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Abstract
In this paper, we present a method for separating voiced sounds from a composite signal. This method is mainly based 
on the separation by modified comb filter. This filter is keyed to the average values of the estimated pitch. This estima-
tion is performed through an autocorrelation of multi-scale product analysis to separate the effects of the source and 
the vocal tract. The “autocorrelation of the multi-scale product” method allows noise elimination and the apparition of a 
signal periodic structure. Peaks that appear are used to calculate the mean fundamental frequency of the target speaker 
which will be used in the corresponding comb filters to determine the target speaker contribution. After the subtraction 
of this contribution from the mixture, we obtain the intrusion speaker. This separation is validated by its application on 
Cooke database and a part of VCTK database and compared to recent methods as Wang–Brown, Hu–Wang, Zhang–Liu 
and Quan systems. Results confirm the performance of the proposed approach.

Keywords Autocorrelation of multi-scale product · Fundamental frequency f0 · Improved comb filtering · Multi-
speakers · Voiced sounds separation

1 Introduction

One of the most important issues in the field of speech 
processing concerns the estimation of the pitch in the 
presence of a range of interferences that are added to the 
main signal. We can cite some cases such as an environ-
mental noise, reverberation or just another person speak-
ing at the same time with the target speaker. During the 
last decades, various methods of separating sounds have 
been proposed, such as the blind source separation (BSS) 
which allows the extraction of the unknown speech sig-
nals from the mixture signals with no a priori information 
about the mixed signals and the sources [1–6]. We mention 
also spectral subtraction [7], subspace analysis [8], hidden 
Markov modeling [9] and sinusoidal modeling [10]. These 
approaches expect certain interference properties, and 
then, they segregate composite speech based on these 

hypotheses. These methods assume certain signal prop-
erties, but they have some limitations in comparison with 
the separation of human sounds.

Other approaches have been proposed as the CASA 
(computational auditory scene analysis) model [11–15] 
which are based on the principles of ASA “auditory scene 
analysis” [16] described by Bregman for separation of com-
posite signals. Bregman supposed that the brain organizes 
the data according to the general properties of the signal 
(harmonicity, synchronization, etc.) by using automatic 
and native mechanisms. The low-level processing, data 
driven, allows the grouping of the signal components, 
thus providing auditory stream corresponding to exter-
nal events.

A CASA system generally follows four steps: peripheral 
analysis, the extraction of sound properties, segmentation 
and grouping. The peripheral processing decomposes 
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the auditory scene representation in a two-dimensional 
time–frequency (TF) through a filter bandwidth and a 
windowing in function of time. The second step extracts 
auditory properties corresponding to the principles of 
ASA, which will be used later in the segmentation and 
grouping. In the segmentation and grouping, the system 
produces segments for concurrent voice and target voice 
(interference) and then groups the segments from the tar-
get in a stream. This flow corresponds to a sound source. 
Finally, the separate target signal will be synthesized from 
this flow [13].

In the different methods of speech separation, the pitch 
is a major parameter. Indeed, several multi-pitch search 
algorithms have been proposed, like in the case of the 
automatic transcription of polyphonic music [17] or in 
the case of multi-pitch estimation in composite speech. 
The first systems typically have had significant limitations 
in the content and were only capable of detecting two 
harmonic overtones [18, 19]. Among the multi-pitch esti-
mation methods, we find mainly those based on statis-
tical approaches such as Bayesian modeling [20] or the 
hidden Markov model (HMM) [21]. These techniques have 
been validated only in the case of two speakers or a single 
speaker with noise.

In this work, we use the comb filters in the frequency 
domain for the separation of composite speech signals. 
The comb filters have been used in [22, 23] on the synthe-
sized signals for the separation of polyphonic sounds. But 
their use on real signals will be more complicated because 
of certain intrinsic phenomena to the production of voiced 
sounds such as the effects of noise due to the vocal tract, 
the variability of the frequency of the glottal excitation 
called jitter or the pitch interaction with the first forming.

Then, our principal goal is the target signal estimation 
in voiced zones.

This paper is organized as follows. Section 2 describes 
related works. Section 3 presents the principle of the pro-
posed method for voiced sounds separation. The results 
and the comparison are given in Sect. 4. Finally, Sect. 5 
concludes this work.

2  Related works

Multiple comb filters and autocorrelation of the multi-
scale product for multi-pitch estimation approach pre-
sents a new method “that estimates the fundamental fre-
quency in the case of a real noisy environment when many 
persons speak at the same time and considers the case of 
two speakers” [24].

On the other hand, the method of the evaluation of 
multi-pitch estimation by multi-scale product analysis 

describes “a multi-scale product comparative study for 
dominant pitch estimation in a mixture” [25].

Besides, multi-pitch estimation based on multi-scale 
product analysis, improved comb filter and dynamic pro-
gramming approach is about “a method consists on the 
autocorrelation function of the multi-scale product calcu-
lation of the mixture signal, its filtered version by a rec-
tangular improved comb filter and the dynamic program-
ming of the residual signal spectral density for multi-pitch 
detection” [26].

Finally, the comparison of several computational audi-
tory scene analysis (CASA) techniques for monaural speech 
segregation work presents and compares “several studies 
that have used computational auditory scene analysis 
(CASA) for speech separation and recognition” [27].

Nowadays, researchers are increasingly interested 
in making systems capable of separating signals. In our 
case, we are focused on developing a method of voiced 
sounds separation from a composite signal which is mainly 
based on the use of a modified comb filter that is keyed 
to the average values of the estimated pitch. In addition, 
this estimation is performed through an autocorrelation 
of multi-scale product analysis to separate the effects of 
the source and the vocal tract.

So, our actual work is about the target signal estimation 
in voiced zones using the fundamental frequency estima-
tion of the dominant signal. Absolutely, we use some tech-
niques presented in previous works such as the autocorre-
lation, the multi-scale product analysis and comb filtering. 
But, we have modified the structure of the filter and used 
these tools for the separation after the pitch detection.

3  Description of voiced sounds separation 
system

For the separation of composite speech, we propose an 
approach based on the “autocorrelation of multi-scale 
product (AMP)” and the modified comb filtering (MCF). 
This filtering is applied only in the voiced regions. For the 
conception of our comb filter, we need to determinate the 
true value of the fundamental frequency f0 of the voiced 
regions of composite signal.

Then, the use of comb filters is dependent on pitch esti-
mation of dominant speaker. To do this, we use a method 
based on the “AMP analysis.” The proposed algorithm oper-
ates as shown in the block diagram given in Fig. 1.

3.1  Pitch estimation by the “AMP”

To decompose the composite signal into frames, we use a 
hamming window with 64-ms duration.
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In order to obtain the “multi-scale product (MP)” signal, 
we use a continuous wavelet transform (WT) at three suc-
cessive scales  (2−1,  20 and  21) and we calculate their prod-
uct of the coefficients.

In fact, the wavelet transform allows the characteri-
zation and the detection of signal singularities [24]. The 
wavelet used in this MP analysis is the quadratic spline 
function with a support of 0.8 ms. It is the first-order deriv-
ative of the scaling function, which closely approximates 
a Gaussian function.

The MP detects singularities present in the signal and 
allows filtering the signals and generating simplest peri-
odic structures. Then, we calculate the autocorrelation 
function, which allows the estimation of the pitch of the 
target speech signal [28].

The “AMP” for the time interval i is described as follows:

where N is the length of the analyzed frame and Pi is the 
multi-scale product.

On the other hand, for a signal x, the MP at scales sj is 
given by:

where Wx (n, sj) is the WT of x(n) at the scale sj = 2j.

3.2  Improved comb filter and speakers separation

Comb filters are based on the summation of two identi-
cal signals together with a small delay between them. 

(1)AMPi(k) =

N−1
∑

l=0

Pi(l)Pi(+k)

(2)P(n) =

l
∏

j=1

Wx
(

n, sj
)

These filters allow selected frequencies to pass while 
blocking all other frequencies.

For an input signal x[n], this process is described by 
the following equation:

where g is a factor, which scales the gain of the filter 
between 1 + g and 1 − g, and D is the delay in samples.

There are two types of comb filters:

• a comb filter with finite impulse response (FIR)
• a comb filter with infinite impulse response (IIR)

These filters are described, respectively, by the follow-
ing equations:

where k represents the delay associated with the period 
T and α is a fixed parameter applied to the delayed signal.

The transfer functions associated with these filters are, 
respectively:

Comb filters are used in numerous applications such 
as music analysis, speech enhancement and separation 
and multi-pitch estimation. In this context, a least mean 
square (LMS) adaptive filtering approach has been pro-
posed for removing the deleterious effects of additive 
noise on the speech signal by Sambur [29]. Moreover, 
Darlington and Campbell [30] developed a multi-chan-
nel and sub-band adaptive system for enhancement of 
speech signals corrupted by background noise. We men-
tion also Iliev and Kasabov technique [31] which is based 
on adaptive filtering with averaging (AFA) used for echo 
cancelation. Besides, we cite Christensen and Jakobsson 
method [32] which introduced a number of new filter 
designs that are constructed for periodic signals and that 
give full parameterizations of these signals.

In this work, to obtain the dominant signals, a rec-
tangular comb filter is used. Indeed, we have used the 
comb filter in the frequency domain with a rectangular 
frequency response because the bands forming this type 
of filter are needed to filter properly the fundamental 
frequency and its harmonics.

This filter is tuned by the estimated f0, and it has 
adaptable amplitude which varies according to the maxi-
mum amplitude of the mixture signal at each frame.

(3)Y[n] = x[n] + g ∗ x[n − D]

(4)Y[n] = X [n] + �X
[

n − k
]

(5)Y[n] = X [n] + �Y
[

n − k
]

(6)H(z) = 1 + �z−k

(7)H(z) =
1

1 − �z−k

Composite signal of 
voiced speech

Segmented signal

AMP

First f0 estimation Modified comb 
filter

Speaker 1

Subtraction 

Speaker 2
Framing

Fig. 1  Flow diagram of separation approach
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The resulting signal from this filtering presents the 
first speaker or the dominant signal. To obtain the sec-
ond speaker or the intrusion, we apply a subtraction 
between the mixture signal and the signal estimated by 
the designed comb filter.

Figure 2 shows the frequency response of the designed 
comb filter for a fundamental frequency f0 = 160 Hz and a 
sampling frequency Fs = 16 kHz.

4  Experiments and comparison

4.1  Experiments

The separation of composite sounds is to keep only the 
harmonics of the signal and reject the intermediate fre-
quency components. For separation of our composite 
signal, the proposed approach uses a comb filter with a 
rectangular bandwidth. The filter amplifies all multiple fre-
quencies f0 = 1/T0 according to the width of the band. f0 is 
given by the “AMP analysis.”

This approach has been evaluated using Cooke data-
base [33], which contains 100 mixture sounds obtained 
by mixing ten male voiced speech signals with ten other 
signals representing a variety of sounds. Interferences can 
be classified into three categories:

• Interferences without pitch formed by white and 
impulse noises.

• Interferences having a pitch quality formed by pure fre-
quency of 1 kHz, cocktail party noise, rock music, siren 
and ring tone.

• Speech interferences, which are speech signal uttered 
by a woman 1, speech signal uttered by a man 2 and 
speech signal uttered by a woman 2.

The text pronounced by male target signals is “Why are 
you all weary.” On the other hand, the text pronounced by 
the speech interference is “Don’t ask me to carry an oily 
rag like that.”

Signals constituting the Cooke database are mono-
phonic sound reproduction and are sampled at the fre-
quency 16 kHz.

The mixture signal is decomposed into frames using a 
hamming window with 64-ms duration.

Figures 3, 4 and 5 present the mixture, the reference 
target and the estimated target by our approach, respec-
tively, with a noise from the first and the second categories 
of interferences (white noise, pure frequency of 1 kHz and 
cocktail party noise).

Then, for this type of mixture signals, we obtain good 
results for the estimated signals comparing with refer-
ences signals.

Figures 6, 7 and 8 show the composite signal followed 
by the first speaker and the second speaker signals refer-
ences and estimated from the separation operation using 
a rectangular comb filter.

Figure 6 describes the case when the mixture contains 
two male voices. This is the most difficult case in the sepa-
ration task because the two speakers are from the same 
gender and have very similar characteristics like the fun-
damental frequency. This explicates why the estimated 
intrusion is not very similar to the reference one.

Then, we note that the estimated signal is approxi-
mately similar to the reference signal for both speakers 
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Fig. 2  Frequency response of the rectangular comb filter
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base (male voice and white noise)
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composed the mixture signal in the three presented cases, 
especially for the mixture formed by male and female 
voices.

On the other hand, the proposed approach has been 
evaluated also in the VCTK database.

This database includes speech data uttered by 109 
native speakers of English with various accents. Each 
speaker reads out about 400 sentences, most of which 
were selected from a newspaper plus the Rainbow Pas-
sage and an elicitation paragraph [34].

We have only used ten speakers from this database: two 
mixtures formed by two males, two mixtures formed by 

two females and six mixtures formed by one male and one 
female [35].

Figures 9, 10 and 11 present the mixture, the reference 
target, the estimated target by our approach and the esti-
mated target by Quan et al.’s system, respectively, in the 
case of a mixture formed by two males, in the case of a 
mixture formed by two females and in the case of a mix-
ture formed by one male and one female.
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Fig. 4  Separated signals from composite speech from Cooke data-
base (male voice and pure frequency of kHz)
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Fig. 5  Separated signals from composite speech from Cooke data-
base (male voice and cocktail party noise)
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Fig. 6  Mixture and both reference and estimated target and intru-
sion frames of male voices (from the Cooke database)
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From these figures, we can conclude that the esti-
mated target signal by our proposed approach is 
approximately similar to the reference target signal in 
the three presented cases.

These results show the robustness of our proposed 
method.

4.2  Comparison and discussion

Our approach performed well for both speakers estima-
tion. It is compared to Wang and Brown [36], Hu and Wang 
[37] and Zhang and Liu [38] systems for speech separation.

Wang–Brown model [36] is based on a framework 
oscillatory correlation which is supported by recent neu-
robiological findings. F0 information is available in the 
pooled correlogram. Indeed, after the formation of the 
correlogram by computing a running autocorrelation of 
the auditory nerve activity in each filter channel, these 
correlograms are computed at 10-ms intervals, forming a 
three-dimensional volume in which time, channel center 
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Fig. 8  Mixture and both reference and estimated target and intru-
sion frames of male and female voices (from the Cooke database)
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Fig. 10  Mixture, reference and both estimated target frames of two 
females voices (from the VCTK database)
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frequency and autocorrelation lag are represented on 
orthogonal axes. Additionally, a “pooled” correlogram is 
formed at each time frame by summing the periodicity 
information in the correlogram over frequency. The larg-
est peak in the pooled function occurs at the period of 
the dominant fundamental frequency (f0).

On the other hand, Hu and Wang [37] proposed a tan-
dem algorithm that performs the pitch estimation of the 
target signal and the segregation of voiced portions of 
target speech jointly and iteratively. They used the ideal 
binary mask (IBM) at the voiced frames of the target 
utterance to estimate a pitch period at each frame.

In addition, Zhang–Liu approach [38] concerns mon-
aural voiced speech separation. It is based on pitch esti-
mation and comb filter. Indeed, the authors decomposed 
the composite speech signal into time–frequency units. 
Then, these T–F units are used to determine the pitch 
contour according to theirs zero crossing rate. After that, 
a comb filter is used to label each unit as target speech 
or as intrusion.

Finally, we mention Quan et al.’s approach [39] that 
separates the voice of a target speaker from compos-
ite signal by making use of a reference signal from the 
target signal. They realize this by training two separate 
neural networks:

• A speaker recognition network that produces speaker-
discriminative embeddings;

• A spectrogram-masking network that takes both noisy 
spectrogram and speaker embedding as input and pro-
duces a mask.

We have compared our SNR results from the VCTK data-
base with this method.

Comparing signals (Fig. 12a–c), we conclude that the 
proposed method is as efficient as those using CASA 
system.

Figure 12 exposes a composite signal (male and female 
voices) followed by the reference target signal and its esti-
mated signal using our method and those of Wang–Brown 
and Hu–Wang. The separated signal is approximately simi-
lar to the reference one showing the performance of these 
methods.

For the entire studied mixture signal formed by male 
and female voices, the calculation of the signal-to-noise 
ratio (SNR) gives the following results for the four men-
tioned approaches.

Table 1 shows that the Zhang–Liu and Hu–Wang sys-
tems are the best for the target separation. However, our 
contribution for the target separation has produced con-
siderable results by using only simple techniques.

In Table  2, we present the computing time of our 
method, of Hu–Wang system and of Zhang–Liu system.

From Table 2, we note that our proposed approach 
has the best computing time. In fact, the computing 
time of the Hu and Wang model and Zhang–Liu model 
is much higher compared to our computing time.

For the studied mixture signal formed by male and 
female voices from the VCTK database, the calculation of 
the signal-to-noise ratio (SNR) gives the following results 
(Table 3).

Quan et  al.’s system [39] is the best for the target 
separation since they use a complex and more efficient 
method based on the training of two separate neural 
networks. However, our contribution for the target 
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Fig. 12  Reference target signal followed by the estimated target, 
respectively, by a our proposed approach, b Wang–Brown system 
and c Hu–Wang system

Table 1  SNR results for speech separation

Approach Proposed 
approach

Wang–
Brown 
system [36]

Hu–Wang 
system [37]

Zhang–Liu 
system [38]

SNR (dB) 1.97 2.66 10.20 12.91

Table 2  Computing time

Hu–Wang system 
[37]

Zhang–Liu Sys-
tem [38]

Our approach

Run time (s) 1064 375 1.72

Table 3  SNR results

Proposed approach Quan et al.’s approach [39]

SNR_AVG (dB) 1.03 9.80
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separation has produced significant results by using only 
simple techniques (MP and filtering).

5  Conclusion

In this work, we presented a composite sound separation 
algorithm by a designed comb filter tuned by the funda-
mental frequency f0. The f0 is determined by analyzing “the 
autocorrelation of multi-scale product (AMP).” The com-
posite signal is formed by a mixing of two speech signals, 
from two male speakers or a male speaker and another 
female. The “AMP analysis” method estimated peaks for 
measuring the mean value of the dominant speaker pitch. 
This approach allows the separation of all voiced sounds 
in the mixture.

As prospects, we want to ameliorate this approach 
and to separate a mixture signal composed from more 
than two speakers. In addition, we would like to separate 
unvoiced composite signals.
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