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Abstract
The shear strength  (Su) of soils is one of the most widely used parameters for designing structures safely, where Su is 
found with the unconfined compression test (UCS). Although UCS can be acquired by performing uniaxial compres-
sion test it would be extremely helpful to predict the UCS without performing any compression test, namely, using 
computational methods considering different parameters of soils such as consistency limits, fine grain ratio, liquidity 
index, and void ratio. The goal of present work is predicting UCS taking into account these soil parameters with the aid 
of developed Adaptive Neuro-Fuzzy Inference System (ANFIS) model and the Multiple Linear Regression (MLR) analyses. 
On the other hand, the effect of the size of the training set of designed models on the results is examined, also. For this 
aim, four different models composed of different training and test set ratios have been constructed and analyzed using 
ANFIS and MLR. It is concluded that UCS can be predicted using MLR analysis and ANFIS model with best 0.76 and 0.91 
values of determination coefficient  (R2) around the x = y line respectively, and the effect of the size of the training set of 
models on ANFIS is more pronounced than MLR models.

Keywords Multiple linear regression · Adaptive neuro fuzzy inference system · Unconfined compression strength

1 Introduction

The stress–strain behavior and shear strength of soils need 
to be addressed exactly for the safe design of structures. 
Therefore, compression and shearing tests are performed 
on the specimens taken from field for describing the 
stress–strain behavior and shear strength of soils. In this 
context, the uniaxial compression test is used for cohesive 
soils while undrained shear strength (Su) is preferred for 
geotechnical design [1].

The UCS is the basic strength parameter of clayey soils 
and it refers to the maximum axial pressure that beared 
by sample until it fails or it’s axial strain arrives at 20% on 
the area of cross sectional at the failure [2]. The determina-
tion of UCS in laboratory is exhausting, time consuming, 
highly priced and it is difficult to take undisturbed sample 
for tests [3]. Hence, the prediction of UCS in a direct way is 

an important concern for engineers and scientists for long 
years [4].Recently, single variable regression is employed 
for the relationships between UCS and dimensions of 
specimens [5, 6], UCS and height to diameter ratio [7, 8], 
undrained shear strength and water content [9–11] while 
multiple variable regression is performed for the relation-
ship between undrained shear strength and water content 
[2, 3, 12, 13]. Furthermore, adaptive neuro-fuzzy interfer-
ence systems (ANFIS) and artificial neural networks (ANNs) 
are utilized for UCS of soils [14–16].

From the inspection of open literature, it is found that 
although there are numerous studies on examination of 
prediction capibility of UCS using MLR analysis and ANFIS 
models; the number of studies considering the effect of 
the size of the training set of models is limited. The goal 
of present work is predicting UCS taking into account 
soil parameters such as specimen diameter (D), specific 
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gravity (Gs), plasticity index (PI), liquidity index (LI), void 
ratio (e), content of sand (S) and content of clay (C) using 
multiple linear regression (MLR) and adaptive neuro-fuzzy 
interference systems (ANFIS), and examining their talents 
by means of some statistical criteria, i.e. determination 
coefficient  (R2), root mean square error (RMSE) and mean 
absolute percentage error (MAPE).

2  Data and material

The samples used in this study are low and high plasticity 
clays that have been taken from different cities of Turkey, 
i.e. Istanbul, Burdur and Mugla. The geotechnical tests 
have been carried out considering American Society of 
Testing and Materials (ASTM). The geotechnical properties 
of soils are tabulated in Table 1 and particle size distribu-
tions illustrated in Fig. 1.

Soil samples are collected from different five fields 
and oven-dried after they are transported to laboratory. 
After, they have sieved through 2.38 mm in order to see 
the effect of sand in some soils, and then they subjected 
to tests specific gravity, particle size distribution, consist-
ency limits and standard compaction tests as per [17–20] 
respectively. Finally, soils are classified regarding these 

test result in the view of Unified Soil Classification System 
(USCS).

3  Methodology

3.1  Preparing Specimens

At first, soils had sieved and then oven-dried before it 
compacted. Compaction is carried out following stand-
ard proctor compaction test in proctor mold in three lay-
ers and each layer is subjected to the energy of 25 fall of 
standard compaction hammer from the height of 30 cm. 
In addition, the water content of soils has various values 
while they are compacted, and it is aimed to provide at 
least three different water contents as optimum, wetter 
and drier of optimum for each soil.

Schematic illustration of these samplers with 38 mm, 
44 mm and 50 mm diameter is presented in Fig. 2. Speci-
mens are obtained by driving the sampler into the mold 
and extracting specimen from the sampler with hydrau-
lic jack (Figs. 3, 4). Then specimens have been stored 24 h 
in stretch nylon in order to make the water scattered as 

Table 1  Geotechnical properties of soils

Soil name Specific grav-
ity (Gs)

Fine content 
(%)

Liquid limit (%) Plasticity 
index (%)

Optimum moisture 
content (%)

Maximum dry 
density (kN/m3)

Soil type

Istanbul clay 1 2.62 85 96.2 62.2 33 11.9 CH
Mugla clay 2.72 93 104.3 74.3 34 12.1 CH
Istanbul clay 2 2.76 100 56.6 35.6 21 16.3 CH
Burdur clay 2.73 100 46.7 27.2 24 15.3 CL
Istabul clay 3 2.84 100 84 60 32 13.8 CH
Test standard [17] [18] [19] [19] [20] [20] (USCS)
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Fig. 1  Particle size distribution curves for soils

Fig. 2  The scheme of samplers
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homogeneous without losing any water as applied by [21]. 
After 24 h specimens have been subjected to the uniaxial 
compression test for determining UCS.

In this study, totally sixty-eight specimens of three dif-
ferent soils in three different diameters and various water 
contents are tested.

3.2  Data and methods

3.2.1  Data

The data are obtained by conducting wide range of geo-
technical tests which have the particle size distribution, 
consistency limits, standard proctor compaction, specific 
gravity and uniaxial compression tests. Particle size dis-
tribution tests include sieve analysis test and hydrometer 
analysis test by [18]. The consistency limits contains liquid 
limit, plasticity limit and plasticity index. The liquid limit is 
determined by using Cassagrande equipment in accord-
ance with [19] and the plastic limit is defined 3 mm rod 
formation method. The compaction parameters such as 
maximum dry density and optimum moisture content are 
determined conducting Standard Proctor compaction test 
in the view of [20]. The uniaxial compression tests are per-
formed by [22] for identifying the unconfined compression 
strength of soils and the schematic representation of test-
ing machine of this test is presented in Fig. 5 [3].

Cylindrical soil specimens prepared with 38 mm, 44 mm 
and 50 mm diameters and 76 mm, 88 mm and 100 mm 
heights respectively are subjected to the increasing axial 
compression load until the samples fail. Later, the UCS is 
calculated by means of Eq. 2 given below:

where P is the maximum axial load before failure and A 
is the cross-section area of the specimen at the time of 
failure.

In this study, four different models are created with 
sixty-eight total data and every data consists of seven 
independent and one dependent variables. Independent 
variables are specimen diameter (D), specific gravity (Gs), 
plasticity index (PI), content of sand (Sand %), content 
of clay (Clay %), void ratio (e), liquidity index (LI) and the 
dependent variable is unconfined compression strength 
(UCS). The descriptive statistics of data is presented in 
Table 2.

Four different models with different training size are con-
structed for determining the effect of the size of training set 
on prediction capability of ANFIS and MLR analyses. Model 

(2)UCS =
P

A

Fig. 3  Driving the sampler into the mold by hydraulic jack

Fig. 4  Extracting down the specimen from the sampler with 
hydraulic jack
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1, Model 2, Model 3 and Model 4 have 80%, 70%, 60% and 
50% of all data as training set respectively and rest of data is 
used as test set for each model.

3.3  Multiple linear regression (MLR)

MLR is a statistical method for determining the relationship 
between two or more variables by fitting a linear equation 
to a known output value [23, 24]. MLR uses different linear 
combinations of variables as regression equation [25] and 
best equation is selected based upon the highest correlation 
coefficient and lowest F-ratio [26] in a way to minimize sum 
of square residuals [27]. The universal equation for MLR is 
given below [15]:

(3)y = a0 + a1x1 + a2x2 + a3x3 + L + anxn + �

where y is the dependent variable;  xi is the independent 
variable;  a0 is a constant;  ai is a scope associated with  xi 
and � is an error [28].

In the present study, MLR analyses are performed with 
stepwise and enter methods, and prediction models are 
established with the SPSS 17 Software. Enter method puts 
every independent variable into the analyses but stepwise 
method picks variables, which are statistically effective on 
prediction, and which increase adjusted  R2 of regression 
equation applying different variable combinations.

3.4  Adaptive neuro‑fuzzy interference systems

The most important property of fuzzy models makes them 
more attractive compared to other traditional methods is 
the capability of defining complicated and multivariable 
nonlinear issues [29].

Fuzzy set consists of objects with a continuum mem-
bership grades. In this set every object has been given a 
grade of membership changing zero to one by the func-
tion of membership [30]. Jang [31] has proposed ANFIS 
that compounds the neural network and the fuzzy logic. 
Therefore, ANFIS can achieve in solving complex and non-
linear problems without any uncertainty [32]. It is able to 
obtain higher estimation ability compared to a single 
methodology alone since there is learning capability of 
a neural network and reasoning capability of fuzzy logic 
together in ANFIS [33].

The target of ANFIS is to set a model that will accurately 
associate the input values with the output values and the 
simple FIS is presented in Fig. 6.

ANFIS architecture comprises of five layers that each 
have neurons and number of neurons changes depending 
on the number of rules. The characteristic structure of an 
ANFIS model that has two input variables is presented in 
Fig. 7. We can suppose a fuzzy inference system has two 
inputs represented by x and y, and one output to make 
definition easier. A usual if- then rule cluster with two fuzzy 
for a first-order Sugeno fuzzy model is described as below 
[32]:

(4)
Rule 1 ∶ If x is B1 and y is A1, then f1 = c1x + d1y + e1

Fig. 5  Schematic drawing of an unconfined compression test 
machine [3]

Table 2  Descriptive statistics of data set for prediction of UCS

Specific 
gravity (Gs)

Diameter of 
specimen D (mm)

Liquidity index Void ratio (e) Clay (%) Sand (%) Unconfined compres-
sion strength (UCS) 
(kPa)

Mean 2.73 43.57 0.07 0.98 26.74 4.91 198.55
Minimum 2.62 38 − 0.14 0.61 5 0 24.61
Maximum 2.84 50 0.28 1.34 55 15 492.37
Std. deviation 0.73 5.04 0.09 0.22 21.08 6.04 97.07
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where {ci,  di,  ei} is the set of parameters belongs to this 
node.

Layer 1 is called the fuzzification layer and creates the 
membership functions (MFs) for inputs by Eqs. 6–7 [35].

Here μAi and μBi are the membership degrees for  Ai and 
 Bi that are parameters of fuzzy set and calculated by Eq. 8.

where  ai defines the variances of the MF and  ci character-
izes the centre of MF.

Layer 2 is called rule layer, each nodes denotes by the 
fuzzy interference system (FIS) and this layer signifies the 
firing strength of rules (Eq. 9). Cell count is equal to the count 
of rule in this layer [36].

Layer 3 is normalization layer and calculates the nor-
malized firing strength what represents the ratios of firing 
strength ith rule to sum of all firing strengths (Eq. 10).

(5)
Rule 2 ∶ If x is B2 and y is A2, then f2 = c2x + d2y + e2

(6)O1i = �Ai(x) i = 1, 2

(7)O1i = �Bi−2(x) i = 3, 4

(8)� Ai = e
−

1

2

(
x−c

a

)2

i = 1, 2

(9)O2i = wi = �Ai(x) ⋅ �Bi(y) i = 1, 2

(10)O3i = wi =
wi

w1 + w2

i = 1, 2

Layer 4 is defuzzification layer, the output of nodes is 
called conclusion parameters basically the product of first 
order polynomial and normalised firing strength by Eq. 11 
[37].

Layer 5 is called the sum layer and in this layer there is 
just one node. This layer totals the whole output summa-
tion of arriving signals by Eq. 12 [38].

Figure 8 shows the schematic representative structure 
of the ANFIS model with three inputs and one input [39]. In 
scope of this study, seven input variables (D, Gs, PI, Sand %, 
Clay %, e, LI) and one output variable (UCS) are used for 
all models. Thus, the input layer with seven neurons and 
output layer with one neuron in the ANFIS model is used 
in this study.

To enhance the capacity of generalization of ANN input 
and output variables are normalized in the range of [0,1] 
by the formula employed in Eq. 13 [16].

where X is the data to be normalized,  Xnorm is the normal-
ized value of X,  Xmin and  Xmax are the minimum and maxi-
mum value of data.

In this study, a hybrid learning algorithm is employed as 
an optimization method during the learning stage of the 
ANFIS model. In addition, the back-propagation gradient 
descent method and the least-squares method employed 
together to emulate FIS membership functions of training 
data set. Then, the generalized gauss-shape fuzzy member-
ship function with three numbers of membership functions 
is performed for the ANFIS analysis. ANFIS is executed with 
Matlab R2015a software. In ANFIS models, the data used in 

(11)O4i = wi ⋅ fi = wi ⋅ (pix + piy + ri) i = 1, 2

(12)O4i = f =
�

wi ⋅ f =

∑
wi ⋅ fi∑
wi⋅

i = 1, 2

(13)Xnorm =
X − Xmin

Xmax − Xmin

Fig. 6  The simple fuzzy inference system [16]

Fig. 7  A characteristic ANFIS structure of a two input model [34]

Fig. 8  The schematic representative structure of the ANFIS model 
[39]
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real values and normalized values so that it has been tried to 
see the difference between results and make a conclusion. 
Table 3 shows detailed parameter of training the FIS.

3.5  Evaluation criteria

Talents of the ANFIS and MLR models for predicting UCS are 
evaluated and compared by means of root mean square 
error (RMSE), mean absolute percentage error (MAPE), deter-
mination coefficient of scattering around the best fit line 
determined by least squares method  (R2) and determination 
coefficient of scattering around the x = y line what represents 
the 100% accuracy of predictions, that intersects the origin 
and its inclination is 45°  (R2 (45°)). The following formulas are 
used to determine these evaluation criteria:

(14)RMSE =

n∑

i=1

√
(xi − yi)

2

n

(15)MAPE =

n∑

i=1

|||
xi−yi

xi

|||
n

where x is observed and y is predicted value of UCS and n 
is the number of values in data sets.

4  Results

4.1  MLR analysis

The  R2,  R2 (45°), RMSE and MAPE of models developed by 
MLR stepwise method and MLR enter method is presented 
in Table 4.

The accuracy of predictions is evaluated based upon the 
 R2 (45°) because  R2 is calculated around best fit line and 
it represents good relationship between predictions and 
observations but not 100% accuracy. As seen in Table 4 
enter method MLR analysis is more successful than step-
wise method MLR analysis in predicting UCS according to 
the  R2 (45°) values even though the difference is not much 
at all. This shows that in stepwise method MLR analyses 
even if some parameters are excluded from the analysis 
because of they are considered statistically insignificant, 
but they contribute to obtain more accurate estimates. It 
may be said Gs, PI and Sand % play a vital role to predict 
the UCS although they don’t seem effective statistically 
(Table 5).

In addition, Model 1 seems as the most successful 
model when compared to the others (Table 4). Model 1 
has the largest training set and it can be said that larger 
training set generally contributes to obtain more accurate 

(16)

R2 =
n ⋅

∑n

i=1
xi , yi −

∑n

i=1
xi ∗

∑n

i=1
yi

��
n ⋅

∑n

i=1
x2
i
−
�∑n

i=1
xi
�2�

∗

�
n ⋅

∑n

i=1
y2
i
−
�∑n

i=1
yi
�2�

(17)R2(45
◦

) =

∑
(yi − yi)

2 −
∑

(yi − xi)
2

∑
(yi − yi)

2

Table 3  Detailed parameters of training FIS

Parameter Description/value

Fuzzy structure Sugeno
Membership function type Gaussmf
Output membership function Constant
Number of membership functions associ-

ated with each input
3

Number of inputs 7
Number of outputs 1
Optimization method Hybrid (last square 

and back-propa-
gation)

Training maximum epoch number 100

Table 4  Statistic evaluation of 
models analyzed by MLR

Share of train-
ing data (%)

Analysis method R2 R2 (45°) RMSE (kPa) MAPE (%)

Model 1 80 Enter 0.88 0.76 31.44 14
Stepwise 0.87 0.73 33.46 16

Model 2 70 Enter 0.83 0.52 43.26 16
Stepwise 0.74 0.41 49.38 18.2

Model 3 60 Enter 0.83 0.65 36.13 15.8
Stepwise 0.83 0.62 38.11 18.1

Model 4 50 Enter 0.86 0.69 34.59 16
Stepwise 0.85 0.62 37.55 19.3

Means Enter 0.85 0.66 36.34 15.45
Stepwise 0.83 0.60 39.63 17.90
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results but it is not consistent every time. Thus, determin-
ing the optimum training and test sets are the most impor-
tant part of the exact predictions.

The coefficients of MLR analyses are presented in 
Table 5 and the equation obtained from Enter Method 
MLR analysis is given in Eq. 18.

where D is specimen diameter; Gs is specific gravity; PI is 
plasticity index; Sand (%) is percent of sand; Clay(%) is per-
cent of clay; e is void ratio and LI is liquidity index.

4.2  ANFIS models

The cross plot for observed and predicted UCS values are 
illustrated in Fig. 9 and  R2,  R2 (45°), MAPE and RMSE values 
are tabulated in Table 6. Model 2 is the most successful 

(18)

UCS = 0.686−0.155D + 1.258Gs−0.614 PI + 1.690 Sand (% )

−0.502 Clay (% )−0.172 e−1.212 LI

model to predict UCS of soils according to  R2,  R2 (45°), 
MAPE and RMSE. As seen in Table 6 and Fig. 9,  R2 (45°) 
value is 0.91 for Model 2 where it is 0.63 for Model 4 and 
it can be said it is success in prediction decreases around 
30% by decrease in the size of training data set from 80% 
to 50%.

It is found that the ANFIS models with normalized data 
can predict UCS more accurately compared to the mod-
els with real data. This finding can be apparently seen 
especially in Model 3 and Model 4 though not in Model 
1 and Model 2. It is concluded that the use of normalized 
or real data have significant effect on the achievement of 
prediction.

ANFIS outputs reveal that UCS increases with the 
increase of percent of clay and increases till a certain val-
ues of void ratio but then decreases (Fig. 10), UCS generally 
decreases with the increase of diameter but except in very 
small void ratio values (Fig. 11), it does not have a certain 
behavior when it is examined in terms of diameter and 

Table 5  The coefficients for predicting UCS from MLR analyses of model 1

Constant Specimen 
diameter D 
(mm)

Specific 
gravity Gs

Plasticity 
index PI (%)

Sand (%) Clay (%) Void ratio e Liquidity index LI

Enter method analysis 0.686 − 0.155 1.258 − 0.614 1.690 − 0.502 − 0.172 − 1.212
Stepwise method analysis 1.111 − 0.135 – – – − 0.143 0.438 − 1.259

Fig. 9  The cross plot for observed and predicted UCS values obtained by ANFIS model with normalized data
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percent of clay (Fig. 12) and UCS generally increases with 
the increase in plasticity index (Fig. 13).

4.3  Comparison of MLR analysis and ANFIS models

The correlations between observed and predicted values 
of UCS by ANFIS and MLR analyses belong to Model 1 
shown in Fig. 14.

R2 (45°) values of ANFIS model with real data and nor-
malized data are 0.82 and 0.84 respectively and  R2 (45°) 
values of MLR analyses that are carried out using enter 
method and stepwise method are 0.76 and 0.73 respec-
tively (Fig. 8). So ANFIS models are more successful than 
MLR models even if it is not much at all, MLR analyses are 
more successful when they are executed by using enter 
method compared to stepwise method and ANFIS models 
give more accurate predictions while models developed 
with normalized data than while models developed with 
real data. Furthermore, residual errors of UCS predictions 
of Model 1 and Model 4 structured by MLR and ANFIS are 

Table 6  Statistical evaluations 
of models made by ANFIS

Share of train-
ing data (%)

Input values R2 R2 (45°) RMSE (kPa) MAPE (%)

Model 1 80 Real data 0.84 0.82 34.35 17
Normalized data 0.85 0.84 33.26 17

Model 2 70 Real data 0.91 0.91 27.82 14.2
Normalized data 0.91 0.91 26.67 17

Model 3 60 Real data 0.74 0.68 60.28 27.2
Normalized data 0.86 0.83 33.44 18.9

Model 4 50 Real data 0.62 0.60 55.21 21
Normalized data 0.77 0.63 43.88 28.4

Mean Real data 0.77 0.75 44.45 19.85
Normalized data 0.85 0.80 26.81 20.33

Fig. 10  ANFIS output for unconfined compression strength as a 
function of void ratio and percent of clay Fig. 11  ANFIS output for unconfined compression strength as a 

function of void ratio and diameter of specimen

Fig. 12  ANFIS output for unconfined compression strength as a 
function of percent of clay and diameter of specimen
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exhibited in Figs. 15, 16 and it is seen that ANFIS analyses 
significantly have less error in Model 1 but it is not signifi-
cant that much in Model 4 and Model 4 has extreme a few 
extreme devious point at such as sample of 14 and sample 
25 (Figs. 15, 16).

As seen in Table 7, ANFIS models have better achieve-
ment on prediction of UCS in proportion to MLR models 
when mean values of  R2,  R2 (45°) and RMSE are evaluated 
because of bigger  R2 (45°) values and smaller RMSE values. 

Although  R2 values around best fit line are same it doesn’t 
mean ANFIS and MLR models have same success in predic-
tion because best fit line has a constant coefficient and it 
means there is a constant error on prediction even if all 
predictions are on best fit line.

5  Conclusions

The study is conducted to develop models to predict UCS 
of clayey soils using MLR and ANFIS and determine the 
effect of the size of training data on success of predictions.

The following decisions are made

(a) The predicted UCS values of ANFIS models are found 
to be closer to observed UCS values compared to MLR 
models

(b) Using normalized data for models increases the accu-
racy of predictions in ANFIS analyses.

(c) ANFIS model with normalized data of Model 2 exhib-
its almost excellent success in prediction of UCS with 
 R2 (45°) = 0.91 where the best model of MLR analy-
ses is Model 1 with enter method has values of  R2 
(45°) = 0.76.

(d) In ANFIS analyses,  R2 (45°) value is 0.91 for Model 2 
where it is 0.63 for Model 4 and the success in predic-

Fig. 13  ANFIS output for unconfined compression strength as a 
function of void ratio and plasticity index

Fig. 14  The cross plot for predicted and observed UCS values of model 1
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tion decreases around 30% by decrease in the size of 
training data set from 80 to 50%.

(e) Some parameters considered insignificant statistically 
are excluded from the analysis even if they contrib-
utes to obtain more accurate estimates. Thus, using 
enter method in MLR analysis is more successful on 
prediction than stepwise method.

(f ) Gs, PI and Sand  % play a role to predict the UCS 
although they don’t seem meaningful statistically.

(g) ANFIS models and MLR models have enough capabil-
ity to predict UCS of clayey soils with specimen and 

soil properties such as specimen diameter, specific 
gravity, plasticity index, liquidity index, void ratio, 
content of sand and clay.

(h) Developing training and test data set in optimum size 
is the most important part of obtain accurate predic-
tion by ANFIS and MLR.
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