradient is affected by the nature of elastic 
wall so, it is introduced as follows:

• The wall temperature is oscillating about a nonzero 
mean temperature as [34] with the temperature 

(2.5)
vz(r, z, t) = A

�vz
�r

vr(r, z, t) =
��(z, t)

�t
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Fig. 1  Diagram of compliant wall tube model

at r = 0 , the center of tube (case of symmetry) are 
described respectively, as:

  Introducing nondimensional analysis (2.7.1) for 
Eqs. (2.1), (2.2) and (2.5)–(2.7) then dropping over-bars, 
the pervious governing equations and boundary con-
ditions can be rewritten in the following form:

(2.7)
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• The boundary conditions at r = (1 + �) are

3  Perturbation analysis

Following the perturbation procedure to introduce the 
physical properties vr , vz , p, �, and � as a mathematical 
power series with small amplitude ratio “ � ” we then substi-
tute it into the governing Eq. (2.8) and their boundary con-
ditions (2.9) to obtain two sets of equations and bound-
ary conditions resulting from collecting the similar power 
terms of � and �2 which are sufficient for completing the 
solution. Remarking that the wavy motion results from the 
elastic wall expansion and contraction and no flow occurs 
in the absence of this mechanism. The physical properties 
in power series form are as follows:

where �o is assumed to be constant.
Applying perturbation methodology, results in the 

two sets which are indicated as (3.1.1) and (3.1.2) in the 
appendix section. Also, obtaining two sets for the bound-
ary conditions (2.9) requires expanding Taylor series (3.1.3) 
about r = 1 which are also indicated in appendix section 
as (3.1.4) and (3.1.5).

Introducing Aarts and Ooms [37] approach to obtain 
the problem solution, it was chosen in the form

(2.9)
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(3.1)

vr = �u1(r, z, t) + �2u2(r, z, t) + �3u3(r, z, t) +⋯
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(3.2)
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Remarking the following:

1- Only 1st-order term in the wall properties boundary 
condition is sufficient for completing the solution.

2- Sine and cosine are introduced in exponential form.
3- The overbar is the complex variable conjugate.

Substituting relations (3.2) and (3.3) into the sets of 
“ � and �2 ” (3.1.1) and (3.1.2) and their boundary conditions 
(3.1.4) and (3.1.5), respectively, results in the 1st and 2nd 
system of equations and their boundary conditions (3.3.1) 
and (3.3.2) as noted in the appendix section.

Following Eldesoky et al. [42] procedure resulting in the 
following final form of first and second order solutions, this 
is well explained in the appendix section.

3.1  First‑order solution
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�2(r, z, t) = D20(r) + D2(r)e
2i�(x−t) + D2(r)e

−2i�(z−t)

⎫
⎪⎪⎬⎪⎪⎭

(3.4a)

V1(r) = C1J3Io(�r) + C2J2Io(�r)

U1(r) = C1I1(�r) + C2I1(�r)

P1(r) = C1J4Io(�r)

�1(r) = C4Io(Ar)

⎫⎪⎪⎬⎪⎪⎭
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3.2  Second‑order solution

Also, the net flow rate is represented as [42], noting that 
O(�2) is sufficient. The relation of axial net flow rate is

After doing integration on (3.5a), it is rewritten in the 
form

4  Results and discussion

The present work is the first attempt to study the com-
bined influences of wall properties, slip conditions and 
heat transfer on the peristaltic locomotion of compressible 
fluid through tube in (r-z) coordinates. Then, to validate 
the rationality and accuracy of the present work a math-
ematical comparison for this article is done with Aarts and 
Ooms [37] and Eldesoky et al. [42] in which the relaxation 
time effect must be neglected to get the same relation for 
the net flow rate, net velocity and pressure for compress-
ible flow. It is found that, the main resulting relations for 
the pressure and velocities and net flux is the same but 
the difference is obtained from the parameters of inter-
est in the boundary condition, since Aarts and Ooms [37] 
showed the slip effects and compressibility effects and 
Eldesoky et al. [42] added to these effects, the influence 
of relaxation time and in our research we concentrate on 
the elastic wall properties, slip, compressibility and heat 
transfer effects.

The following must be noticed:

1. This solution is valid and applicable under the condi-
tion 𝜀𝛼2Re ≪ 1 , mentioned by Takabatake et al. [15].

(3.4b)

V20(r) = D2 − Re

1

∫
r

�
V1(r)U1(r) + V1(r)U1(r)

�
dr

U20(r) =
D1

r
− �

�
P1(r)U1(r) + P1(r)U1(r)

�

�20(r) =

1

∫
r

1

r

⎡⎢⎢⎣

1

∫
r

r
�
PrReF4 − BrF5

�
dr

⎤⎥⎥⎦
dr

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(3.5a)⟨Q⟩ = 2� �2

1

∫
0

r V20(r, z, t) dr

(3.5b)

⟨Q⟩ = � �2
⎛⎜⎜⎝
D2 − Re

1

∫
0

r2
�
V1(r)U1(r) + V1(r)U1(r)

�
dr

⎞⎟⎟⎠

2. There is absence of wall parameters in this analysis, 
reducing the mathematical solution of the net flow 
rate to that resulting from Aarts and Ooms [37].

3. Eldesoky et  al. [42] relations can be obtained by 
neglecting in their article the relaxation time and in 
this article the wall parameters.

The main principle goal objective of this analysis is to 
observe the behavior of the fluid transport under the com-
bined qualitative and quantitative characteristics for vari-
ous emerging physical variables related to the elastic wall, 
the viscous flow, and the heat transfer. The physical param-
eters are the flexible wall parameters “ T ,D, B, and K , ” 
the flow parameters “ � , �, Re , and Kn, ” and heat transfer 
parameter Pr. Expressions for the mean axial velocity, pres-
sure, temperature, and the time averaged flow rate are 
obtained. The main concert is calculating the net flow rate 
Q and the temperature. The variation of the net flux Q and 
temperature distribution under the previous parameters 
is graphically presented in this section. In order to check 
the validity for this solution, the condition of [15] stating 
that 𝜀 𝛼2Re ≪ 1 must be verified; therefore the fluid flow is 
supposed to be laminar and  Re values are taken small. The 
range of Re is [0.1:0.3]. Small amplitude ratio is supposed to 
be � = 0.01 . Also wave number varies in the range within 
[0 and 1]. The slip flow parameter range is 0 < Kn < 0.15 . 
If Kn = 0 then, nonslip condition is achieved. The liquid 
compressibility � is within [0 and 1], in which � = 0 means 
incompressible liquid.

In the beginning, Fig. 2 shows the (dimensionless) net 
flux profiles with the liquid compressibility � axis for vari-
ous values of slip parameter “Kn” and elastic wall features 
“ D, T and K, ” respectively, and its corresponding data in 
Table 1.

Figure 2a shows that, at constant value for slip param-
eter Kn > 0 , when liquid compressibility increases, the net 
flux decreases and, at Kn = 0 nonslip condition, the same 
trend occurs up to high liquid compressibility � = 0.6 at 
which the net flow rate Q = −1.17473 × 10−5 , the nega-
tive flow rate means that reverse flow begins to occur as 
nonslip conditions cause attaching the liquid particles to 
the walls, and then negative velocity appears so that the 
streamline reverses its direction. Also, for constant value 
of compressibility number, say � = 0.2 then by increasing 
slip coefficient Kn, the net flux increases. It is noticed that, 
in all cases of slip parameters, maximum flow rate occurs 
in case of incompressible flow � = 0 . The dissipative fac-
tor D effect is presented in Fig. 2b, as it resists the fluid 
motion and gives the same action of viscosity, where for 
constant liquid compressibility there is a reduction in the 
net flow rate against the increase of wall damping factor D. 
At D = 200 and � = 1 the net flow rate has negative value 
Q = −1.65 × 10−4 , which means backward flow takes place 
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due to this resistive action. It is also noted that at certain 
value for D, the net flux decreases by increasing �  and 
maximum flow rates are corresponding to incompressible 
liquid when � = 0 . Now Fig. 2c illustrates the effect of wall 
elasticity expressed by spring stiffness K as Q increases by 
increasing K corresponding to fixed value for � and this 
effect is obvious up to � = 0.4 , and at 𝜒 > 0.4 the net flow 

rate profiles close to each other. For constant value of wall 
stiffness K, Q is inversely proportional with � . In Fig. 2d wall 
tension T also affects the net flux and gives the same trend 
for net flux profiles of Fig. 2c but the curves are relatively 
spaced as there is a proportional relation between Q and 
T for constant � .

Figure 3 shows the net flux profiles versus the wave 
number � for different values of slip coefficient Kn and 
viscoelastic wall properties “ D, T and K, ” respectively. The 
data of Fig. 3 is shown in Table 2.

Slip conditions influence on the flow rate is illustrated 
in Fig. 3a where for complete slip flow Kn = 0.15 the net 
flux profile changes in proportional relation until reach-
ing its maximum value Qmax = 3, 81 × 10−3 at � = 0.65 , 
and then inversely proportional relation occurs noting 
that the back flow starts to take place when � = 0.85 . For 
certain value of � , increasing Kn leads to a rise in Q. When 
Kn = 0 (case of nonslip), the back flow early occurs at 
� = 0.4 . Damping force affects the net flow rate as shown 
in Fig. 3b, since it causes a reduction of flow rate result-
ing in the flow reflux. D = 0 reveals that no damping force 
exists and only vertical movement takes place. Therefore, 
the net flux is in the stream-wise direction of the pipe up 

Fig. 2  Variation of dimensionless net flux versus compressibility factor at different values of wall and flow parameters

Table 1  Corresponding to Fig. 2

a b c d

Wall and flow parameters
Kn (0.0–0.1–0.15) 0.15 0.15 0.15
D 0.4 (0.0–100–200) 100 100
K 0.1 10 (20–40–60) 0.1
T 200 200 1000 (1000–

2000–
3000)

B 20 20 20 20
Re 0.1 0.1 0.1 0.1
m 0.01 0.01 0.01 0.01
� 0.3 0.5 0.5 0.5
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to � = 0.88 , before the occurrence of the reverse flow. In 
addition, for certain value of � the net flux increases up to 
its maximum value. Then, it is gradually decreasing. More-
over, the effectiveness of wall tension T is clear in Fig. 3c. 
For T = 3000 and T = 2000, there is a growth in the net 
flux up to � = 0.7 and then the net flux falls off with � but, 
for T = 1000 , this trend is slightly sensible. T boosts the net 

flow rate. Qmax (for all cases) occurs at � = 0.7 and also the 
back flow starts to exist at � = 0.92 after which increasing 
T, increases the back flow. It is visible in Fig. 3d that there 
is a raise in the net flow rate by increasing wall elasticity K 
and � . But after � = 0.68 , Q reduces until � = 0.91 at which 
the back flow exists. It is apparent that K effect seems to 
be similar for higher values of 𝛼 > 0.75.

Figure 4 shows the variation of the net flow rate against 
different parameters of slip coefficient Kn, wall tension T, 
and wall elasticity K and the corresponding data is tabu-
lated in Table 3.

The net flux rises by increasing the slip factor Kn and the 
increase in liquid compressibility � reduces the net flux. 
When � = 0 (incompressible liquid), largest profile occurs 
and, at Kn = 0.15 , the maximum flow rate appears for all 
cases of �  , as shown in Fig. 4a. In contrast, as shown in 
Fig. 4b, for nonslip condition Kn = 0 and at Kn = 0.1 (slip 
flow), the back flow is visible and there is an inversely pro-
portional relation of Q with T, as the net flow falls off and 
the back flow rises, but, at Kn = 0.15 (fully slip flow), there 
is a proportional relation between T and Q, and the back 
flow appears and its amount decreases up to T = 420 ; 
then it vanishes and the net flow rate will be positive. The 

Fig. 3  Dimensionless net flux distribution against wave number at various values of wall parameters

Table 2  Corresponding to Fig. 3

a b c d′

Wall and flow parameters
Kn (0.0–0.1–0.15) 0.15 0.15 0.15
D 0.4 (0.0–100–200) 100 100
T 200 200 (1000–

2000–
3000)

1000

K 0.1 0.1 0.1 (20–40–60)
B 20 20 20 20
Re 0.1 0.1 0.1 0.1
m 0.01 0.01 0.01 0.01
� 0.5 0.5 0.5 0.5
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maximum flow rate occurs at T = 1000 when Kn = 0.15 as 
Qmax = 0.0027 . Increasing in K causes a raise in Q and slip 
coefficient boosts the net flux as shown in Fig. 4c.

Figure 5 shows the temperature distribution along the 
pipe against the Prandtl number Pr and slip coefficient Kn, 
wall tension T, and wall elasticity K.

The temperature decreases across the tube but the 
increase of Pr , Re, and � causes increase in the tempera-
ture as shown in Figs. 5(a, b, and c), respectively.

5  Conclusion

This work is related to the peristaltic action through the 
tube and the fluid flow behavior is studied under the effec-
tiveness of several flow and wall features in the presence 
of heat transfer. The flow parameters are Reynolds number 
Re, compressibility parameter � , and wave number � . The 
wall parameters are associated with the elastic wall fea-
tures and symbolized as D, T , K and B . The heat transfer 
coefficient is presented as Pr. Net flux profiles Q against 
� , �, Kn, T and K  are plotted under the effect of the per-
vious parameters. The temperature distribution is also 
indicated. The results disclose that, the compressibility 
factor has a strong impact on the net flux as Q is reduced 
by rising � and also, the slip condition seems clearly affect-
ing the net flow as slip factor Kn boosts the net flow rate 
and the highest net flux takes place at Kn = 0.15 (fully slip 
flow. The parameter of interest is the wall properties and 
their influences is strongly affect the flow rate behaviour, 
where, the increase in wall damping factor D reduces the 
net flux (resisting the flow) which results in the appear-
ance of the back flow but increasing wall stiffness K and 
wall tension T results in the growth in the net flux but T 

Fig. 4  Effect of flow and wall parameters on the dimensionless net flow rate

Table 3  Corresponding to Fig. 4

a b c

Wall and flow parameters
� (0.0–0.1–0.3) 0.5 0.5
D 0.4 0.1 0.5
K 0.1 0.5 x-axis
T 200 x-axis 20
B 20 20 2
Re 0.1 0.1 0.2
m 0.01 0.01 0.01
� 0.5 0.9 0.5
Kn x-axis (0.0–0.1–0.15) (0.0–0.1–0.15)
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effect is clearer than the profiles of K. The net flux profile 
varies with the wave number � in proportional relation up 
to a certain value of � and the backward flow may exist at 
higher values of wave number. The temperature distribu-
tion is increasing by increasing Pr , Re, and �.
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Appendix 1: Derivations of equations

The viscous dissipation rate term in Energy equation is 
given by

The dimensionless parameters are

(2.1.1a)

� = 2�

[(
� vr
�r

)2

+

(vr
r

)2

+

(
� vz
�z

)2
]
−

2

3
�

[
� vr
�r

+
vr

r
+

� vz
�z

] 2

(2.1.1b)��⃗V = vr �er + vz �ez

(2.7.1a)
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Fig. 5  Temperature distribution across the tube
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The dimensionless physical parameters are

The two sets resulting from the substitution of pertur-
bation series (3.1) into the governing Eq. (2.8) are intro-
duced as following:

The set of ε is

(2.7.1b)

Re =
c�

0
R

�
, �o =

�

�o
, � =

2�d

�
, � =

a

d
, Kn =

A

d
, Pr =

� cp

Kt

E =
c2

cp(T1 − To)
, Br = Pr E, � = k∗�o c

2

⎫
⎪⎪⎬⎪⎪⎭

(3.1.1)
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The set of ε2 is

(3.1.2a)
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(3.1.2b)
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Taylor series expansion is introduced as following

The boundary equations resulting from the substitution 
of perturbation method (3.1) and Taylor series (3.1.3) into 
the boundary conditions (2.9) are introduced in the form 
of two sets as following:

The set of ε is

(3.1.3)
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The set of ε2 is First‑order boundary conditions

Second‑order boundary conditions

 

such that
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The following equations are introducing the 1st and 
2nd system of equations and their boundary conditions 
resulting from the substitution of Eqs. (3.2) and (3.3) into 
the two sets Eqs. (3.1.1), (3.1.2) and their boundary condi-
tions (3.1.4) and (3.1.5).

First‑order system

Second‑order system
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According to the solution procedure of Eldesoky et al. 
[42] results in the solution of (3.3.1) and (3.3.2) under their 
boundary conditions (3.3.3–3.3.4). Substituting (3.3.1a) 
into (3.3.1b) and (3.3.1c) results in the following relations:

Using Eq. (3.3.1a) to remove V1 term and its derivatives 
from Eq. (3.3.6b) and obtain the following equation.

Differentiate Eq.  (3.3.6c) with respect to r and using 
Eq.  (3.3.6a) to eliminate P1 and its derivatives then 
Eq. (3.3.6c) are rewritten as follows.

Multiplying Eq. (3.3.6d) with �2 resulting in:

Solving (3.3.6e) as it seems to be modified Bessel dif-
ferential equation results in

Substituting (3.3.7a) into (3.3.6a) and then integrating 
the resulting equation to obtain relation of pressure, one 
has

In order to get expression for V1 velocity, substitute 
(3.3.7a) and (3.3.7b) into (3.3.1a) resulting in

Solving (3.3.1d) results in

(3.3.5e)
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8
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(3.3.7a)U1(r) = C1 I1(� r) + C2 I1(� r)

(3.3.7b)P1(r) =
C1(�

2 − �2)

� �
Io(� r) + C3

(3.3.7c)V1(r) = C1 J1Io(� r) + C2 J2Io(� r) + �C3

Using (3.3.6b) to get relation for C3 in terms of C1 and 
then substituting into (3.3.7b) and (3.3.7c) and rewriting 
the 1st-order velocity and pressure expressions in the final 
form as follows, one has

Noting that U1(r), V1(r), P1(r), and�1(r) are singular at 
r = 0 and then terms of modified Bessel function of second 
kind are neglected.

Solution of the 2nd-order system (3.3.2) under their 
boundary conditions (3.3.4) results in relations for the 

second-order velocities, pressure, and temperature as 
follows.

Equation (3.3.5c) is rewritten in the differential form.

Then, (3.3.2c) is a linear ordinary differential equation 
and its solution is given by

Obtaining D1 requires equating U
�

1
(r) relation (3.3.1a) 

and its conjugate with U20(r) relation (3.3.8b) at r = 1 in the 
boundary condition (3.3.4a) in the existence of relations 
(3.3.3a) and (3.3.3b) for V1(1) and U1(1) , respectively, and 
their conjugates therefore.

If Kn = 0 then D1 = 0 as Aarts and Ooms [37].

(3.3.7d)�1(r) = C4 Io(A r)

(3.3.7f )V1(r) = C1 J3Io(� r) + C2 J2Io(� r)
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(1) − V �

1
(1)

)
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Rewriting (3.3.5b) in the differential form requires 
removing P1 from Eq. (3.3.5c) using Eq. (3.3.1a) and then 
it is obtained as

Multiplying (3.3.2b) with r and then integrating it two 
times results in the general solution for V20(r).

It is noticed that V20(r) is singular at r = 0.

The constant D2 can be obtained with the aid of bound-
ary condition (3.3.4b) as follows:

Now, the relation for the 2nd-order temperature �20(r) 
is obtained as a result of multiplying (3.3.2e) with r and 
then integrating the resulting equation with respect to r 
two times.
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r
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dr

[
r
(
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)]

(3.3.8e)V20(r) = D2 − Re

1

∫
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dr

(3.3.8f )
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−
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2

[
V �

1
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�
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]

The time average flow rate along one period of time is 
suitable for calculating the net flow rate.

since the net available velocity is

Appendix 2: Constants

In this section, the constants mentioned in the previous 
equations are introduced as following:

The constants in Eq. (3.1.4) are

(3.3.8g)�20(r) =

1

∫
r

1

r

⎡⎢⎢⎣

1

∫
r

r
�
PrReF4 − BrF5

�
dr

⎤⎥⎥⎦
dr

(3.3.9)⟨Vz⟩ = �2V20(r)

The constant in Eq. (3.3.3c) is

The constants in Eqs. (3.3.6a) and (3.3.6e) are

The constants mentioned in the equations of (3.3.7) are

The functions of Eq. (3.3.8f ) are
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