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Abstract
Pollution of roadside soils by heavy metals (HMs) presents serious concern throughout the world and, specifically, in 
India, due to the increasing traffic and anthropogenic activities. Understanding this problematic, policymakers and land 
managers will be able to design correct and sustainable land plans to avoid human health problems. The current study 
was conducted in order to determine the sources and levels of contamination by physiochemical parameters and HMs 
(Cu, Co, Cr and Pb) in roadside soils of Jalandhar, Punjab. A total of 90 samples were collected in triplicates from different 
sites and analysed for physiochemical and heavy metals. The average values of Cu, Co, Cr and Pb were found less than 
the permissible limits of Indian soils. Pearson’s correlation analysis indicated that HMs are positively correlated with 
each other, indicating a similar source of their origin. Further results of correlation analysis were supported by cluster 
analysis and Principal component analysis also indicated that HMs have the same source of origin mainly anthropogenic 
(agricultural and transportation activities), while soil properties have the same source of origin. The results of contamina-
tion factor, geo-accumulation index, potential contamination index, pollution index and ecological risk index showed 
that soils are moderately contaminated by HMs. In the future, further research would be needed to understand which 
specific factor (agriculture, industry and urban residues) could be considered as the main driving factor. We conclude 
that this study can provide the baseline data for policymakers and stakeholders to help the protection of soil ecosystem.

Keywords Heavy metals · Cluster analysis · Principal component analysis · Ecological risk assessment

1 Introduction

The soil is the major natural resource for the survival and 
functions of the ecological ecosystems [1]. However due 
to the rapid urbanization, industrialization and exten-
sive application of fertilizers and pesticides leads to con-
tamination of soil health [2–4]. Transportation service is a 

significant pollution source of heavy metals in surround-
ings soils near the highways, which are produced by vehi-
cles and dust, entering the soil through natural sedimen-
tation [5, 6]. HMs may be harmful to humans and other 
living organisms due to their toxicity, perseverance, non-
biodegradable and non-thermodegradable properties [7]. 
In addition to the geogenic origin of HMs in some regions, 
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their discharge from anthropogenic activities may be con-
sidered as the main sources of pollution [8–10]. According 
to some studies carried out in India, China, England and 
Iran, the traffic activities, industrial activities, agricultural 
activities, atmospheric precipitations, wastewater sludge, 
erosion of buildings and pavement surface are the main 
sources of HMs in the soil [11, 12].

Zhao et al. [13] while working on roadside soils in Syd-
ney reported that rainfall, distance to the road and soil 
types are the major factors responsible for HMs pollution. 
Alexakis and Gamvroula [14] in their study on potentially 
toxic elements of Oropos-Kalamos Basin, Attica, Greece, 
reported that natural sources like lithogenic factors were 
responsible for contamination of the studied area. This 
situation was also confirmed by Alexakis [15] applying 
previously pollution indices. Alexakis [16] determined the 
possible health risks associated with HMs in agricultural 
soils from Greece and concluded that less risk are asso-
ciated with HMs. Therefore, authors further inferred that 
HM pollution was produced from human activities such as 
construction of roads and traffic activities [16]. Hou et al. 
[17] gives an overview of multivariate techniques in the 
determination of pollution sources by HMs and concluded 
that natural and human origins of HMs were mainly from 
geogenic, roadways and transportation. Esmaeilzadeh 
et al. [18] in their studies on Neyshabur Plain, northeast of 
Iran also used multivariate techniques and different soil 
pollution assessment indices to find out the degree and 
sources of contamination. In India, where rapid develop-
ment of roads and associated services such as industries 
and urban development, there is a lack of information 
about soil contamination indices and multivariate statis-
tical techniques. The application of multivariate statistical 
techniques in combination with contamination indices has 
been employed to find out the source apportionment and 
pollution level of HMs in the roadside soils [19].

Therefore, the main aim of this study is to evaluate the 
pH, SOM, P, Ca, Mg, Cu, Cr, Co and Pb in roadside soils of 
Jalandhar, Punjab in India using multivariate statistical 
analysis (cluster analysis and principal component analy-
sis) and contamination indices like contamination factor 
(CF), enrichment factor (%), potential contamination index 
(Cp), geo-accumulation index (Igeo), pollution index (PI) 
and potential ecological risk (RI).

2  Materials and methods

2.1  Study area

Ninety soil samples in triplicates were collected close 
to the National roadsides from 30 different sites from 
Jalandhar District, during February 2018 which is located 

in the region of Punjab, India. The location of sampling 
sites can be observed in Fig. 1. The mean temperature 
and humidity are 15 °C and 77%, respectively. The Jaland-
har District is characterized by a humid subtropical cli-
mate with cold winters and hot summers. Mean rainfall 
amount is 600 mm yr−1. It lies in the middle of the State 
and is located between the Beas and Sutlej Rivers. The 
main soils are characterized by a loamy texture. The soils 
are deep and fine-grained, which are formed under sub-
moist and cool to warm temperate conditions [20]. The 
land of the Jalandhar District is characterized by alluvial 
deposits of the Indus-Ganga. The geological origins of the 
Jalandhar took place during the quaternary age and are 
comprised of the latest alluvial deposits that belong to 
the vast Indus alluvial plains [21]. The Jalandhar district is 
underlain by sub-recent to quaternary alluvium consisting 
of clay, sand, pebbles, and gravel. Older alluvium inhabited 
the uplands except for Sutlej River, and young alluvium 
inhabited the floodplains of Sutlej River [21]. It occupies 
about 5.3% of the total geographic area of the state and 
regarded as larger and densely populated District of Pun-
jab State. It is considered the most important District of 
Punjab from an agricultural point of view. The total area of 
this District is 266,224 hectares and out of this area, 90% 
is under cultivation and 2.1% and 7.4% are under forest 
cover and non-agricultural use. The total population of 
Jalandhar was 2,193,590 according to 2011 census and it 
was projected to be 2,383,415 by 1st of October 2018. The 
District is interconnected by roads and is known for agri-
culture, textile industry, wood products, and spare parts 
of automobiles [22]. The samples were collected close to 
the National Highways roads connecting Jalandhar with 
Jammu and Amritsar, and Amritsar.

2.2  Soil sampling and determination 
of physicochemical soil properties and heavy 
metals

Soil samples were air dried, grounded and passed through 
a sieve to eradicate any effect of particle size before analy-
sis and stored in clean polyethene bags. For the determi-
nation of pH, 10 g of soil was added in 20 ml of distilled 
water in a ratio of 1:2. It was done by following the method 
of [23]. It was measured by using micro pH Analytica pH-
meter. Total phosphorus was estimated by following 
Olsen et al. [24]. Ca and Mg were estimated by the Eth-
ylenediamine tetra-acetic acid (EDTA) titration method. 
Soil organic carbon was estimated by the Walkley–Black 
wet oxidation method [25]. HMs were determined in the 
soil samples by using AAS (Model Agilent Technologies 
200-Series AA). Soil samples were digested in the aqua-
regia  (HNO3 and HCl; 1:3). In 1 g of oven dried soil, 12 ml 
 HNO3 and HCl were used and the solution was heated on 
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the hot plate for 1–2 h. After that, the samples were fil-
tered and diluted with 50 mL of steam distillation water 
and used for the estimation of HMs such as Co, Cu, Cr, and 
Pb. 1000 mL standard solution of each metal was acquired 
from Agilent which is used to make diverse concentrations 
of each metal. The limit of detection of the instrument is Cr 
5.0 µg/L, Co 5 µg/L, Cu 1.2 µg/L and Pb 14 µg/L. Analytical 
grade chemicals and reagents were used during the whole 
analysis. Double distilled water was used for the prepara-
tion and dilutions of samples and chemicals. Calibration 
curves were made using standard made by diluting stock 
of standards; 10, 000 mg/L in 5% HNO3 for heavy met-
als obtained from Agilent Technologies, USA. For quality 
assurance and quality control (QA-AC), the standards and 
blanks were run after every ten samples in order to check 
the working of the machine with 95% reliability [26]. The 
95–105% recovery rates for samples spiked with standards 
confirmed that results are satisfactory [27].

2.3  Assessment methods for the heavy metals

The degree of HM contamination in the soils was com-
puted by the contamination factor, geo-accumulation fac-
tor (CF), enrichment factor (EF %), potential contamination 
index (Cp) and the pollution index (PI). These indices are 
dependent on the evaluation of HM contamination in the 
study area in comparison with the reference/background 
environment [28]. However insignificant sources were 
accessible concerning the reference HM content in the 
studied area, the content of metals in the earth’s crust was 
taken from the Taylor and Mclennan [29]. The reference/
background value varies from region to region, but global 
average values are of universal use [30]. The CF reflects the 
anthropogenic inputs of metals [31]. It was determined by 
the method of Hakanson [32]:

 where Cs and Cb are the contents of HM in the samples 
and background environment taken from Taylor and 

(1)Cf =
Cs

Cb

Fig. 1  Location of the study area and soil samples
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McLennan [29]. The CF is classified into the following cat-
egories such as < 1 less pollution, 1–3 average pollution, 
3–6 considerable pollution and ≥ 6 for high pollution.

The geo-accumulation index (Igeo) was computed to 
find the content of HM in the soils in order to evaluate 
the degree of metal contamination. The following equa-
tion is proposed by Muller [33]:

where Cs and Cb are the contents of HMs in the samples 
and background environment, and the constant 1.5 rep-
resents the feasible alterations in the reference values 
of heavy metals because of lithogenic effects in the soil. 
The grades for classifying the level of contamination are 
Igeo ≤ no contamination, unpolluted to average contami-
nation (0–1), average to contamination (1–2), average to 
strong contamination (2–3), maximum contamination 
(3–4), high to very contamination (4–5) and very high 
contamination (5). The Enrichment factor (EF %) was cal-
culated by applying the equation suggested by Zonta et al. 
[34]:

where C, Cmin, and Cmax are the averages, minimum and 
maximum concentrations of the individual metals in the 
samples.

The potential contamination index (Cp) was estimated 
using the formula suggested by Davaulter and Rognerud 
[35]:

where Cmax is the maximum content of analyzed samples 
and Cb background values of heavy metals in the environ-
ment. Davaulter and Rognerud [35] proposed categories 
of Cp: p ≤ 1 which represents less contamination, 1 < Cp ≤ 3 
indicates average contamination and Cp > 3 represents 
high contamination.

The CF, Igeo, EF (%) and Cp allow us reporting the impact 
of human activities on the enrichment of single heavy metal 
and did not take into consideration the combined impact of 
different HMs [36]. Therefore, we applied the pollution index 
(PI) and ecological risk index to further determination of the 
comprehensive pollution and ecological risk (RI) by different 
HMs in the roadside soils.

PI considers the influence of contamination of one ele-
ment by using the maximum CF to form a weighted aver-
age. By applying the weighted average, the PI enables the 
adjustment of soil quality which was considerably higher 

(2)Igeo = log2

[

Cs

1.5 × Cb

]

(3)EF (%) =
C − Cmin

Cmax − Cmin

× 100

(4)Cp =
Cmax

Cb

significant of the impact of individual metal [37]. It was cal-
culated by applying the equation proposed by Nemerow 
[38]:

where Cfmean and Cfmax are the mean and maximum values 
of contamination factors.

Finally, the Er was applied considering the CF, Er and 
toxicological response factors (Tr) such as 2 for Cr; 5 for 
Co and Cu, and Pb [39]. It was calculated by the equation:

where Er and Tr are the potential ecological risk factors and 
toxicological response factors.

2.4  Statistical analysis

All the samples were collected in triplicates and the data 
were summarized as mean, standard deviation, skew-
ness, kurtosis and coefficient of variance. The software’s 
used for this analysis was Microsoft Excel (Microsoft, USA), 
PAST 3.15, Minitab-14 and SPSS v.16 (IBM, USA). Multivari-
ate techniques such as hierarchical cluster analysis (HCA) 
and principal component analysis (PCA) are efficient tech-
niques in differentiating the origin of sources that cause 
variations in the soil properties and HM contents [40]. HCA 
was employed to find the associations between soil prop-
erties and HMs, and their mode of origin by using the PAST 
3.15 software. It was done according to Ward’s method and 
Euclidean distance as a measure of similarity. The results 
are presented in the form of dendrograms which gives the 
overview of clusters for different physiochemical proper-
ties and HMs [41]. PCA is mainly applied to reduce the soil 
properties and HMs to a smaller set of variables. Varimax 
rotation with Kaiser Normalization was selected to con-
duct the PCA using SPSS v.16 software (IBM, USA).

3  Results and discussion

3.1  Soil physiochemical properties and heavy 
metals

The descriptive statistics of pH, SOM, calcium, magne-
sium and phosphorus, and HMs (Cr, Cu, Co, and Pb) for 
all the sampling sites are given in Table 1. Out of the 
studied sampling sites, the Dode village recorded the 
highest value of pH (8.7), whereas the lowest values 
were recorded for Durgi site of Jalandhar. The pH of 

(5)PI =

√

(cfmean)
2 + (cfmax)

2

2

(6)RI =

n
∑

i=1

Ei
r
=

n
∑

i=1

T i
r
× CFi
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the studied samples was found to be alkaline in nature 
which is similar to other studies done in Punjab [42, 43]. 
The alkaline nature of the soil is responsible for reducing 
the mobility of metals and has greater retention in the 
soil [44]. The SOM was found in the range of 1.9–6.7%. 
SOM has a great impact on the retention of metals in the 
soil [45]. The lowest content of phosphorus was found in 
Sarmastpur (0.007 mg/g), whereas the highest content 

was found in Sattowali (0.136). The phosphorus fertilizers 
contributes to the pollution of HMs in the soils and act as 
a sink for the immobility of metals [46]. The minimum Ca 
content was recorded in Alawalpur (0.093 meq/100 g), 
whereas Daffarwal showed the highest level of Ca 
(0.91 meq/100 g). The Ca content is responsible for inhib-
iting the absorption and translocation of metals in the 
soils [47]. The lowest Mg content was registered in Garhi 

Table 1  Descriptive statistics of different soil properties and heavy metal from Jalandhar, Punjab

Sites pH SOM (%) Ca (meq/100 g) Mg (meq/100 g) P (mg/g) Cu (µg/g) Co (µg/g) Cr (µg/g) Pb (µg/g)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Karari 7.1 ± 0.1 4.0 ± 0.7 0.3 ± 0.18 0.11 ± 0.08 0.04 ± 0.01 0.006 ± 0.0003 0.011 ± 0.0005 0.02 ± 0.001 0.017 ± 0.01

Dugri 7.0 ± 0.1 2.8 ± 1.1 0.15 ± 0.07 0.07 ± 0.04 0.044 ± 0.014 0.003 ± 0.0002 0.007 ± 0.0003 0.019 ± 0.0003 0.005 ± 0.001

Rahimpur 7.1 ± 0.1 3.4 ± 1.1 0.17 ± 0.15 0.19 ± 0.08 0.039 ± 0.011 0.002 ± 0.0001 0.008 ± 0.0001 0.019 ± 0.001 0.007 ± 0.001

Chakrala 7.2 ± 0.1 3.9 ± 0.3 0.2 ± 0.12 0.12 ± 0.05 0.019 ± 0.002 0.005 ± 0.002 0.008 ± 0.0001 0.025 ± 0.0005 0.019 ± 0.004

Sanghwal 7.1 ± 0.1 3.5 ± 1.9 0.15 ± 0.05 0.14 ± 0.09 0.031 ± 0.015 0.001 ± 0.001 0.006 ± 0.0001 0.017 ± 0.001 0.003 ± 0.001

Raipur 7.2 ± 0.2 3.8 ± 1.8 0.16 ± 0.02 0.05 ± 0.04 0.078 ± 0.0001 0.01 ± 0.004 0.017 ± 0.001 0.03 ± 0.0007 0.02 ± 0.015

Kisangarh 7.2 ± 0.2 4.9 ± 0.9 0.15 ± 0.005 0.06 ± 0.01 0.055 ± 0.0001 0.008 ± 0.005 0.014 ± 0.0003 0.022 ± 0.001 0.023 ± 0.001

Rasulpur 7.2 ± 0.10 3.7 ± 0.9 0.11 ± 0.01 0.09 ± 0.04 0.062 ± 0.02 0.009 ± 0.0002 0.014 ± 0.0004 0.032 ± 0.001 0.021 ± 0.012

Reru 7.1 ± 0.2 3.7 ± 1.7 0.17 ± 0.03 0.11 ± 0.06 0.08 ± 0.0004 0.007 ± 0.005 0.009 ± 0.0002 0.024 ± 0.002 0.013 ± 0.016

Talwandi-
Abdar

7.0 ± 0.1 3.5 ± 1.0 0.18 ± 0.04 0.07 ± 0.06 0.09 ± 0.0002 0.01 ± 0.0006 0.008 ± 0.0001 0.024 ± 0.003 0.029 ± 0.004

Jallowal 7.7 ± 0.2 3.5 ± 0.9 0.30 ± 0.34 0.14 ± 0.095 0.08 ± 0.0001 0.014 ± 0.001 0.01 ± 0.0001 0.11 ± 0.83 0.023 ± 0.002

Daffarwal 7.7 ± 0.2 2.9 ± 1.2 0.91 ± 1.18 0.05 ± 0.045 0.06 ± 0.01 0.002 ± 0.002 0.004 ± 0.0002 0.02 ± 0.0006 0.008 ± 0.005

Bal 7.8 ± 0.1 3.5 ± 0.5 0.41 ± 0.04 0.09 ± 0.025 0.06 ± 0.01 0.094 ± 0.021 0.022 ± 0.0008 0.047 ± 0.001 0.20 ± 0.060

Rani Bhatti 8.1 ± 0.1 4.5 ± 0.4 0.11 ± 0.01 0.90 ± 0.07 0.02 ± 0.0002 0.011 ± 0.0005 0.01 ± 0.0005 0.036 ± 0.001 0.035 ± 0.002

Naugajja 7.9 ± 0.2 4.8 ± 0.5 0.13 ± 0.05 0.63 ± 0.005 0.08 ± 0.0007 0.001 ± 0.0003 0.014. ± 0.0003 0.022 ± 0.001 0.008 ± 0.002

GarhiBakh-
sha

7.6 ± 0.1 3.8 ± 1.1 0.11 ± 0.02 0.02 ± 0.01 0.013 ± 0.002 0.008 ± 0.002 0.012 ± 0.0001 0.018 ± 0.0008 0.022 ± 0.009

Daulatpur 7.9 ± 0.2 1.9 ± 0.4 0.36 ± 0.03 0.13 ± 0.08 0.07 ± 0.0001 0.009 ± 0.0001 0.011 ± 0.0002 0.025 ± 0.0004 0.006 ± 0.0005

Sarmastpur 7.9 ± 0.1 5.7 ± 0.5 0.30 ± 0.05 0.12 ± 0.03 0.007 ± 0.0001 0.016 ± 0.005 0.018 ± 0.0002 0.028 ± 0.001 0.006 ± 0.001

Dode 8.7 ± 0.1 3.4 ± 0.5 0.09 ± 0.03 0.03 ± 0.02 0.03 ± 0.0003 0.005 ± 0.0004 0.026 ± 0.0002 0.064 ± 0.001 0.006 ± 0.001

Alawalpur 8.1 ± 0.1 3.1 ± 0.7 0.09 ± 0.051 0.14 ± 0.02 0.05 ± 0.0002 0.007 ± 0.001 0.005 ± 0.0001 0.027 ± 0.001 0.03 ± 0.001

Rojhri 7.4 ± 0.3 6.7 ± 0.7 0.29 ± 0.005 0.10 ± 0.03 0.10 ± 0.0002 0.007 ± 0.001 0.014 ± 0.0003 0.033 ± 0.001 0.023 ± 0.001

Sikanderpur 7.3 ± 0.1 2.2 ± 0.6 0.32 ± 0.02 0.15 ± 0.05 0.07 ± 0.0003 0.001 ± 0.0001 0.010 ± 0.0006 0.031 ± 0.0003 0.017 ± 0.014

NawanPind 7.4 ± 0.1 2.4 ± 0.9 0.29 ± 0.03 0.13 ± 0.02 0.05 ± 0.031 0.002 ± 0.001 0.016 ± 0.0001 0.026 ± 0.0002 0.008 ± 0.001

Kala Bakra 7.6 ± 0.2 2.7 ± 1.3 0.12 ± 0.005 0.05 ± 0.04 0.07 ± 0.0001 0.001 ± 0.0002 0.010 ± 0.0002 0.026 ± 0.0002 0.048 ± 0.026

Dhogri 7.5 ± 0.1 3.1 ± 1.7 0.16 ± 0.02 0.14 ± 0.089 0.08 ± 0.0001 0.009 ± 0.0001 0.007 ± 0.001 0.026 ± 0.0001 0.019 ± 0.005

Sattowali 7.5 ± 0.1 3.6 ± 1.1 0.33 ± 0.03 0.13 ± 0.02 0.136 ± 0.034 0.007 ± 0.0003 0.015 ± 0.0001 0.036 ± 0.0002 0.024 ± 0.011

Mustfapur 7.6 ± 0.2 4.3 ± 1.2 0.09 ± 0.03 0.07 ± 0.035 0.06 ± 0.0002 0.006 ± 0.001 0.010 ± 0.0002 0.029 ± 0.0001 0.017 ± 0.002

Beas Pind 7.2 ± 0.1 4.6 ± 0.4 0.13 ± 0.043 0.11 ± 0.045 0.037 ± 0.0001 0.005 ± 0.0006 0.012 ± 0.0005 0.032 ± 0.0004 0.016 ± 0.006

Kandhala 7.4 ± 0.1 5.0 ± 0.7 0.12 ± 0.03 0.033 ± 0.015 0.07 ± 0.0001 0.008 ± 0.003 0.013 ± 0.0002 0.028 ± 0.0002 0.011 ± 0.001

P.A.P. 7.4 ± 0.2 3.1 ± 0.6 0.19 ± 0.005 0.12 ± 0.04 0.09 ± 0.0001 0.003 ± 0.0005 0.012 ± 0.0004 0.033 ± 0.0001 0.025 ± 0.019

Min 7.0 1.9 0.09 0.023 0.007 0.001 0.004 0.017 0.003

Max 8.7 6.7 0.91 0.63 0.13 0.12 0.026 0.118 0.2

Mean 7.5 3.0 0.22 0.119 0.065 0.013 0.012 0.031 0.024

S.D. 0.4 1.0 0.16 0.11 0.03 0.03 0.00 0.02 0.03

Skewness 1.1 0.8 2.96 4.19 0.30 3.64 1.02 3.73 4.77

Kurtosis 1.4 1.3 11.66 20.75 0.15 12.71 1.62 16.14 24.63

CV 5.2 26.9 71.41 89.32 45.48 197.53 41.01 60.38 147.08

Awashthi 
[51]

– – – – – 135–270 – – 250–500

Bhagure 
and 
Mirgane 
[52]

– – – – – 100 30 120 80
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Bakhsha (0.023 meq/100 g), whereas the highest one in 
Naugajja (0.63 meq/100 g). The Mg content is responsi-
ble for enhancing the toxicity of metals in the soils [48]. 
The skewness and kurtosis of pH, Ca and Mg were higher 
than one, indicating right-handed skewness and lepto-
kurtic kurtosis [49]. The coefficient of variation of Ca, Mg 
and P was high, indicating greater alterations in the soil 
samples due to human activities [50].

The average values of HMs followed a trend, i.e., 
Cr > Pb > Cu > Co. The average values of HMs in the present 
study were lower than the Indian standard limits [51] and 
Swedish ones [52]. Among the analyzed HMs in the stud-
ied sampling sites, the CV of Cu was found maximum, fol-
lowed by Pb, Cr, and Co. All the HMs showed skewness and 
kurtosis values higher than one, indicating right-handed 
skewness and leptokurtic kurtosis [49]. The high kurtosis 
of these metals may be due to the fact that the majority 
of the samples are assembled at relatively low values [53]. 
The anthropogenic activities such as increasing urbani-
zation and agricultural activities could also have a great 
impact on the alterations of these HMs in the sites [54].

Finally, Pearson’s correlation analysis was conducted to 
soil properties and HMs (Fig. 2). The pH showed a positive 

correlation with Cr and Pb. The SOM showed a nega-
tive correlation with Ca and Mg, and positive correlation 
existed with Pb. The negative correlation of Mg was found 
with Pb. All the analyzed HMs such as Cu, Cr, Co and Pb are 
positively correlated with each other. HMs indicating high 
correlations may attribute to a similar type of sources [55].

3.2  Multivariate statistical approach

Hierarchical cluster analysis (HCA) was applied to the con-
tents of different soil parameters by using Ward’s method 
and Euclidean distance as a measure of similarity (Fig. 3). 
Mainly two groups were formed by cluster analysis. Cluster 
1 includes (pH and SOM) and cluster 2 contains (Ca, Mg, P, 
Cu, Cr, Co, and Pb) which is further grouped into (Ca, Mg, 
and P), and (Cu, Cr, Co, and Pb). All the HMs such as Cu, 
Co, Cr, and Pb were included in the same cluster indicat-
ing similar origin. The metals like Cu, Cr, Co, Mn, and Pb 
included in the same cluster likely to be originated from 
the same source [56]. Ca, Mg and P are also included in the 
same cluster and had close proximities with each other. 
pH and SOM also formed the same group. Esmaeilzadeh 

Fig. 2  Pearson’s correlation 
analysis
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et al. [18] in their studies on Eshghabad region, Iran also 
reported that Pb and Cu are included in the same cluster.

HCA was also applied to different sampling sites on 
the basis of physiochemical parameters and HMs content 
(Fig. 4). From the HCA results, it was found that mainly 
two clusters are formed: cluster 1 (Bal site) and cluster 2 
includes all the sites which are further sub-grouped into 
various clusters. Dode, Sarmastpur, Naugajja, Nawan Pind, 
Daulatpur, Kandhala and Reru are included in the same 
sub-group. On the other hand, Kala Bakra, Rani Bhatti, 
Alawalpur and Talwandi Abdar are included in the same 
cluster which can be attributed to the less variations of 
physiochemical and HMs in these sites. Finally, Karari, 
Mustfapur, Beas Pind, Sikanderpur, Chakrala and Dhogri 

are also registered in the same cluster which may also due 
to the less alteration in HM content of these sites.

Based on the results of the principal component 
analysis (PCA) (Table 2), the eigenvalues of the first four 
extracted components were higher than 1.0 (Supple-
mentary Table S1). The first four principal components 
explained 71.0% of the total variance for soil properties 
and HMs. PC-1 had maximum loadings on Cu and Pb and 
explained 24% of the total variance. Soil parent materials 
like sedimentary and sulphide-bearing shales contains 
naturally high content of Cu and Pb. Soil formed on such 
materials generally can register a high content of these 
heavy metals. Also, anthropogenic activities (applica-
tion of fertilizers and pesticides, and traffic activities) also 
contribute to the content of these metals [57]. pH and Cr 
had high loadings on PC-2 and accounted for 18.5% of 
the total variance. PC-2 also had moderate loading on Co. 
Co and Cr formed the cobalt-chromium (CoCr) alloy which 
is used in engine components and many other industrial 
or mechanical components where high wear-resistance 
is required [58]. PC-3 explained 15.5% of the total vari-
ance and dominated by SOM, Ca and P. This dipolar factor 
presents moderate positive loading of SOM and moder-
ate negative loadings of Ca and P. Suryawanshi et al. [59] 
working on road dust of Delhi confirmed loadings of Cu 
and Pb on PC-1. They suggested that particles released 
due to traffic activities are responsible for their contents. 
Bhatti et al. [60] while working on agricultural roadside 
soils reported loading of Cu on PC1 and indicated that 
geogenic factors and parent rock materials contributed 
to this metal. Anju and Banerjee [61] in their studies on 
soils of India reported loadings of Mg, Co, Pb and Cu on 
PC1 and Ca on PC3. They concluded that anthropogenic 
and lithogenic factors are responsible for the contamina-
tion of HMs in the soils. Chabukdhara and Nema [62] while 

Fig. 3  Cluster analysis of soil properties and potentially toxic trace 
elements from the soils of Jalandhar, Punjab

Fig. 4  Cluster analysis of sampling sites on the basis of physio-
chemical properties and heavy metal contents

Table 2  Factor loadings of physiochemical properties and poten-
tially toxic trace elements from soils of Jalandhar, Punjab

Bold letters indicate high loadings on principal components

PC Principal components

Variables PC-1 PC-2 PC-3 Communality

pH 0.019 0.813 0.035 0.663
SOM − 0.132 0.156 0.696 0.526
Ca 0.230 0.020 − 0.656 0.484
Mg − 0.344 0.224 0.094 0.177
P − 0.122 0.148 − 0.473 0.261
Cu 0.856 0.085 − 0.050 0.742
Co 0.495 0.577 0.402 0.740
Cr 0.059 0.765 − 0.178 0.621
Pb 0.767 0.206 − 0.079 0.637
% Var 24 18.5 15.5 58
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working on urban soils of Ghaziabad, reported loadings 
of Cu and Pb on PC1, and inferred that traffic and human 
activities are responsible for the pollution of these metals 
in the studied region.

PCA was also conducted to different sampling sites on 
the basis of physiochemical parameters and HM contents 
(Fig. 5). The first three components were able to explain 
96.3% (54.6, 29.3 and 12.4%) of the total variance. All the 
sampling sites were retained in the 2 D space except site 
13 (Bal). In HCA, Bal site also formed the different cluster 
which is attributed to comparatively less variations of 
physiochemical parameters and HM contents.

3.3  Evaluation of heavy metals in soils by using 
indexing approach

The content of studied metals was found below the 
Indian and Swedish permissible limits, which indicates 
low pollution of metals in the soils of Jalandhar but their 

assessment is not only determined through their con-
centrations [44]. In order to find their contamination, 
these were compared with uncontaminated soil environ-
ments by computing contamination factor (Fig. 6). The 
CF of all the sampling sites for studied metals was found 
to be less than one, indicating low contamination in the 
soils of the Jalandhar. Geo-accumulation index gives us 
an indication of the impact of anthropogenic activities 
based on environmental geochemistry background [63]. 
Figure 7 showed the Igeo of the studied metals for dif-
ferent samples. From the results of Igeo, it was found 
that HM values for this index were found less than one 
indicating a low accumulation of metals in the studied 
soil samples. Liu et al. [64] in their studies on suburban 
vegetable soils of Northeast China reported average 
values of Igeo for Pb (0.02), Cr (− 0.12) and Cu (0.17), all 
of them less than one, indicating low pollution as our 
results demonstrated. Table  3 showed the results of 
potential contamination index (Cp), pollution index (PI) 
and enrichment factor (%). The results of Cp indicated 
that Pb showed maximum value followed by Cu, Cr, and 
Co. The results of Cp for the analysed metals were found 
less than one, representing low pollution in the stud-
ied soil samples. The PI values obtained maximum for 

Fig. 5  PCA loading plot for different sampling sites

Fig. 6  Box plot of contamination factor for different metals

Fig. 7  Box plot of the geo-accumulation index for different metals

Table 3  Cp, PI and EF (%) values of different heavy metals for stud-
ied area

Pb Cu Co Cr

Potential contamination index 
(Cp)

0.01 0.0038 0.0026 0.0034

Pollution index (PI) 0.0071 0.0027 0.0020 0.0025
Enrichment factor (EF (%) 10.49 9.38 35.30 14.09
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Pb followed by Cu, Cr, and Co. Their results also showed 
less pollution of metals in the present study. The enrich-
ment factor (%) was also computed for different metals. 
The maximum EF (%) was found for Co followed by Cr, 
Pb, and Cu. The potential ecological risk indices of each 
metal  (Eri) are presented in supplementary table S2. The 
results of RI for the analysed sites and metals showed a 
low ecological risk of roadside soils in the present study. 
Consequently, potential ecological risk, which represents 
the comparative sensitivity of biological communities to 
harmful substances and explains the potential ecological 
risk posed by the toxic metals, was done in the current 
study to determine the ecological assessment of metals 
in the soils of Jalandhar. The methods employed in this 
study may be helpful to other researchers.

We can state that more attention should be paid for 
the areas where the pollution indices and the high con-
centration of HMs were found. In the last century, numer-
ous investigations have claimed that local and regional 
impacts on soils are key factors to understand environ-
mental problems at global scales [65, 66]. Possibly, as 
other authors mentioned, there is a strong necessity 
to connect the issues related to soils with the public; 
however, to date, it is not well-divulgated through the 
society [67]. Therefore, more work would be necessary to 
correlate the local and regional scales with global stud-
ies. Due to the connectivity processes, we can be sure 
that roadside soils will not be an isolated problem [68]. 
As recently several authors demonstrated in highly pop-
ulated urban areas, agricultural fields or mining areas, 
the second most affected source affected by roadside 
soils is the water [69–72]. So, it would be interesting to 
assess for this studied territory, the possible impacts of 
roadside soils on the nearly water bodies. This kind of 
studies will allow us understanding that the transport 
of the polluted sediments can reach higher rates far 
from the original source and possibly, to prevent future 
negative and irreparable environmental and human 
consequences.

4  Conclusions

The present study showed that the mean values of 
Cu, Co, Cr, and Pb were below the permissible limits of 
Indian soils. Pearson’s correlation analysis indicated that 
HMs are highly correlated with each other and have the 
same source of origin. Furthermore, their results are con-
firmed by results of CA and PCA also showed that HMs 
have a source of origin, while physiochemical proper-
ties have a different source. The results of CF, EF %, Cp, 
Igeo, PI and RI showed that roadside soils are moderately 

contaminated by HMs. This study provides the baseline 
data of HMs and physiochemical properties for policy-
makers and stakeholders in roadside soils of Jalandhar. 
Further research is needed to identify and evaluate the 
sources responsible for the contamination of roadside 
soils.
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