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Abstract
Identifying spatial patterns in the variability of key soil properties to delineate the extent of land degradation could 
ensure efficient management of natural resources in terrestrial ecosystems. However, little is still known in tropical 
savannas that are subjected to indiscriminate land use. We evaluated the soil variability at the plot-scale in a terrestrial 
tropical ecosystem subjected to varying land use/land cover management to assess the impact of uncontrolled land 
uses on the soil natural capital. The non-invasive, time/cost efficient electromagnetic induction (EMI) technique was 
assessed for its potential, to determine the effect of land uses on soil spatial variability in a changing land use gradient 
from pristine land use/land cover conditions. The investigation was carried out in a natural tropical ecosystem in Aripo, 
Trinidad with soils of predominantly ultisols order and influenced by anthropogenic disturbances. EMI-based apparent 
electrical conductivity (ECa) measurements were obtained at two depth ranges (shallow = 0–0.5 m and deep = 0–1.5 m). 
Soil properties showed that the residential anthropogenic land use had a higher mean apparent electrical conductivity 
shallow  (ECas) value  (ECas = 305.9 mS/m) than all other land uses. Higher  ECas values in the residential site suggest that 
human influences can increase the magnitude of electrical conductivity, which can alter the biogeochemical cycles of the 
soil affecting services provided by the ecosystem. Also anthropogenic land use/land covers exhibited lower coefficient of 
variation for soil texture (silt and clay) than natural land uses, indicating lower sensitivity of soil texture to land use due 
to the mixing of soils, which encourages uniformity in anthropogenic sites. Soil texture dominated the  ECas signal in the 
natural land use/land covers with the relationship between  ECas and silt in the Forest (r = 0.486) and Grass (r = − 0.495) 
significant at P < 0.05. Soil texture showed greater sensitivity to land use in natural sites than in anthropogenic sites. 
The dominance of soil texture in the natural sites indicates that in tropical soils that are predominantly light textured 
(clay content < 21%), silt content controls the EMI signal, which can become of low influence following disturbance. The 
magnitude of electrical conductivity can increase due to human influences. This can alter the biogeochemical cycles of 
the soil, affecting services provided by the ecosystem.
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1 Introduction

Soil degradation as a result of uncontrolled land use/land 
cover activities is the leading cause of ecosystem decline, 
reaching severe levels in certain islands of the Caribbean 

[71]. The increase in uncontrolled land activities as a result 
of deforestation, urban sprawl, industrialization and agri-
culture has undermined the productive capacity of the 
terrestrial ecosystem [9]. The most critical pillar of the 
ecosystem that is negatively affected is the soil natural 
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capital. The productivity of the soil natural capital in gen-
eral depends on the natural variability of soil properties. 
Uncontrolled land use/land cover activities decrease 
natural variability and undermine the productivity of the 
soil [66]. Human impacts have been shown to increase or 
decrease soil variability [14, 74]. As a result, it is important 
to take into account the variability of soil properties in its 
dynamic forms as they are necessary for site specific land 
management. An understanding of the soil variability from 
natural to anthropogenic land uses/land covers can better 
explain soil function processes and subsequent sustain-
able management.

Geophysical soil sensing to assess soil spatial variabil-
ity has been documented over the last four decades [17, 
27, 37, 42, 65, 68]. Determining soil variability as affected 
by human-induced land activities using electromagnetic 
induction (EMI)-based apparent electrical conductivity 
(ECa), can effectively discriminate the magnitude of soil 
variability. Conversely, although ECa variability research 
in savanna ecosystems is sparse with studies conducted 
in California [55, 56] and Texas [59], no evidence of the 
impacts of land cover change on soil variability in tropical 
savannas is provided to the best of our knowledge.

Tropical savannas are important because of their 
vast biodiversity of flora and fauna, many of which are 
endemic. However, they are regularly over-exploited for 
example, for food and growing urbanization. Uncon-
trolled changes (unapproved change to meet needs 
of surrounding communities) in land use/land cover 
which is often not based on land planning, give rise to 
the disruption of soil-vegetation systems responsible 
for the preservation of habitats. Some land use types 
have been known to influence changes in the top soil [3], 
negatively affecting soil quality such as water holding 
capacity, nutrient content and cation exchange capac-
ity. Consequently, anthropogenic land use/land covers 
such as residential, quarrying and agriculture encroach-
ing into natural areas can alter the savannas’ ecosystem. 
The long history of changes in land covers have resulted 
in lowering of the soil productive capacity and depletion 
of soil natural capital [38]. In Aripo Savanna, Trinidad, 
Atwell et al. [9] indicated that professional judgment 
and local knowledge have shown that with increased 
human impact, greater deterioration in the soil health 
occurs. Therefore, greater bulk densities, lower porosi-
ties, lower aggregate stability, lower species diversity, 
and shallower top soils were found in anthropogenic 
influenced areas than natural areas. However, no sys-
tematic study has hitherto been conducted to assess the 
spatial dynamics of soil properties in the savanna ecosys-
tem as a result of the varying anthropogenic practices. 
Therefore, understanding the variability of soil proper-
ties within a land use and from natural to anthropogenic 

land use/land cover systems is critical for optimization 
of management decisions for restorative efforts and sus-
tainable use of the savanna ecosystem.

Apparent electrical conductivity as a means of assessing 
soil properties was first used for the determination of soil 
salinity [51, 52]. Due to its reliability as an indicator of the 
concentration of soil solutes, continuous developments 
have arisen in the form of time domain reflectometry 
(TDR) for the simultaneous measurements of properties 
such as volumetric water content [16, 53, 62]. Relation-
ships between ECa and water content and ECa and soil 
solutes as well as several other edaphic properties pro-
vides justification for using the ECa signal as a proxy for 
soil properties.

In addition, ECa has also been found to have relation-
ships with a variety of anthropogenic properties such as 
leaching fraction, irrigation and drainage and compac-
tion [15], making it ideally suited to assess the effects of 
land use management. Apparent electrical conductivity 
measurements as an indicator of soil quality can be used 
to determine site specific management zones in precision 
agriculture [20, 43].

Fluctuations of ECa are generally in response to differ-
ent soil physicochemical properties such as salinity, bulk 
density/porosity [49], clay content [63, 72], water content 
[34], carbon content [40]. Under humid tropical conditions, 
ECa is found to be influenced by temporal changes in soil 
moisture content for example soil–water repellency [11], 
spatial variation of clay-silt mineral content [8, 72] and soil 
solution electrical conductivity (ECe) [7]. Variations in ECa 
(Dualem EC meter) in non-saline soils, however, are primar-
ily a function of soil texture, moisture and cation exchange 
capacity [11, 20, 44, 60]. This is also observed in tropical 
savannas where structural and compositional attributes 
of the soil are often described in relation to rainfall and 
soil texture [69, 72].

Fitzjohn et al. [26] reported that traditional methods 
of soil survey can be problematic in terms of sampling, 
data interpretation and extrapolation. They are also time 
consuming, invasive and not cost effective and thus may 
not always be the most suitable method in rugged envi-
ronments. Modern methods such as EMI have been used 
by researchers in different environments [28, 33, 58]. More 
specifically, EMI as a measure of variation in soil proper-
ties to collect spatially exhaustive data has been used by 
researchers in humid tropical land use environments for 
example; Bréchet et al. [11] in both teak and native forests, 
Atwell et al. [7] in wetlands and De Caries et al. [19] in a 
Cocoa plantation, making it a suitable instrument to be 
employed as it expedites site characterization and increase 
accuracy while combining sufficient spacing, extent, and 
support [10] to capture the small-and large-scale variabil-
ity of soil properties across a field site [55].
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The DUALEM-1S meter is one such EMI meter capable 
of measuring two depths of the soil, the upper depth at 
0–0.5 m and the lower depth at 0–1.5 m of the soil [1]. 
Since the soil is affected by land use/land cover and cli-
matic factors at its surface (0–0.5 m) and by the clay pan 
and parent material in deeper depths (0–1.5 m), compar-
ing the soil variability at these two layers by quantify-
ing the effects in the soil, provides an understanding of 
the dynamics of within-field variability of the soil phys-
icochemical properties. Although land use can positively 
affect soil variability and functions, anthropogenic land 
cover change affects surface soil variability due to reduc-
tion in microbial biomass, disruption of the formation of 
microaggregates, reduction of organic matter and acceler-
ated erosion. At the deeper depths of the soil, land cover 
can change the recycling of plant nutrients and alter car-
bon stabilization affecting soil quality and contribute to 
soil variability.

While there has been research on the influence of land 
use/land cover change on soil quality (e.g., [13, 25, 32, 47]), 
limited research has been conducted on the within-field 
variability information necessary for the development of 
good soil quality management strategies of tropical soils. 
In spite of the fact that ECa does not hold a direct relation-
ship with land use/land covers, it depends directly on the 
range of soil properties which can in themselves be influ-
enced by land covers. Therefore, it is hypothesized that 
ECa signals in humid tropical soils can vary depending 
on, among others, the prevailing land covers. The objec-
tives of our study were to: (1) quantify soil properties in 
the Aripo savannas under different land uses/land covers 
(2) determine the effect of soil properties on electromag-
netic signal within various land use/land cover types; (3) 
investigate the spatial heterogeneity of soil properties as 
influenced by land use/land cover change; (4) discriminate 
the sensitivity of soil quality factors to different land uses/
land covers using the EMI.

2  Materials and methods

2.1  Location and climate

The Aripo savannas lies in the North Central region of 
Trinidad (10°30′35″N, 61°12′0″W) bordered by the Valen-
cia river to the north and the Aripo river to the west. The 
climate is humid tropical with distinct wet (January to 
May) and dry (June to December) seasons. The average 
annual rainfall ranges from 2400 to 2600 mm in response 
to seasonal fluctuations. The monthly temperatures range 
from 22.7 to 31.3 °C with relative humidities of 60% and 
75% in dry and wet season respectively (EMA [24]). Like 
most tropical savannas, the water availability in the Aripo 

savannas is seasonal. During the dry season the surface 
fine sandy to silty soils severely dry out causing vegetation 
to suffer from drought. In the wet season, due to water 
logging, the savannas are periodically submerged causing 
physiological drought to vegetation [4]. Vegetation types 
found in the Aripo savannas include grass, sedge, palm 
and marsh forests.

In the past, the savannas (Fig. 1) have been covered 
much more extensively by marsh forest, however, due 
to activities which include timber harvesting, quarrying, 
agriculture and use as a US military base (Table 1), many 
parts of the savanna ecosystem have been devastated. Our 
study area consisted of five study sites, four within the sci-
entific zone of the Aripo savanna, and one outside. The 
sites were selected due to differences in land use and land 
cover that currently take place within the Aripo savanna 
protected area. These include: (1) unplanned residential 
lands due to squatter settlements (Size = ~ 34 m × 47 m) 
located in previously forested land use (10°36′09.13″N, 
61°12′34.96″W), (2) abandoned quarry land (Size = ~ 75 m 
× 58 m) located in a previously grassland land use/land 
cover (10°36′17.65″N, 61°12′24.04″W), (3) natural forest 
land use/land cover (Size = ~ 96 m × 79 m) (10°36′07.60″N 
61°12′25.11″W), (4) natural grassland land use/land cover 
(Size = 172 m × 97 m), (10°35′38.94″N, 61°12′16.15″W) and 
(5) unsustainable agricultural land use due to poor farming 
practices by unlawful squatter settlers (Size = 82 m × 34 m) 
located in a previously forested land cover (10°38′43.05″N, 
61°11′51.80″). The soils within this region are Ultisols 
belonging to Aripo fine sand, Long Stretch fine sandy-clay 
and Valencia fine sand soil series developed on silty clays, 
gravelly clays and sand parent materials. The topography 
of the area is generally flat with a microtopography broken 
up into hummocks in some places. The savanna is situated 
on old alluvial terraces from the Pleistocene age 35–40 m 
above sea level. Weathering of alluvial terraces form a 
hardened clay pan layer 15–30 cm down the soil profile. 
This layer may come to the surface at different parts of the 
savanna significantly affecting drainage of soils in the area.

2.2  Electromagnetic induction surveys

Electromagnetic induction (EMI) surveys were carried out 
to map the bulk soil electrical conductivity (ECa) of the five 
study sites non-invasively using the DUALEM-1S (Dualem, 
Milton, ON, Canada), a field computer (Archer Ultra Rug-
ged Field PC, Juniper Systems) and a GPS-BT GPS receiver 
(Royal Tek, Kuei Shan). The instrument is highly portable, 
small enough to be carried by one person and its mode 
of operation is less time consuming than traditional soil 
survey methods [30]. The instrument comprises of a trans-
mitter coil and two receiver coils. Once the transmitter coil 
becomes energized, a time varying magnetic field arises. 
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This magnetic field induces currents in the earth which 
generate a secondary magnetic field. The ratio of both 
fields is assumed to be linearly proportional to the ground 
electrical conductivity [42].

The DUALEM-1S instrument was held parallel to the 
ground (approximately 0.2 m above the ground) using 
the vertical coil orientation. Measurements were made 
by navigating the field site in a predetermined grid-like 

Fig. 1  Map of scientific zone 
showing the locations and 
electro-magnetic pathways 
surveyed for the 5 field sites a 
agriculture, b quarry, c residen-
tial (d) forest and (e) grassland

Table 1  Site characteristics of study plots

Site/current land 
use/land cover

Vegetation Soil series Parent material Land use history

Residential Forest, Crop Guanapo (Dystric Eutrudepts) Fine, loamy. Micaceous Forest, Squatting, Subsistence agriculture
Quarry Palm marsh, 

Grass, Sedge
Piarco (Typic Kanhaplaquults) Fine. Kaolinitic Grassland, Quarry

Agriculture Crops, Forest Valencia (Kandic Plinthaquults) Fine, loamy. Siliceous Forest
Grassland Grass, sedge, Piarco (Typic Kanhaplaquults) Fine. Kaolinitic Grassland, Ecotourism
Forest Forest Piarco (Typic Kanhaplaquults) Fine. Kaolinitic Timber harvesting, Hunting, Ecotourism, 

US military base
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pattern. The grid-like EMI survey route was created by 
traversing the field site east–west and north–south 
at ~ 10 m distances between the grid lines (Fig. 1). The 
surveyor without resting collects 2000 data points 
normally within an hour as the field computer is set 
to record every 2 s. The EMI maps were then created 
by interpolating the data using kriging [48], following 
quality assurance/quality control procedures (such as 
the cleaning of data) and semivariograms. Changes in 
temperature have been known to influence the EMI sig-
nal [41] as such since the temperature was not constant 
throughout the surveys, temperature corrections were 
made for the soil ECa data prior to analysis using the fol-
lowing temperature correction equation [64]:

where  EC25 is the corrected electrical conductivity at the 
standard temperature of 25 °C,  ECt is the electrical conduc-
tivity measured at ambient temperature and ƒt (0.925) is 
the correction factor at ambient temperature.

The EMI mapping of the five Aripo field sites were 
conducted between the hours of 9 am–12 noon at 
March 21st, April 23rd, May 28th and June 2nd of 2014 
when the field was dry (daily rainfall/temp in March 
 21st = 0.4  mm/28  °C, April  23rd = 0.9  mm/28  °C, May 
28th = 0.6 mm/29 °C, June 2nd = 0.0 mm/28 °C) indicat-
ing a very severe dry season compared with other years. 
The dominant vegetation type found are open areas of 
grass (Gramineae) and sedge (Cyperaceae) lying within 
a seasonal forest and palm marsh vegetation (Mauritia 
setigera Gr. & Wendl).

2.3  Soil properties measurements

In addition to EMI measurements, the soil surface layer 
for the five study sites was measured using a Field Scout 
EC 110 m (Spectrum, Illinois) for electrical conductiv-
ity (EC) and temperature and a TDR 100 soil moisture 
meter (Spectrum, Illinois) for volumetric water content 
(VWC). A similar approach was used by De Benedetto 
et al. [18] who integrated data of different sensors to 
identify three homogeneous sub-field areas related 
to the intrinsic properties of soil. Measurements were 
made at geo-referenced locations in the Aripo savanna 
and recorded using a global positioning system (GPS) 
receiver and a field computer. Measurements were con-
ducted simultaneously with ECa surveys at 15 cm depth. 
Measurements were taken at grid intersections using a 
portable TDR 100 soil moisture meter (Spectrum Illinois) 
and an EC 100 m, Spectrum Illinois. Sites were tested for 
conductivity, temperature, and volumetric water content 
within the 5 land use/land covers.

EC
25

= EC
t
⋅ f

t

2.4  Soil sampling and analysis

A directed sampling design based on soil ECa variability 
was employed to collect soil samples that were represent-
ative of the 5 different field sites. 20 sample locations were 
generated for each field site (Fig. 2) using the ESAP-RSSD 
[39] for optimal stochastic calibration. Additionally, ECa, 
EC (Field Scout), temperature and soil moisture were col-
lected at each location prior to collecting soil samples. A 
gouge auger for disturbed samples and cylindrical cores 
5 cm in diameter and 5 cm high for undisturbed samples 
was used to manually collect soil samples from depths of 
0–30 cm (auger) and 0–5 cm (core) respectively. Duplicate 
disturbed samples were collected at each sample location 
for the 5 field sites and were immediately sealed in Ziploc 
plastic bags to prevent moisture loss. Soil disturbance was 
evident within the 0–30 cm layers of the agriculture land 
cover.

The soil samples were transported back to the labo-
ratory, disturbed subsamples and cores were promptly 
weighed (fresh mass) and analyzed for soil water content 
and bulk density by recording the dry mass after oven 
drying at 105 °C to constant weight. The remaining sam-
ples were air dried, crushed and passed through a 2 mm 
sieve for soil physical and chemical analyses. Particle size 
analysis was performed using the hydrometer method [29] 
without prior removal of organic matter and Fe-Oxides. 
Preliminary investigation confirmed the findings of Ahmad 
and Roblins [5] and Wuddivira and Camps-Roach [70] that 
the binding effects of organic matter and free Fe-Oxides 
were negligible due to their inherently low concentrations 
in these soils. Soil solution electrical conductivity (ECe), 
pH and redox potential were measured from a saturated 
soil–water paste extract [50]. A loss on ignition method 
using a muffled furnace was used to determine the total 
organic carbon content in the soil samples [45].

2.5  Data analysis

2.5.1  Geostatistical analysis

D’Or et al. [21] described geostatistics as a well-established 
scientific discipline that provides flexible spatial analy-
sis methods to accurately delineate areas. Normal score 
transformation of non-normal ECa data was performed 
[31]. Semi-variogram model parameters (sill, nugget, 
range) were determined for the ECa surveys in each of the 
five land uses to determine the correlation structure that 
underlies the spatial prediction for the kriging of these val-
ues. The sill can be described as the level at which the vari-
ogram flattens out, the nugget relates to the unexplained 
variance between pairs of points separated by very small 
distances, such as the measurement error and the range is 
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a measure of the spatial continuity of the variable of inter-
est [67]. Simple kriging was used in the Gaussian method; 
kriging parameters include: interpolation grid spacing 
10 m, search ellipsoid 75 m, azimuth, dip and rake were 
all set to 0 as 3D kriging was not needed. After kriging, 
the normal score transformed, interpolated data was back-
transformed to the original distribution to improve reli-
ability in the delineation of soil properties. The EMI values 
obtained were then paired with soil data using a nearest 
neighbour analysis in a spreadsheet [55]. This represented 
the closest linear distance from each soil sample location 
to the nearest kriged ECa data point. Transformations, 
semi-variograms and simple kriging were calculated using 
Stanford Geostatistical Modeling Software (SGEMS version 
2.1; [48]) procedure outlined in Robinson et al. [54].

2.5.2  Statistical analysis

Summary statistics (Table 2) were obtained for the dataset, 
and the Shapiro–Wilk test was used to test the normality 
of the data for each soil parameter within land uses. All of 
the soil parameters were found to be normally distributed 
within the five field sites. Apparent electrical conductivity 

for the residential field site, however, had to be logarith-
mically transformed before application of statistical tech-
niques and parametric analysis such as regression and 
Pearson correlation as heavy disturbance was evident 
yielding non-normal distribution. Soil quality factor score 
coefficients of soil samples were computed using princi-
pal component analysis (Table 3). Analysis of variance was 
used to discriminate the differences of the soil quality fac-
tor scores in different land use types.  

3  Results and discussion

3.1  Statistics of edaphic factors as a function 
of land use/land cover

Variance in soil attributes can depend on several factors 
including land use. In this study land use was varied and 
soil attributes were used as a relative measure of land use 
sensitivity. Coefficient of variation (CV) within land uses 
was used to determine sensitivity to group soil variables as 
a function of land use (Table 2). Since climatic factors and 
topography (relatively flat) were assumed to be constant 

Fig. 2  Soil sample locations 
in 5 different land uses in the 
Aripo savanna
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in the study site, the impact of land use was essentially the 
cause of variance in soil properties, hence CV is a reflec-
tion of land use sensitivity. Consequent to this, Xu et al. 
[73] classified the sensitivity of land use using CV as fol-
lows: CVs > 100% reflected high sensitivity to land use, CVs 
100–40% reflected moderate sensitivity to land use, CVs 
40–10% reflected low sensitivity to land use and CVs < 10% 
reflected no sensitivity to land use. Given that all other fac-
tors besides land use/land cover was kept constant during 

soil sampling, variances in soil properties were used as a 
measure of sensitivity to land use/land cover. In the resi-
dential site, silt (CV = 58.3%), clay (CV = 48.8%) and SOC 
(CV = 46.9%) had the higher CVs of moderate sensitivity, 
temperature had the lowest CV (1.2%) reflecting no sensi-
tivity to land use/land cover in the Aripo savanna. Temper-
ature exhibited no sensitivity overall amongst the 5 land 
use/land covers. The quarry site also reflected moderate 
sensitivity for silt (CV = 40.6%) and clay (CV = 81.6%). Soil 

Table 2  Summary statistics of soil properties in the Aripo savanna, Trinidad

SOC soil organic carbon; VWCvolumetric water content; TEMP temperature
† EC electrical conductivity collected from Field Scout EC 110 m

Means followed by the same letter are not significantly different at P < 0.05

Land use Bulk density 
(g/cm3)

VWC  (cm3/cm3) Silt (%) Clay (%) SOC (%) pH †EC (µS/cm) TEMP (°C)

Residential
Mean 1.2c 0.4a 28.8a 12.3bc 2.2ab 4.9ab 146.3b 21.6 cd

Median 1.3 0.4 27.5 12.1 2.0 4.8 130.4 21.7
Standard Deviation 0.2 0.1 16.8 6.0 1.0 0.4 48.2 0.3
CV (%) 13.9 27.2 58.3 48.8 46.9 8.0 33.0 1.2
Maximum 1.5 0.6 51.3 25.5 5.2 6.2 274.5 22.5
Minimum 0.8 0.1 0.0 0.0 0.9 4.4 98.6 20.8
Quarry
Mean 1.5a 0.3bc 37.0a 20.6ab 1.5b 4.9ab 102.5b 21.5d

Median 1.5 0.3 41.8 23.3 1.6 4.9 98.2 21.5
Standard Deviation 0.1 0.0 15.0 16.9 0.5 0.1 25.9 0.2
CV (%) 5.7 14.4 40.6 81.6 35.4 2.6 25.2 1.0
Maximum 1.7 0.2 52.3 57.3 2.5 5.1 189.0 22.2
Minimum 1.3 0.3 0.0 0.0 0.6 4.7 69.6 21.1
Agric.
Mean 1.4ab 0.3bc 29.8a 20.4ab 1.5b 5.0a 218.5a 22.1bc

Median 1.5 0.3 29.8 17.3 1.3 5.0 169.0 22.1
Standard Deviation 0.1 0.0 13.8 9.9 0.6 0.2 157.8 0.3
CV (%) 6.5 16.0 46.4 48.4 43.0 4.8 72.2 1.5
Maximum 1.6 0.3 65.5 44.6 3.1 5.6 830.0 23.0
Minimum 1.2 0.2 13.6 0.0 0.4 4.6 119.4 21.5
Grass
Mean 1.3b 0.4a 36.3a 5.0c 1.5b 4.7b 89.2b 26.4a

Median 1.3 0.4 37.7 0.0 0.9 4.7 87.4 26.2
Standard Deviation 0.1 0.0 13.0 11.9 1.4 0.2 11.9 1.3
CV (%) 8.2 6.7 35.9 240.2 89.9 5.0 13.3 4.8
Maximum 1.5 0.5 54.8 42.8 5.3 5.4 118.8 29.5
Minimum 1.1 0.3 5.4 0.0 0.5 4.2 75.4 24.7
Forest
Mean 1.1d 0.3b 13.4b 27.3a 2.7a 4.4c 148.2b 22.2b

Median 1.1 0.3 5.8 25.8 2.6 4.4 137.7 22.4
Standard Deviation 0.1 0.0 15.5 11.8 0.7 0.1 34.4 0.4
CV (%) 10.7 14.2 116.0 43.2 27.6 2.7 23.2 1.8
Maximum 1.3 0.4 42.2 52.7 4.9 4.6 208.4 22.8
Minimum 0.9 0.2 0.0 0.0 1.6 4.2 105.2 21.6
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texture attributes were most affected by the residential 
and quarry land covers due to activities from the nearby 
squatter settlement and the recently abandoned quarry-
ing facility causing a change in particle size due to break-
down of peds. Silt (CV = 46.4%) and clay (CV = 48.4%) con-
tinued to reflect moderate sensitivity in the agricultural 
site, however, electrical conductivity (CV = 72.2%) had the 
highest CV. Electrical conductivity (Field Scout) reflected 
moderate variability, mostly as a result of the influence of 
fertilizer inputs into the soil, however, principal compo-
nent analysis indicated that it was significantly different, 
generally soil texture was most affected amongst land 
use/land covers. The forest site, reflected a high CV for 
silt (CV = 116.0%) reflecting high organic matter contribu-
tion to soil texture in the forest land use. Clay CV (43.2%) 
which was moderate could have been as a result of the 
soil erosion processes which influence the particle size 
distribution in this natural land use. In the grass site, clay 
had the highest CV (240.2%) which reflected the exposure 
of the grassland land cover to erosive processes due to 
sparse vegetation coverage in the savanna, this may have 
influenced texture. The process of erosion can selectively 
distribute particles based on their size, thus erosion can 
influence soil texture [73]. Soil organic carbon CV (89.9%) 
was moderate in the grass site. Soil texture in the grassland 
site indicated the heterogeneous nature of the soils due 
to the presence of the clay pan layer which comes closest 
to the surface at this site.

Analysis of variance of soil quality factor scores in differ-
ent land use types (Table 3) revealed that certain soil vari-
ables were more sensitive to land use/land cover change 
than others. All soil variables were significantly affected 
by land use/land cover type. These variables represent 
dynamic soil properties that can be used for assessing 
effects of land use/land cover change [73]. The finer soil 
fractions of silt and clay were most affected by land use/
land cover as indicated by their high F values. Soil electrical 

conductivity (Field scout) was least affected by land use/
land cover change. Even though soil electrical conductiv-
ity is a dynamic property other soil variables were more 
sensitive to the controls of land use/land cover change.

Correlations across land use/land cover types (Table 4) 
indicate similarities and differences in parent material. Soil 
texture revealed correlations in all land uses except forest. 
Largest correlation was observed for silt and clay in the 
Quarry site. Finer soil fractions on the quarry (r = − 0.79) 
and grass sites (r = − 0.51) indicate similarities in parent 
material in the Aripo savanna which contains fine, kaoli-
nitic materials (Table 1). Soil organic carbon had correla-
tions with soil variables in all land uses. SOC was strongly 
correlated with bulk density and porosity for the residen-
tial and grass sites (Table 4). Positive relationships were 
observed for SOC and EC in the natural sites of forest and 
grass. In the human influenced sites a direct relationship 
between the two variables were not as distinct. The human 
influenced residential and quarry sites, however, had posi-
tive relationships between SOC and VWC. Water content 

Table 3  Analysis of variance 
of soil quality factor scores in 
different land uses in the Aripo 
Savanna

*Significant difference at P 0.01 level

Soil variables Soil quality factor scores in different land use types

Residential Quarry Forest Agriculture Grassland ANOVA F

Bulk density (g/cm3) − 0.846 − 0.974 0.941 0.995 − 0.569 13.821*
Pore space 0.00 − 0.00 − 0.00 − 0.00 − 0.00 18.000*
VWC  (cm3/cm3) 0.709 0.295 − 0.411 − 0.583 − 0.675 17.122*
EC (µS/cm) 0.375 0.923 0.648 − 0.670 0.623 11.911*
Temperature (°C) − 0.859 − 0.598 0.894 0.718 0.536 12.998*
Clay (%) 1.003 − 0.509 0.577 0.429 0.373 12.287*
Silt–clay (%) 0.091 − 0.319 − 0.556 − 0.531 − 0.874 22.497*
pH 0.680 0.651 − 0.776 − 0.707 0.890 12.842*
SOC (%) 0.183 − 0.834 0.562 0.555 0.233 14.467*
Sample numbers 20 20 20 20 20

Table 4  Correlation (r) between soil properties in different land 
use/land cover in Aripo Savanna, Trinidad

BD bulk density; SOC soil organic carbon; VWC volumetric water 
content, PS porosity, EC electrical conductivity

NA no correlation

Correlation Land use/land cover

Residential Quarry Forest Agriculture Grass

BD versus SOC − 0.73 NA NA NA − 0.62
Clay versus SOC NA NA NA − 0.45 0.65
PS versus SOC 0.73 NA NA NA 0.62
VWC versus pH 0.46 0.52 NA NA NA
VWC versus SOC 0.52 0.52 NA NA NA
EC versus SOC NA NA 0.72 NA 0.63
Silt versus Clay NA − 0.79 NA − 0.46 − 0.51
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in human influenced sites tend to be more variable than 
natural sites. Even though VWC can vary on a daily basis 
due to climate, it depends on non-ephemeral soil proper-
ties such as clay and SOC which vary spatially. SOC has 
been reported as a factor that influences soil water con-
tent variation [36].

Generally, electrical conductivity as a function of land 
use/land cover in the Aripo savannas revealed that EC was 
higher for anthropogenic sites, for example, agriculture 
than for non-anthropogenic sites such as grass.

3.2  Apparent electrical conductivity as a function 
of land use/land cover

The summary statistics (Table 5) revealed higher mean 
apparent electrical conductivity (Dualem EC meter) shal-
low  (ECas) than apparent electrical conductivity deep 
 (ECad) values in the anthropogenic land covers of residen-
tial  (ECas = 305.9,  ECad = 76.1 mS/m), quarry  (ECas = 21.9, 
 ECad = 3.3 mS/m) and agriculture  (ECas = 5.6,  ECad = 5.1 
mS/m). The increased sample size of the ECa values aided 
in the identification of outliers which improved the accu-
racy of the results. The  ECas values have been shown to 
increase with water content and ions retained in soil solu-
tion [23, 54, 72] as a result of inputs at the soil surface. For-
est site  ECas (16.8 mS/m) and  ECad (16.5 mS/m) had similar 
means. Contrariwise, the mean  ECad was higher than the 
mean  ECas for the natural grassland site  (ECad = 219.6, 
 ECas = 99.4 mS/m). In our study the relationship between 
 ECas and VWC was linearly positive in the natural sites (as 
VWC increased, ECa also increased). In the human influ-
enced sites, however, there was either a negative corre-
lation or no correlation at all reflecting disruption in soil 
quality.

The forest site had the largest range of  ECas values 
 (ECas = 9.4–45.1 mS/m) while agriculture had the largest 
range of  ECad (1.5–31.3 mS/m) values. The  ECas values 
may be attributable to the higher clay and organic con-
tents found in the forest site (Table 2). Soil tillage practices 

combined with fertilizer applications may explain  ECad val-
ues in the agriculture site as the soil ionization increases. 
The quarry had the lowest range of  ECad values (1.3–6.6 
mS/m while the grassland site had the lowest range of 
 ECas values (94.4–103.1 mS/m). The standard deviation for 
the five land uses of residential, quarry, forest, grass and 
agriculture,  ECas and  ECad (Range Std dev  ECas = 2.6–8.1; 
Range Std dev  ECad = 1.4–6.3) and for the coefficient 
of variation (Range CV  ECas = 2.6–124.0%; Range CV 
 ECad = 1.8–123.9%) were generally high (Table 5) indicat-
ing high spatial variability. Also the standard deviation and 
coefficient of variation generally decreased with depth 
indicating less ECa variability at deeper depths as it is not 
exposed to climate and anthropogenic disturbances.

ECas was significantly higher (< P = 0.001) in the forest 
site than all other land uses due to the clay and humus 
content present in the topsoil. Agriculture site, however, 
had a significantly lower mean ECa (< P = 0.001) than the 
other 4 land uses. This differs with what was found by the 
soil probe (Field scout) indicating that there may have 
been some interference to the EMI sensor moving from 
an open area in the agricultural site to the perimeter bor-
dered by tall, thick forest canopy. For  ECad, the mean value 
at the quarry site was significantly lower < P = 0.001 than 
the other land uses except for agriculture where forest 
canopy interference to the EMI sensor may have occurred, 
while the  ECad mean value at the grass land use was sig-
nificantly higher < P = 0.001 than all other land uses due 
to the presence of the clay pan.

The  ECad semivariogram models exhibited slightly 
higher nuggets, slightly lower sills and shorter ranges for 
all land use/land covers except for quarry land (Table 6). 
Duffera et  al. [22] presented a classification of spatial 
structure as follows: the variable with nugget-to-sill ratio 
of < 25% was considered strongly spatially dependent; the 
ratio between 25 and 75%, was considered moderately 
spatially dependent; and the ratio > 75% was considered 
weakly spatially dependent. This classification system was 
used to quantify the degree of spatial dependence based 

Table 5  Summary statistics of apparent soil electrical conductivity shallow  (ECas) and deep  (ECad) in the different land use/land cover sites 
in the Aripo savanna, Trinidad

± ECa represents apparent electrical conductivity data collected by Dualem EC meter

Means followed by the same letter are not significantly different at P < 0.05

Land Use/land cover ±ECas (mS/m) ECad (mS/m)

Mean Median Min Max Std. Dev. CV (%) Mean Median Min Max Std. Dev CV (%)

Residential 305.9a 301.3 67.8 83.7 4.5 6.8 76.1a 76.3 67.8 83.7 4.5 5.9
Quarry 21.9b 20.4 15.4 29.1 5.3 24.2 3.3b 3.2 1.3 6.6 1.4 42.9
Agriculture 5.6c 4.2 1.7 34.7 7.0 124.0 5.1bc 3.8 1.5 31.3 6.3 123.8
Grass 99.4d 99.7 94.4 103.1 2.6 2.6 219.6d 219.8 225.0 225.0 4.0 1.8
Forest 16.8e 13.6 9.4 45.3 8.1 48.2 16.5e 14.9 11.8 38.4 5.5 33.2
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on the nugget semivariance expressed as a percentage 
of the total semivariance (nugget to sill ratio). Due to the 
different meanings of semivariogram model parameters 
for different model types, the nugget-sill ratio can only be 
compared for the same model type and not across differ-
ent model types. Strong spatial dependence was observed 
for  ECas (nugget semivariance = 16%) in the residential 
lands suggesting that the Gaussian fitted model had a 
greater accuracy in prediction. All other models (both 
exponential and spherical), exhibited a moderate spatial 
dependence (nugget semivariance range: Quarry = 50%, 
Forest = 55%, Grass = 36.7%, Agriculture = 42%) suggesting 
less accuracy in prediction but exhibiting spatial structure 
and correlation (Table 6). Both spherical and Gaussian 
models were fitted to  ECas and spherical and exponen-
tial models to  ECad. Spherical models were fitted where 
ECa sample points had a linear behaviour in origin and 
had a higher level of short range variability [12], these 
can be observed in forest, grassland and agriculture land 
use/land covers as well as Quarry  ECas. A Gaussian model 
was fitted to the residential site  ECas as it exhibited a con-
tinuous gradually varying structure [46]. Residential and 
quarry  ECad sites were fitted with an exponential model 
as abrupt changes over distances can be observed in the 
soil property.

The kriged spatial  ECas and  ECad maps for the five dif-
ferent land use/land covers are displayed in Fig. 3. Kriged 
maps generally revealed more variability at the shallow 
depths (0–0.5 m) than the deeper depths (0–1.5 m) for 
each land use (Fig. 3). This is consistent with the existence 
of high variability in raw data at plot scales. This effect 
is highlighted by the fact that sample volumes typically 
used to measure plot scale variability are sensitive to the 
effect of small areas of high- or low variance as compared 
to larger sample volumes on a landscape scale. Generally, 

the anthropogenic sites of residential, quarry and agricul-
ture, however, had a greater range in ECa  (ECas and  ECad) 
values than the natural land use/land covers of forests and 
grasslands. Greater ECa ranges were obtained as expected, 
as evidence of greater spatial variability from domestic, 
agricultural inputs and mining. In addition to these activi-
ties, the accumulation of water due to the poor drainage 
of soils increased ECa values [15].

The residential site kriged  ECas values were greater than 
kriged  ECad values  (ECas range = 39.2–60.0 mS/m). Lowest 
kriged  ECas values were located on the southern region of 
the residential field site; this gradually gave way to higher 
values towards the northern and western regions of the 
residential field site. Generally, a similar spatial pattern was 
observed in the kriged  ECad property with increased scat-
tered high value points due to buried refuse strewn across 
the site. For quarry, kriged  ECas values were higher rang-
ing between 22.8 and 30.5 mS/m while kriged  ECad val-
ues were lower  (ECad range = 3.6–5.3 mS/m). The observed 
spatial distribution of kriged  ECas had the lowest values 
in the north-east except for the high electrical conductive 
values in the north-eastern most edge, the eastern margin 
and the south-eastern regions of the quarry field site. The 
highest values were observed in scattered clumps in the 
southern, central and north-western area of the quarry. 
The spatial distribution for the kriged  ECad, however, 
had the lowest values generally in the north-east, west 
and southern regions of the quarry (Fig. 3). Water bodies 
were observed surrounding the quarry site at these par-
ticular locales and maybe responsible for the  ECad values 
obtained. In the forest, kriged  ECas ranges were lower  (ECas 
range = 9.3–14.5 mS/m) than kriged  ECad ranges  (ECad 
range = 22.7–23.9 mS/m). The pattern of kriged  ECas distri-
bution revealed lowest values on the north-western region 
of the forest site, gradually increasing in value towards 

Table 6  Semivariogram 
parameters for the analysis 
of spatial dependence as a 
function of land use/land cover 
in the Aripo savanna, Trinidad

ECa apparent electrical conductivity from Dualem 1S EC meter

Land use/land cover Model Nugget Partial sill Sill Relative 
structure

Nugget 
semi-vari-
ance

Range

ECa shallow
Residential Gaussian 0.4 2 2.4 0.83 16 99
Quarry Spherical 0.5 0.5 1 0.5 50 42
Agriculture Spherical 0.5 0.7 1.2 0.58 42 66
Grassland Spherical 0.4 0.69 1.09 0.63 36.7 81
Forest Spherical 0.6 0.47 1.09 0.43 55 25
ECa deep
Residential Exponential 0.5 0.52 1.02 0.51 49 16
Quarry Exponential 0.6 0.61 1.21 0.5 49.5 52
Agriculture Spherical 0.7 0.35 1.05 0.33 66.7 25
Grassland Spherical 0.7 0.26 0.96 0.27 72.9 63
Forest Spherical 0.6 0.48 1.08 0.44 55.6 22
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the southern and south-eastern regions. Kriged  ECad low-
est values were distributed in the northern, eastern and 
central regions of the forest, again giving way to gradu-
ally increasing values towards the south-western region 
where a river boarded the site and may have contributed 
to higher water content. For grassland site, the kriged 
 ECas values were lower than the kriged  ECad values  (ECas 
range = 13.6–17.0 mS/m,  ECad range = 66.1–67.1 mS/m). 
The spatial distribution of kriged  ECas had the lowest val-
ues in the south-western region of the grassland, giving 
way to a gradual increase in kriged  ECas values towards 
the north-eastern region. Kriged  ECad spatial distribution 
exhibited a similar pattern (Fig. 3). Parent material differ-
ences across the grassland site may have contributed to 
the  ECas and  ECad values. For the agriculture site, kriged 
 ECas had higher ranges  (ECas = 5.0–11.3 mS/m) than kriged 
 ECad  (ECad range = 4.1–9.4 mS/m). Spatial distribution of 
kriged  ECas values revealed lowest values in the north and 
east regions which generally increased to the south and 
west region of the agriculture field site. Similar patterns 
were observed for kriged  ECad indicating that agriculture 
practices over a lengthy period influences both shallow 
and deeper layers in the soil.

3.3  ECas signal relationship with soil properties 
in the Aripo Savanna

EMI-based ECa measurements is a proxy for inferring dom-
inant soil properties at the field scales [35]. EMI as a proxy 
for inferring soil properties was also reported by Atwell 
et al. [7] who calibrated ECa surveys to the electrical con-
ductivity of saturation extract within a tropical wetland. 
Taylor et al. [61] also investigated electromagnetic induc-
tion as a surrogate for detailed soil coring.

Pearson correlations between soil properties and the 
 ECas signal within three of the five land use/land covers 
(Table 7), showed that VWC (r = 0.49, P = 0.030) and silt 
(r = 0.49, P = 0.03) in the forest land cover, were significantly 
correlated with the  ECas signal. This indicates that  ECas 
was primarily controlled by water content and soil texture 
within the forest. Within the grassland cover soil texture 
(clay) and water content also had a significant correlation 
with the  ECas signal suggesting that the bulk soil electri-
cal conductivity response was also primarily controlled by 
soil texture (clay) and water content in this particular land 
cover (Table 7). Flow of electrical conductivity through 
materials such as soil are explained by models developed 

Fig. 3  Kriged apparent electrical conductivity (ECa) shallow and deep spatial maps for each land use
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by Archie [6], Mc Neill [42] and Ruffet et al. [57]. In the agri-
cultural land cover, water content (r = − 0.55, P = 0.01) and 
pH (r = 0.59, P = 0.01) had significant negative and positive 
correlations, respectively with  ECas. This maybe a result 
of irrigation practices on the agricultural site disrupting 
natural water gradients resulting in soil mineralization of 
organic matter within the soil. Bulk soil electrical conduc-
tivity provides valuable information on the nutrient con-
tent and acidity of the soil. This is critical to site specific 
management of agricultural inputs [2, 20].

4  Conclusion

Our study shows that there were spatial variations in 
apparent electrical conductivity at both shallow (0–0.5 m) 
and deep (0–1.5 m) depths. Shallower depths, however, 
exhibited larger spatial variations due to the effects 
of different anthropogenic land uses/land covers and 
changes in the transient properties of water content and 
temperature.

Relationships between apparent electrical conductivity 
and soil properties indicate that soil properties such as 
VWC (r = 0.49) and silt (r = 0.49) were associated with the 
EMI signal in the forest land use, while VWC (r = − 0.549 
and pH (r = 0.592) soil properties, were associated with the 
signal in the agriculture field site. Within the grass land 
use, soil texture (clay) as a result of the clay pan influenc-
ing edaphic properties was mostly correlated with the 
EMI signal. Soil texture, however, reflected the impacts of 
erosive processes and organic matter content to land use 
in the natural sites and sensitivity in the anthropogenic 
sites. Soil texture dominance in the natural sites indicates 
that in tropical soils that are predominantly light textured 

(clay content < 21%), silt content controls the EMI signal 
which can become of low influence following disturbance.
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