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Abstract
Groundwater contamination by polycyclic aromatic hydrocarbons (PAH) may pose a risk to human health, as these com-
pounds are considered to be highly toxic, carcinogenic and/or mutagenic and bioaccumulative. The aim of this study 
was to evaluate and determine PAH levels in groundwater samples collected from tubular wells in a city of northern 
Brazil by gas chromatography with flame ionization detector (GC-FID) used by the population for consumption. Sample 
pre-treatment using solid-phase extraction cartridges was performed in order to promote an enrichment of the PAH frac-
tion of interest and to remove interferences from the matrix to further determine PAH in samples by GC-FID. The results 
obtained showed that all groundwater samples studied presented PAH levels lower than maximum values allowed by MS 
2914/2011 and CONAMA 396/2008. The developed procedure is characterized by low limits of detection and quantifica-
tion, equal to 0.024–0.113 µg L−1 and 0.079–0.378 μg L−1, respectively, good linearity (r2 > 0.99). The recoveries obtained 
for 16 PAH by the addition and recovery method ranged from 85.4 to 105.7% with good precision (RSD < 5.0%). The results 
of this study showed that the method developed is fast, accurate and robust with high efficiency for identification and 
determination of 16 PAH in groundwater samples.

Keywords  Groundwater analysis · Polycyclic aromatic hydrocarbons · Solid-phase extraction · Gas chromatography 
with flame ionization detector

1  Introduction

Groundwater quality has become worse in large urban 
centers mainly due to inadequate soil use and occupation, 
generating diverse effluents that return to water bodies, 
interfering in their quality, and to a lesser extent to season-
ality [1, 2]. Therefore, the monitoring of groundwater using 
chemical analyses is an important measure to evaluate its 
quality, serving as indicators to identify possible sources 
of contamination, which can significantly alter the chemi-
cal properties of water, compromising the overall balance 
of the system, causing economic losses and impairing its 
consumption [3].

According to Rebouças et  al. [3], groundwater has 
been losing quality due to contamination by septic tanks, 
landfills, contamination by pesticides, fertilizers, saltwater 
intrusion, pipeline fractures, abandoned or poorly sealed 
wells, industrial wastes, underground storage of chemicals, 
leakage of underground fuel tanks, etc. Contamination of 
aquifers by leakage of oil from underground storage tanks 
and oil spills, occurring in most cases in its extraction, 
refinement, transportation and storage, is a worldwide 
concern and has also been widely discussed in Brazil [4–6].

In the urban area of the city of Belém, state of Pará, a 
large number of residential condominiums and private 
households use tubular and excavated Amazonas-type 
wells as source of groundwater from the Barreiras aquifer 
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(hydrogeological body), being the most explored in the 
region [7]. It is important to highlight that the Barreiras 
aquifer, in its great extension, is a shallow, free to semi-
confined reservoir, with depth between 25 and 90 m [8]. In 
addition, these wells are most often drilled without taking 
into account the hydrogeological aspects of this aquifer 
and the proximity of wells (septic or rudimentary) and fuel 
stations, which are not always built according to technical 
criteria recommended by the Brazilian Association of Tech-
nical Standards (ABNT) [2, 3]. These factors make the popu-
lation users of this type of water supply vulnerable to the 
risks of consuming water contaminated by fuels resulting 
from leaks in underground storage tanks of reseller and 
distributor stations, through septic tanks and sewers [7, 
9]. These sources of contamination can cause serious envi-
ronmental impacts due to the contamination of soil and 
groundwater, compromising the quality of water resources 
and their use as water supply [5, 10].

According to Azevedo [2], several anthropogenic 
sources can contribute to the presence of polycyclic aro-
matic hydrocarbons (PAH) in surface water and ground-
water. These compounds are fundamentally produced by 
thermal decomposition based on two important mecha-
nisms: pyrolysis or incomplete combustion and carboni-
zation processes [11]. Studies by Gebara et al. [29], indi-
cate that the main anthropogenic sources of surface and 
groundwater contamination by PAH are due to processes 
of combustion of organic material (particularly the exhaust 
of diesel and gasoline engines), burning of plant biomass, 
oil refineries and leakage of oil-derived fuels (gasoline, 
diesel and lubricating oils).

Organic contaminants, in particular polycyclic aromatic 
hydrocarbons (PAH), have been extensively investigated 
in environmental matrixes such as soil, sediments, sur-
face and groundwater due to the toxic action of these 
compounds on biota and man [12–16]. Studies found in 
literature on PAH in groundwater are scarce due to the 
very low concentration in this matrix, compared to the 
concentrations in litter, sewage, contaminated soils or 
marine sediments [17–19]. Contamination of this source 
of water can cause damage to the environment and con-
sequently to human health due to exposure to PAH, as 
they are substances classified by the International Agency 
for Research on Cancer (IARC) [20] as carcinogenic and/or 
mutagenic, highly toxic and bioaccumulative [21–23]. As 
a consequence, the use of these tubular wells as a source 
of water supply for human consumption becomes unfea-
sible [8].

Thus, in view of the potential risks of human exposure 
to PAH, the application of rapid and reliable analytical 
techniques for the identification and quantification of 
PAH is necessary [4]. In recent years, several authors have 
used several analytical techniques of high sensitivity 

to determine PAH in natural waters and environmen-
tal samples [4, 10]. Due to their physical and chemical 
properties, the most widely used analytical separation 
techniques for PAH determination have been gas chro-
matography with flame ionization detector (GC-FID), 
mass spectrometry (GC–MS), high-performance liquid 
chromatography (HPLC) with UV–visible detector, diode 
array (DAD), fluorescence detector and supercritical fluid 
chromatography (SFC), which can also be associated 
with other types of detectors [15, 22, 24–28]. Accord-
ing to Lanças [30], chromatography represents the most 
prominent set of analytical techniques for PAH determi-
nation at the present time.

However, it is necessary to introduce a stage for samples 
to be pretreated, aiming at the extraction and pre-con-
centration of these contaminants (analyte), allowing the 
elimination of interfering compounds that may compro-
mise the instrumental analytical technique used [29]. Thus, 
sample preparation significantly contributes for low limits 
of detection and high selectivity are achieved in chemical 
analysis [30].

In general, for PAH determination in water, liquid–liq-
uid extraction (LLE), solid-phase extraction (SPE), stir-bar 
sorptive extraction (SBSE), membrane-assisted solvent 
extraction (MASE), liquid–liquid micro-extraction (LLME), 
and solid-phase micro-extraction (SPME) have been widely 
used for the extraction and pre-concentration of analytes 
[4, 10, 22, 31–34].

Considering the relevance of studies of this nature and 
based on the increased consumption of groundwater and 
with the purpose of obtaining better quality water, the 
aim of the present study was to evaluate the quality of 
groundwater collected in tubular wells potentially used for 
human consumption by the population of five neighbor-
hoods located in the city of Belém (Pará, Brazil) based on 
the determination of polycyclic aromatic hydrocarbons by 
gas chromatography with flame ionization detector.

2 � Materials and methods

2.1 � Description of the study area

The city of Belém, capital of the state of Pará, located 
at 1°27′21″S and 48°30′14″ W in northern Brazil, has an 
area of 1065 km2 and population of more than 1.4 million 
inhabitants, which together with 5 neighboring munici-
palities make up the Metropolitan Region of Belém (RMB).

Groundwater samples were collected in five neighbor-
hoods of RMB (Marco, Pedreira, Sacramenta, Canudos and 
Marambaia), totaling an area of approximately 28.4 km2, 
where the 17 collection points are located (Fig. 1).
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All collection points were georeferenced based on the 
global positioning system (GPS, Garmin Map 76 model), 
as shown in Table 1.

These neighborhoods are located near the hydro-
graphic basins of the Una and Tucunduba rivers that 
cross the city, being a striking hydrographic aspect in 
the city of Belém. As a consequence of the urban expan-
sion and development, they were transformed into open 
sewers, receiving domestic and industrial effluents with-
out any previous treatment [7]. The area under study 
has high population density, old sewage network, large 
number of resellers of oil-derived fuels (gasoline and die-
sel) and most residences in the area use in situ sanitation 
system and groundwater from the Barreiras aquifer for 
human consumption [8].

2.2 � Instrumentation

Gas chromatography with flame ionization detector (Trace 
1310, Thermo Scientific, Milan, Italy), equipped with auto-
matic sampler (Tri Plus RSH) and split/splitless injection 
system, was used to determine 16 PAH in underground 
water samples. For chromatographic separation, an OV-5 
capillary column of fused silica internally coated with 
dimethylpolysiloxane stationary phase with 5% phenyl 
(Ohio Valley Specialty Company, Marietta, Ohio, USA) 
measuring 30 m × 0.25 mm i.d. × 0.25 μm film thickness 
was used. Helium with 99.99% purity (Linde, Pará, Brazil) 
was used as carrier gas at constant flow of 2.0 mL min−1. 
The Chromeleon 7.0 software (Dionex Corporation, Sun-
nyvalle, USA) was used for instrumental control of the 

Fig. 1   Map of the city of Belém 
and respective collection 
points distributed in the five 
neighborhoods under study
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chromatographic system and data acquisition in Windows 
platform.

A system for vacuum SPE with capacity for 12 C-18 car-
tridges (Visiprep™, Supelco, Bellefonte, PA, USA) was used 
in the procedure for extracting PAH in groundwater sam-
ples for further analysis by GC-FID.

2.3 � Gas chromatographic conditions

The optimum chromatographic conditions obtained that 
allowed the best separation and resolution of peaks that 
enabled the identification and quantification of 16 PAH of 
interest are described in Table 2. All measurements were 
performed in triplicate.

2.4 � Reagents and standards

All solutions were prepared using analytical grade rea-
gents and ultrapure water (specific resistivity of 18.2 MΩ 
cm) obtained by Milli-Q purification system (Millipore, Bill-
erica, MA, USA).

The PAH certified mixed standard was acquired of 
2000 μg mL−1 (99% purity) in dichloromethane solution 
(lot LB66674) (Supelco, Bellefonte, PA, USA) contain-
ing naphthalene (Naf ), 2-bromonaphthalene (2-BrNaf ), 
acenaphthylene (Aci), acenaphthene (Ace), fluorene (Flu), 
phenanthrene (Fen), anthracene (Ant), fluoranthene (Flt), 
pyrene (Pyr), benzo [a] anthracene (BaA), chrysene (Cry), 
benzo [b] fluoranthene (BbF), benzo [a] pyrene (BaP), 
indeno [1,2,3-cd] pyrene (Ind), dibenzo [a, h] anthracene 
(DBahA) and benzo [g, h, i] perylene (BghiP) was used to 
prepare a 10 mg L−1 stock solution.

Dichloromethane (99.5%) HPLC grade (Tedia Way, Fair-
field, USA) was used in the preparation of stock solution 

Table 1   Geographic coordinates of the 17 collection points in the 
five neighborhoods of the city of Belém

Collec-
tion 
points

Neighborhood Sample code Geographical coordi-
nates

1 Marco MC1 1°25′58,2″S e 
48°27′12,9″W

2 Marco MC2 1°26′28,6″S e 
48°27′27,5″W

3 Marco MC3 1°26′29,1″S e 
48°27′27,2″W

4 Marco MC4 1°26′08,3″S e 
48°27′19,1″W

5 Marco MC5 1°26′07,9″S e 
48°27′39,5″W

6 Marco MC6 1°26′12,4″S e 48°27′50″W
7 Pedreira PR1 1°25′07,5″S e 

48°27,4′41″W
8 Pedreira PR2 1°25′19,3″S e 

48°27′29,5″W
9 Pedreira PR3 1°25′12,6″S e 

48°27′47,4″W
10 Pedreira PR4 1°25′18,7″S e 

48°27′51,6″W
11 Pedreira PR5 1°25′41″S e 48°28′06,2″S
12 Canudos CD1 1°27′00,9″S e 48°27′36″W
13 Canudos CD2 1°27′01,1″S e 

48°27′30,8″W
14 Sacramenta ST1 1°25′05″S e 48°28′05,7″W
15 Sacramenta ST2 1°24′55,3″S e 

48°28′20,8″W
16 Marambaia MB1 1°24′28,2″S e 48°27′32″W
17 Marambaia MB2 1°24′32,6″S e 

48°26′42,6″W

Table 2   Chromatographic conditions used in the determination of 16 PAH by GC-FID

Programming column temperature Initial of 100 ºC, isotherm of 1 min; 10 ºC min−1 to 200 ºC; 7 ºC min−1 
to 250 ºC, isotherm of 6 min; 20ºC min−1 to 300 ºC and isotherm of 
10 min

Equilibration time 0.5 min
Injection Split 1:30 (2,0 µL)
Injector temperature 270 ºC
FID temperature 320 ºC
Total gas flow carrier (He) 60 mL min−1

Gas pressure carrier 85 kPa
Total gas flow synthetic air 350 mL min−1

Gas pressure synthetic air 40 kPa
Total gas flow Hydrogen (H2) 35 mL min−1

Gas pressure hydrogen 60 kPa
Total gas flow make-up (N2) 40 mL min−1

Gas pressure make-up 60 kPa
Total analysis time 31.64 mim
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and PAH intermediate solutions. Stock and intermediate 
solutions were stored in Teflon-sealed amber glass vials 
under refrigeration at 4 °C and protected from light.

C-18 cartridges (200 mg/3.0 mL) with 33 μm reverse 
phase polymer porosity (Strata X, Phenomenex, USA) 
were used for PAH extraction and pre-concentration in 
groundwater samples.

Polytetrafluoroethylene membranes (PTFE) of 0.45 μm 
porosity (Millipore Phenomenex, USA) were used to filter 
all solvents used in analytical determinations and samples.

Polyethylene volumetric flasks, glassware, vial vials and 
micropipette tips were washed with tap water, then with 
deionized water and then immersed in 10% (v/v) HNO3 
solution for 24  h. Subsequently, these materials were 
abundantly washed with deionized water and dried in 
a laminar flow hood. For the removal of impurities from 
the glass micro-syringe and from the GC-FID injection line 
(Tedia Way, Fairfield, OH, USA), acetone was used.

2.5 � Sampling

Seventeen groundwater samples were collected from 
tubular wells (Marco: 6; Pedreira: 5; Sacramenta: 2; Canu-
dos: 2; Marambaia: 2), considered the seasonal period of 
rainfall in the region. Sampling was performed according 
to the Standard Methods for the Examination of Water and 
Wastewater from the American Public Health Association 
(APHA) [35].

Samples were collected in 1000 mL amber glass bot-
tles previously sterilized and decontaminated in 10% 
(v/v) HNO3 solution for PAH determination. After collec-
tion, all samples were duly identified, preserved and kept 
under refrigeration at 4 °C and protected from light until 
extraction.

2.6 � Sample preparation

The extraction procedure of PAH in groundwater samples 
using solvent extraction was adapted from the United 
States Environmental Protection Agency method 3535A 
(USEPA) [36] with the purpose of optimizing the process, 
reducing solvent costs and analysis time. The proposed 
solid-phase extraction procedure is shown in Fig. 2. The 
adsorbent used for extraction was C-18 (octadecylsilane) 
of 200 mg in a 3.0 mL cartridge.

A volume of 100 mL of sample was filtered through 
0.45 μm membranes for further extraction in C-18 car-
tridge. In the extraction procedure, solvents dichlorometh-
ane (DCM) and methanol (MeOH) were used. In the elution 
step, 10 mL of a 4:1 (v/v) DCM/MeOH extraction solution 
per sample for removal of the analytes of interest were 
used.

The accuracy of the proposed procedure was evalu-
ated using the addition and recovery method in samples 
enriched with 3.0; 30 and 70 μg L−1 of PAH for further GC-
FID analysis. Analytical blank was prepared using the same 
procedure proposed for samples, but without the addition 
of analyte.

2.7 � Analysis of PAH by GC‑FID

The amount of PAH in groundwater samples was deter-
mined by the external calibration method using an exter-
nal standard of a mixture of 16 certified PAH based on the 
FID signal/noise ratio response and its identification was 
confirmed by the retention time. Analytical curves were 
constructed from standard solutions of 5.0; 10; 50; 100; 
300; 400 and 500 μg L−1 of PAH. Each point of the analytical 
curve was injected in triplicate.

The PAH determination in samples was adapted from 
the USEPA method 8100 (1986) [37], following the inter-
national acceptance criteria regarding accuracy and preci-
sion. The acceptance criterion in the verification of analyti-
cal curves was based on the FID response for all 16 PAH 
before the analyses of samples, whose variation should 
be less than 20%.

3 � Results and discussion

3.1 � Evaluation of the analytical procedure for PAH 
determination

Initially, a standard 50 μg L−1 solution containing 16 PAH 
was used in the optimization of the best chromatographic 
conditions in order to obtain the best resolution possible 
in the simultaneous identification of 16 PAH. The instru-
mental parameters optimized for the adequacy of the 
chromatographic system were the programming of the 
column temperature (isotherm, gradient and ramp), injec-
tor temperature and FID temperature.

Figure 3 shows the chromatographic profile obtained 
for a standard 50 μg L−1 PAH solution according to the 
chromatographic conditions established in this study (see 
Table 2). Figure 3 shows that the 16 PAH present in the 
standard solution with their respective retention times (TR) 
were identified.

It could be observed in Fig. 3 that the highest sensi-
tivities were obtained for naphthalene, 2-bromonaph-
thalene, acenaphthylene, acenaphthene, fluorene, phen-
anthrene, anthracene, fluoranthene, pyrene, benzo [a] 
anthracene and indene [1,2,3- cd] pyrene, when compared 
to chrysene, benzo [b] fluoranthene, benzo [a] pyrene, 
dibenzo [a, h] anthracene and benzo [g, h, i] perylene.
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The total time of analysis was 31.64 min, where the first 
and the last compound to elute were naphthalene and 
benzo [g, h, i] perylene, with retention times (TR) of 4.25 
and 28.37 min, respectively.

Retention times for the 16 PAH ranged from 4.25 to 
28.37 min. PAH with low molecular weight values showed 
the lowest retention times, characterized by being the 
most volatile and with the highest solubility in water (see 
Table 3).

Figure 4 shows the chromatogram obtained from the 
dichloromethane solvent used in the preparation of stand-
ard solutions for the construction of analytical curves. The 
chromatographic profile obtained shows the absence of 
PAH in the dichloromethane solvent.

3.2 � Analytical performance

Analytical curves were experimentally obtained from 
seven standard solutions of 16 PAH at concentrations 

ranging from 5.0 to 500  μg L−1. The analytical curves 
obtained for all PAH under study presented adequate lin-
earities, since the correlation coefficients (r2) values ranged 
from 0.9994 to 0.9998. Under the established analytical 
conditions, the limits of detection (LOD) and quantification 
(LOQ) were calculated from the mean of the relative areas 
of analytical white noise and their standard deviations by 
equations 3 × s/b and 10 × s/b, respectively, where s is the 
standard deviation of ten analytical white readings and 
the angular coefficient of the analytical curve [38]. LOD 
and LOQ obtained for these compounds ranged from 
0.024–0.113 μg L−1 to 0.079–0.378 μg L−1, respectively.

Table 4 shows the merit figures obtained for the deter-
mination of 16 PAH in groundwater samples.

The recoveries obtained by the addition and recov-
ery method ranged from 85.4 to 105.7%, with relative 
standard deviation of measurements (% RSD, n = 3) less 
than 5%. The recovery results obtained by the proposed 
analytical method showed that the pre-concentration 

Fig. 2   Flowchart of the proce-
dure for extraction of PAH from 
groundwater samples by SPE. 
(Adapted from USEPA method 
3535A, 1998 [36])
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and extraction procedure by SPE is feasible for PAH 
determination in groundwater samples by GC-FID. The 
recoveries obtained for the 16 PAH are shown in Table 5.

3.3 � Total concentration of PAH in groundwater 
samples

Figure  5 shows the chromatographic profile obtained 
after SPE procedure of groundwater sample collected 
in the neighborhood of Pedreira (PR2) according to the 
established GC-FID chromatographic conditions. It could 
be seen in Fig. 5 that only six PAH were identified in this 
sample.

The mean values of results corresponding to the 16 
PAH determined in groundwater samples collected in the 
neighborhoods of Marco, Pedreira, Sacramenta, Canudos 
and Marambaia are presented in Table 6. The results were 
compared with the two reference standards of water qual-
ity required by the Brazilian Legislation [39, 40].

All samples studied presented PAH levels lower than 
the maximum values allowed by MS 2914/2011 [39] and 
CONAMA 396/2008 [40]. However, it is important to note 
that MC1, MC4, MC5, MC6 samples collected in the neigh-
borhood of Marco; PR1, PR2, PR3 and PR5 collected in the 
neighborhood of Pedreira; CD1 and CD2 in the neighbor-
hood of Canudos, presented levels for some PAH under 
study, which may be due to the presence of anthropic pol-
luting processes [16]. In the neighborhoods of Sacramenta 
and Marambaia, all samples presented PAH levels below 
the limit of detection.

The results presented in Table 6 show that PAH with the 
highest and lowest content in groundwater samples were 
naphthalene (Naf ) and acenaphthylene (Aci), with 36.4 

Fig. 3   Chromatographic profile obtained for a standard solution of the 50 µg L−1 content 16 HPA

Table 3   Average retention time (TR) of PAH obtained from a stand-
ard 50 μg L−1 solution identified by GC-FID

Peak PAH TR (min)

1 Naphthalene (Naf ) 4.25
2 2-Bromonaphthalene (2-BrNaf ) 7.35
3 Acenaphthylene (Aci) 7.63
4 Acenaphtene (Ace) 7.76
5 Fluorene (Flu) 8.89
6 Fenanthrene (Fen) 11.05
7 Anthracene (Ant) 11.15
8 Fluoranthene (Flt) 14.08
9 Pyrene (Pyr) 14.67
10 Benzo[a]anthracene (BaA) 18.29
11 Chrysene (Cry) 18.41
12 Benzo[b]fluoranthene (BbF) 22.81
13 Benzo[a]pyrene (BaP) 24.54
14 Indeno[1,2,3-cd]pyrene (Ind) 27.77
15 Dibenzo[a,h]anthracene (DBahA) 27.89
16 Benzo[g,h,i]perylene (BghiP) 28.37
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and 2.8 μg L−1, respectively. The neighborhoods of Marco, 
Pedreira and Canudos obtained the highest sums of PAH 
(ΣPAH), with 173.6, 175.7 and 52.5 μg L−1, respectively. 
This scenario may be related to the combustion processes 
of biomass and fossil fuels, as well as occurrences of fuel 
leaks (gasoline, diesel, lubricating oil) at fuel retailers 
located in the region under study [4, 5, 29, 41, 42].

4 � Conclusion

The solid phase extraction (SPE) used in extraction of PAH 
and preconcentration in groundwater combined with 
gas chromatography with flame ionization detector (GC-
FID) resulted in a fast, accurate and robust method with 
high efficiency for determination of 16 PAH. The results 
of accuracy, precision, linearity, limit of detection (LOD) 
and limit of quantification (LOQ) and recovery indicated 
the viability of the method used. The results obtained for 
the 16 PAH investigated showed that all samples met the 
limits established by Ordinance MS 2914/2011 and CON-
AMA Resolution 396/2008. However, samples collected in 
the neighborhoods of Marco (MC1, MC4, MC5 and MC6), 
Pedreira (PR1, PR2, PR3 and PR5) and Canudos (CD1 and 
CD2) presented PAH levels evidencing a possible contami-
nation by oil-derived fuels.

Fig. 4   Chromatographic profile of the dichloromethane solvent obtained by GC-FID

Table 4   Figures of merit obtained for the determination of 16 PHA 
by GC-FID

LOD = limit of detection; LOQ = limit of quantification

r2 = correlation coefficient; slope = angular coefficient

PHA r2 Slope LOD (µg L−1) LOQ (µg L−1)

Naphthalene 0.9994 0.0003 0.032 0.105
2-Bromonaphtha-

lene
0.9997 0.0003 0.042 0.140

Acenaphthylene 0.9995 0.0002 0.047 0.158
Acenaphtene 0.9995 0.0003 0.053 0.176
Fluorene 0.9997 0.0004 0.024 0.079
Fenanthrene 0.9996 0.0004 0.036 0.121
Anthracene 0.9998 0.0003 0.044 0.147
Fluoranthene 0.9998 0.0004 0.026 0.088
Pyrene 0.9997 0.0004 0.033 0.110
Benzo[a]anthracene 0.9997 0.0004 0.025 0.083
Chrysene 0.9998 0.0001 0.095 0.316
Benzo[b]fluoran-

thene
0.9998 0.0004 0.035 0.116

Benzo[a]pyrene 0.9997 0.0003 0.045 0.148
Indeno[1,2,3-cd]

pyrene
0.9995 0.0003 0.052 0.172

Dibenzo[a,h]anthra-
cene

0.9997 0.0001 0.106 0.353

Benzo[g,h,i]perylene 0.9997 0.0001 0.113 0.378
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Table 5   Recoveries obtained for 16 PHA for method of addition and recovery in groundwater samples by GC-FID (μg L−1 ± SD, n = 3)

SD = standard deviation

PAH Sample 1
Spiked (3.0 µg L−1)

Sample 2
Spiked (30 µg L−1)

Sample 3
Spiked (70 µg L−1)

Found Recovery (%) Found Recovery (%) Found Recovery (%)

Naphthalene 2.61 ± 0.04 87.1 ± 1.35 31.9 ± 0.74 105.5 ± 1.50 66.3 ± 0.43 94.7 ± 0.65
2-Bromonaphthalene 2.60 ± 0.03 86.9 ± 1.07 31.7 ± 0.82 105.7 ± 2.73 65.4 ± 0.98 93.4 ± 1.40
Acenaphthylene 2.67 ± 0.03 89.1 ± 1.15 29.4 ± 0.17 97.8 ± 0.69 65.5 ± 2.08 93.2 ± 2.97
Acenaphtene 2.57 ± 0.03 85.8 ± 1.02 29.3 ± 0.21 97.5 ± 0.66 67.9 ± 0.32 97.1 ± 0.45
Fluorene 2.73 ± 0.05 91.1 ± 1.57 28.5 ± 0.25 95.1 ± 0.84 64.5 ± 0.96 92.1 ± 1.38
Fenanthrene 2.82 ± 0.03 94.1 ± 1.17 29.4 ± 0.15 98.1 ± 0.51 63.6 ± 0.25 90.9 ± 0.36
Anthracene 2.72 ± 0.04 90.5 ± 1.34 28.5 ± 0.36 95.0 ± 1.20 64.7 ± 0.85 92.4 ± 1.21
Fluoranthene 2.84 ± 0,03 94.5 ± 1.17 27.9 ± 0.08 93.0 ± 0.33 64.2 ± 0.47 92.0 ± 0.67
Pyrene 2,81 ± 0.04 93.8 ± 1.50 28.4 ± 0.12 94.9 ± 0.51 65.1 ± 0.93 93.0 ± 1.33
Benzo[a]anthracene 2.85 ± 0.03 95.0 ± 0.88 27.6 ± 0.15 91.0 ± 2.08 65.3 ± 1.34 93.1 ± 1.92
Chrysene 2.69 ± 0.03 89.5 ± 1.02 28.7 ± 0.24 95.6 ± 0.97 67.8 ± 1.10 96.9 ± 1.57
Benzo[b]fluoranthene 2.73 ± 0.02 91.1 ± 0.84 28.1 ± 0.20 93.5 ± 0.84 63.8 ± 0.96 91.2 ± 1.38
Benzo[a]pyreno 2.85 ± 0.03 95.1 ± 1.07 28.2 ± 0.78 94.1 ± 3.21 60.0 ± 0.24 85.7 ± 0.34
Indeno[1,2,3-cd]pyrene 2.57 ± 0.02 85.7 ± 0.83 27.7 ± 0.08 92.3 ± 0.33 68.1 ± 1.48 97.3 ± 2.11
Dibenzo[a,h]anthracene 2.52 ± 0.03 86.7 ± 1.02 28.7 ± 0.61 95.9 ± 2.50 66.6 ± 1.25 95.1 ± 1.78
Benzo[g,h,i]peryleno 2.54 ± 0.02 85.4 ± 0.84 28.5 ± 0.41 95.1 ± 1.67 59.9 ± 0.71 85.6 ± 1.01

Fig. 5   Chromatographic profile obtained for groundwater sample (PR2) by GC-FID
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