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Abstract
Built-up-edge formation is one of the problems in conventional (flood) machining of 15-5 precipitated hardened stain-
less steel (PH SS) which results in poor product quality. Further, concentration on stringent environmental conscious 
regulations has been increasing in metal cutting industries due to environmental pollution. The present work target is 
to address these problems using minimum quantity lubrication (MQL) machining technique. MQL machining technique 
is one of the promising techniques for the metal cutting industries because it satisfies the stringent environmental con-
scious regulations set for metal cutting industries in terms of usage and disposal of chemically contaminated emulsion 
based coolants. In the present work, studied the effect of MQL cooling, process parameters on turning performance 
characteristics and also established a relationship between the turning controllable process parameters and responses 
in the machining of 15-5 PH SS using response surface methodology (RSM) under MQL environment with tungsten 
carbide cutting insert. Spindle speed (v), feed rate (f), depth of cut (d) and MQL flow rate (Q) have been taken as MQL 
machining process parameters. Output turning performances considered were surface roughness (Ra), tool flank wear 
(Tw) and material removal rate respectively. Experiments were done based on the central composite design of RSM. 
From RSM analysis, it was noticed that developed mathematical models predicted the performance results close to 
the experimental results. Further, it was observed that surface roughness and tool wear reduced significantly with an 
increase in MQL flow rate respectively.

Keywords  Response surface methodology · Minimum quantity lubrication · Machining · Surface roughness · Flank 
wear · Material removal rate · 15-5 PH SS

1  Introduction

15-5 PH SS contains a maximum of 15% chromium and 5% 
nickel which give both austenitic and martensite phase 
characteristics. This steel can be hardened by the aging 
process which provides high strength, high toughness 
and sound corrosion resistance. Therefore, this material 
has been used in many applications in aerospace parts like 
gears, air fittings, valve parts, impellers and components 
of nuclear reactors [1]. Any machined product quality sub-
stantially depends on the Ra, if it is low then properties 

such as corrosion resistance, fatigue resistance and ther-
mal resistance enhances. Because of these reasons, nowa-
days metal cutting industries focus on improving Ra, but 
machining of 15-5 PH SS develops more adhesion wear 
and poor surface finish [2]. Hence, usage of cutting fluid 
is mandatory to reduce the higher cutting temperatures 
while machining 15-5 PH SS. Cutting fluids provide lubrica-
tion effect at the primary and secondary heat generation 
sources at the cutting zone which leads to an improve-
ment in the machinability of difficult to cut materials by 
reducing cutting region temperature. Various cooling 
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techniques have been developed in order to control the 
cutting region temperature and overall efficiency incre-
ments in the machining processes such as flood cooling, 
air/gas/vapour, MQL, cryogenic cooling and high pressure 
cooling [3]. Among all, the most prominent system is the 
use of flood cooling but an issue with flood cooling is that 
it takes time to cool the real cutting area due to the failure 
of infiltration of coolant between the chip-tool interface 
causes reduction in tool life and poor surface finish [4]. One 
more issue with flood cooling is that it damages the envi-
ronment and health of an operator in the metal cutting 
industry [5]. Attempts have been done for environmental 
protection by replacing the flood cooling technique with 
MQL cooling technique. In MQL, small quantity lubricant 
is atomized by a certain high pressure gas and jetted to 
the machining area, cooling effects are mainly achieved 
by the high pressure gas [6]. MQL is a green machining 
technology and use of this reduces the cost of cutting fluid 
consumption. Environmental pollution and handling cost 
can be further reduced by using vegetable oil as cutting 
fluid [7]. Khan and Dhar [8] investigated about vegetable 
oils that this can be used in the same operations as mineral 
based, or petroleum-based, fluids. Sharma and Sidhu [7] 
used vegetable oil as coolant while turning of AISI D2 steel 
under MQL cooling environment. They found a substantial 
improvement in the turning process performance char-
acteristics in MQL condition due to the significant reduc-
tion of machining zone temperature when compared dry 
machining condition. Sivaiah and Chakradhar [9–11] per-
formed turning experiments on 17-4 PH SS under MQL, 
wet and dry machining environments. They found a sig-
nificant reduction in Ra, Tw under MQL environment over 
the wet and dry machining environments. They claimed 
that beneficial results in MQL are due to the substantial 
control of adhesion wear on the cutting tool.

For developing a mathematical model, it is very much 
necessary to perform experiments and get the response 
data which is a function of spindle speed, feed rate, depth 
of cut and MQL flow rate. Nowadays design of experiments 
(DOE) is a quite extensively used in machinability studies. 
Statistical DOE is the process of planning experiments in 
order to analyze the appropriate data by statistical meth-
ods which give an objective and valid conclusion. Never-
theless, widely used DOE are full factorial design, Taguchi, 
RSM and one factor at a time approach [12]. Thiele and 
Melkote [13] performed finish hard turning operation 
on AISI H13 steel by using 4-factor and 2-level fractional 
factorial design. Arbizu and Perez [14] developed the 
prediction model for surface roughness by using RSM 
for determining the surface quality in the turning pro-
cess. Choudhury and Baradie [15] performed turning of 
high strength tool and used 2- factor and 3- level factorial 
design to estimate the Ra using RSM. Sarikaya and Gullu 

[16] performed experiments on turning of AISI 1050 steel 
using RSM design by considering process parameters 
namely v, f, d and Q respectively and studied the differ-
ent surface quality characteristics. From the results, they 
claimed that MQL is one of the best machining technique 
to improve product quality. In another work, they found 
a better result in terms of Tw and Ra in MQL cooling con-
dition while machining Haynes 25 super alloy compared 
to dry and wet machining respectively [17]. Gupta et al. 
[18] considered v, f and side cutting edge angle as con-
trollable process parameters for investigating the differ-
ent turning performance characteristics while machin-
ing of titanium alloy (Grade-II) using RSM under the MQL 
environment. From confirmation test results, they found 
that RSM developed mathematical equations predicted 
the turning performance characteristics very close to the 
experimental results within the given range. Few research-
ers worked on 15-5 PH SS in metal removing processes as 
follows. Palanisamy and Senthil [19] worked on turning 
of laser surface treated 15-5 PH SS under the dry environ-
ment and found beneficial performance results when com-
pared to without treated 15-5 PH SS material. Similarly, 
Junior and Diniz have studied the machinability indexes 
in milling process while machining of 15-5 PH SS material 
[2]. Yıldırım et al. [20] performed milling experiments on 
Waspaloy by considering cutting oil type, fluid flow rate, 
milling method, spray distance and nozzle type as pro-
cess parameters whereas tool life and cutting forces are 
taken as responses. In a while, modelling and optimiza-
tion studies have been carried out and validated through 
confirmation tests respectively. Gupta et al. [21] observed 
improved turning performance with Ranque–Hilsch vor-
tex tube nitrogen minimum quantity lubrication when 
compared to dry cutting, nitrogen cooling and nitrogen 
minimum quantity lubrication respectively during turning 
of Al 7075-T6 alloy. Sarikaya and Gullu [22] applied Taguchi 
based Gray relational analysis and determined the opti-
mum cutting conditions in terms of the type of coolant 
and MQL coolant flow rate and cutting velocity while turn-
ing of Haynes 25 superalloy. Further, the effect of these 
variables on tool wear and surface roughness has been 
studied using 3D surface plots. Sivaiah and Chakradhar 
[23] conducted experiments based on the L20 RSM based 
CCD design and developed mathematical models for sur-
face roughness, tool wear and MRR while turning of 17-4 
PH SS material under cryogenic cooling condition. Confor-
mation experimental results showed good agreement with 
predicted results. In the literature, few studies have been 
carried out to select the optimum process parameters and 
cooling type during turning of PH SS grade material under 
different sustainable machining techniques [24–30]. Sam-
paio et al. [31] performed comparative studies in turning 
of SAE1045 steel under dry and MQL cutting condition 
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respectively. From the study, it was found that abrasive 
wear as prominent wear mechanism under both cutting 
conditions. Further, observed a significant reduction in 
cutting force, tool wear and white layer depth in MQL 
over dry cutting respectively. Tamang et al. [32] beneficial 
results were observed with MQL cutting condition due to 
good lubrication effect over dry condition while turning 
of Inconel 825 material. Subsequently, optimum process 
parameters were determined using a genetic algorithm to 
solve multi objective problem.

It is clear from the literature study that statistical tech-
nique such as RSM is very much effective for cost-effective 
research to model any manufacturing process. 15-5 PH 
SS has many industrial applications; hence, an extensive 
experimental study was carried out on it. In this study, veg-
etable oil has been taken as MQL coolant to completely 
overcome the problems which come from harmful min-
eral and petroleum-based coolants. From the literature 
study, it was found that no attempt was done on math-
ematical model development and analyzes of machin-
ing parameters and responses while turning of 15-5 PH 
SS with tungsten carbide (WC) tool under the MQL cool-
ing environment using RSM. Development of predictive 
mathematical models in turning of 15-5 PH SS under MQL 
cooling conditions will helpful for cost-effective research 
in metal cutting industries. Hence, in the present work, 
this attempt is fulfilled. In this reported work, machining 
parameters such as spindle speed, feed rate, depth of cut, 
and MQL flow rate were considered as independent vari-
ables and effect of these machining parameters on Ra, MRR 
and Tw have been investigated further using RSM analysis.

2 � Materials and methods

KIRLOSKAR lathe has been used to perform the turning 
experiments on 15-5 PH SS round bars with 30 mm diam-
eter and 150 mm length under MQL cooling environ-
ments. The chemical composition of the workpiece is as 
follows: Fe-75%, Cr-14.48%, Ni-4.5%, Cu-3.5%, Mn ≤ 1%, 
Si ≤ 1%, Nb + Ta-0.3%, C ≤ 0.07%, P ≤ 0.04%, S ≤ 0.03%. 
Uncoated tungsten carbide (SNMG 120408MP) KC5010 
of Kennametal made were fixed in a tool holder of PSBNR 

2020K12. The controllable process parameters and their 
levels considered for the present study are shown in 
Table  1. Working insert tool geometry is as follows: 
inclination angle: − 6°, rake angle: − 6°, clearance angle: 
6°, Nose radius: 0.8 mm, major cutting edge angle: 75. 
Pilot experiments were performed for fixing the ranges 
for each controllable process parameter. To reduce the 
test quantities and to maximize the quality of results, 
RSM experimental design is one of the efficient designs 
[12]. For experimental investigation and developing the 
predictive models for responses under the MQL envi-
ronment, 30 experiments were conducted according to 
the RSM based CCD and results were shown in Table 2. 
CCD is the best suited for second order model to obtain 
the entire area of interest in the cubic space [12]. In the 
present work, RSM analysis was carried out in Design 
Expert 10.0 Software. Second order polynomial regres-
sion model called quadratic model has been used to pre-
dict the response models for Ra, Tw and MRR respectively 
under the MQL environment. DROPCO made MQL setup 
has been used in the present study and MQL mist supply 
at the machining zone is shown Fig. 1. Emulsion-based 
coolant is mixed in the water in the ratio of 1:20 and 
mixed is used as a MQL coolant. MQL is supplied with 
a compressed air pressure of 4 bars to obtain the mist.

2.1 � Equipments used and it measurement 
procedure for output responses

Mitutoyo surftest, SJ-301 model was used to measure 
the Ra of the machined surfaces. Five Ra measurements 
were taken on each machined sample and average was 
taken as actual Ra value. Zeiss make optical microscope 
has been used for measuring tool flank wear. Constant 
machining time considered for the tool wear investiga-
tion is 4 min. The MRR values were calculated by using 
the Eq.  (1), 4  min machining time was considered to 
calculate MRR. Workpiece material weight before and 
after machining was measured with the help of ‘Con-
tech’ made ‘CA 3102’ model digital weighing scale with 
a maximum weight capacity of 3.2 kg and accuracy of 
0.01 g.

(1)MRR (g∕min) =
(

Wb−Wf

)

∕t

Table 1   Machining parameters 
and their levels

Parameters Units Low level (− 1) Medium level (0) High level (+ 1)

Cutting speed (A) rpm 315 545 775
Feed rate (B) mm/rev 0.048 0.0955 0.143
Depth of cut (C) mm 0.2 0.4 0.6
MQL flow rate (D) ml/h 50 75 100
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where Wb Workpiece weight before machining (g); Wf 
Workpiece weight after 4 min machining (g); t Machining 
time (min).

3 � Result and discussion

Quadratic models for Ra, Tw and MRR were established 
by using the Design Expert software. For the developed 
model, adequacy and significant tests have been per-
formed for each response. The model adequacy checks 
include significant on the model coefficient test, signifi-
cant of the regression mode test, lack of fit test, coeffi-
cients of determinations (R2) and examination of residuals 
[33]. ANOVA results of each response have been used to 
analyze the adequacy tests.

Table 2   RSM L30 design matrix 
layout and experimental 
results

S. no Machining parameters Responses

Cutting 
speed (rpm)

Feed rate 
(mm/rev)

Depth of 
cut (mm)

MQL flow 
rate (ml/h)

Ra (µm) MRR (g/min) Tw (mm)

1 315 0.048 0.2 50 0.7 4.63 0.73
2 775 0.048 0.2 50 0.24 7.38 0.78
3 315 0.143 0.2 50 1.19 5.79 0.81
4 775 0.143 0.2 50 0.78 8.11 0.82
5 315 0.048 0.6 50 1.39 15.7 1.26
6 775 0.048 0.6 50 1.02 16.81 1.32
7 315 0.143 0.6 50 1.72 16.1 1.29
8 775 0.143 0.6 50 1.25 18.71 1.4
9 315 0.048 0.2 100 0.63 8.87 0.66
10 775 0.048 0.2 100 0.18 9.08 0.74
11 315 0.143 0.2 100 1.11 8.92 0.78
12 775 0.143 0.2 100 0.6 9.38 0.79
13 315 0.048 0.6 100 1.3 16.1 1.21
14 775 0.048 0.6 100 0.97 17.2 1.3
15 315 0.143 0.6 100 1.66 16.5 1.26
16 775 0.143 0.6 100 1.14 19.2 1.37
17 315 0.0955 0.4 75 1.31 10.69 0.81
18 775 0.0955 0.4 75 0.99 13.19 0.95
19 545 0.048 0.4 75 1.13 11.21 0.85
20 545 0.143 0.4 75 1.2 13.29 0.98
21 545 0.0955 0.2 75 0.65 4.63 0.73
22 545 0.0955 0.6 75 1.23 17.01 1.3
23 545 0.0955 0.4 50 1.21 11.21 0.85
24 545 0.0955 0.4 100 1.09 13.29 0.98
25 545 0.0955 0.4 75 1.21 11.19 0.82
26 545 0.0955 0.4 75 1.1 11.99 0.9
27 545 0.0955 0.4 75 1.13 13.15 0.92
28 545 0.0955 0.4 75 1.11 13.26 0.97
29 545 0.0955 0.4 75 1.12 11.88 0.87
30 545 0.0955 0.4 75 1.13 13.2 0.96

Fig. 1   MQL machining zone
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3.1 � Analysis of surface roughness

Tables 3 and 4 respectively show the before and after 
backward elimination of ANOVA tables for a quadratic 
model for Ra. The p value for the model is lower than 0.05 

(i.e. α = 0.05 or 95% confidence) therefore model is statisti-
cally significant. Desired ‘lack of fit’ should be nonsignifi-
cant. From Table 3, the model is statistically significant and 
‘lack of fit’ is nonsignificant. From Table 3, factor A, factor 
B, factor C, factor D, the interaction effect of factor B with 

Table 3   ANOVA table for Ra (before elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 3.37 14 0.24 54.57 < 0.0001 (significant)
A 0.82 1 0.82 185.83 < 0.0001
B 0.53 1 0.53 120.33 < 0.0001
C 1.74 1 1.74 395.21 < 0.0001
D 0.037 1 0.037 8.47 0.0108
AB 5.625E−003 1 5.625E−003 1.28 0.2764
AC 1.225E−003 1 1.225E−003 0.28 0.6058
AD 6.250E−004 1 6.250E−004 0.14 0.7118
BC 0.044 1 0.044 10.00 0.0064
BD 1.600E−003 1 1.600E−003 0.36 0.5559
CD 4.000E−004 1 4.000E−004 0.091 0.7674
A2 4.486E−004 1 4.486E−004 0.10 0.7541
B2 2.054E−003 1 2.054E−003 0.47 0.5052
C2 0.10 1 0.10 22.77 0.0002
D2 4.486E−004 1 4.486E−004 0.10 0.7541
Residual 0.066 15 4.408E−003
Lack of fit 0.058 10 5.839E−003 3.78 0.0778 (not significant)
Pure error 7.733E−003 5 1.547E−003
Cor. total 3.43 29
Standard deviation = 0.066 R-squared = 0.9807
Mean = 1.05 Adj R-squared = 0.9628
Coefficient of variation % = 6.33 Pred R-squared = 0.9135
Predicated residual error of sum of squares (PRESS) = 0.30 Adeq. precision = 31.595

Table 4   ANOVA table for Ra (after backward elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 3.35 6 0.56 156.38 < 0.0001 (significant)
A 0.82 1 0.82 229.32 < 0.0001
B 0.53 1 0.53 148.49 < 0.0001
C 1.74 1 1.74 487.70 < 0.0001
D 0.037 1 0.037 10.46 0.0037
BC 0.044 1 0.044 12.34 0.0019
C2 0.18 1 0.18 50.00 < 0.0001
Residual 0.082 23 3.572E−003
Lack of fit 0.074 18 4.135E−003 2.67 0.1402 (not significant)
Pure error 7.733E−003 5 1.547E−003
Cor. total 3.43 29
Standard deviation = 0.060 R-squared = 0.9761
Mean = 1.05 Adj R-squared = 0.9698
Coefficient of variation % = 5.69 Pred R-squared = 0.9616
Predicated residual error of sum of squares (PRESS) = 0.13 Adeq. precision = 51.378
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factor C and second order term of factor C are identified 
as the significant terms at 95% confidence interval. To fit 
the quadratic model for Ra, in Table 3, appropriate non-
significant terms (p > 0.05) were eliminated by backward 
elimination process and the ANOVA results for the reduced 
model were represented in Table  4. Now the reduced 
model is significant (p < 0.05) and ‘lack of fit’ is nonsignifi-
cant. In Table 4, the value of R2 and adjusted R2 97.61% 
and 96.98% respectively are very close to each other which 
mean the regression model explained a close relationship 
between the factors (independent) and response Ra. When 
R2 approaches unity, the response model fits the actual 
data because of the difference between the predicted and 
actual values of response become small. Figure 2 shows 
that errors are normally distributed because of errors are 
structured around a straight line. Adeq-precision measures 
the signal-to-noise ratio. A ratio greater than 4 is desir-
able means higher signal. Equations (2) and (3) indicate 
the reduced final predicted Ra in terms of actual and coded 
factors respectively.

In coded terms

In actual factors

The estimated response surface for Ra in relation to 
the design parameters of ‘f ’ and ‘d’ is shown in Fig. 3. It 
seen from Fig. 3 that Ra increases with increase in the ‘f ’ 

(2)
Ra = 1.14− 0.21 ∗ A + 0.17 ∗ B + 0.31 ∗ C

− 0.046 ∗ D −0.053 ∗ B ∗ C − 0.16 ∗ C2

(3)

Ra = − 0.022 − 9.275 ∗ 10−4 ∗ v + 5.824 ∗ f

+ 5.233 ∗ d − 1.822 ∗ 10−3 ∗ Q − 5.526 ∗ f ∗ d − 3.937 ∗ d2

and ‘d’ respectively. This is due to the more tool wear at 
the higher ‘f ’ and ‘d’ cutting conditions (Refer Fig. 12). 
Figure  3 shows the combination of lowers value of f 
(0.048 mm/rev) and d (0.2 mm) generates low Ra value.

The interaction effect of ‘d’ and ‘Q’ on estimated 
response surface for Ra is shown in Fig. 4. From Fig. 4, it 
was perceived that Ra increases with a rise in ‘d’ whereas 
it decreases with the rise in ‘Q’. This is because as the ‘Q’ 
increase the friction at the cutting zone reduces, causes 
low Tw resulting in few tool marks and control of material 
side flow from the tool. Figure 5 shows the SEM images 
obtained at the given condition. It is clear from Fig. 4 
that the best surface finish is obtainable at the low levels 
of ‘d’ (0.2 mm) and at a high level of ‘Q’ (100 ml/h). So, a 
higher level of ‘Q’ should be used for better obtaining 
low Ra. In the literature, observed Sarikaya and Gullu [16] 
similar findings while turning of AISI 1050 material using 
RSM.

Fig. 2   Normal probability plot of the residuals for Ra

Fig. 3   Response surface plot of Ra according to change of feed rate 
and depth of cut

Fig. 4   Response surface plot of Ra according to change of depth of 
cut and MQL flow rate
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3.2 � Analysis of material removal rate

Table 5 represents the ANOVA results for MRR. From Table 5, 
the quadratic model is significant and ‘lack of fit’ is nonsig-
nificant which are desired. However, few model terms are 
insignificant (p > 0.05) and those terms were eliminated by 
back elimination method. From Table 5, Factor A (v), factor 
B (f), factor C (d), factor D (Q) and interaction effect of factor 
C (d) with factor D (d) were recognized as significant terms. 
Table 6 shows the ANOVA results for the reduced model. 
From Table 6, it was found that the model is still significant 
and ‘lack of fit’ is nonsignificant. The respective value of R2 
and adjusted R2 are 96.01% and 95.18% comparatively close. 
Adeq-Precision is greater than 4. Figure 6 shows that the 
residuals are falling on a straight line, which means that the 
errors are normally distributed. The final estimated regres-
sion model for MRR is indicated in Eqs. (4) and (5) in the 
coded and actual factors respectively.

In coded terms

(4)
MRR = 12.26 + 0.88 ∗ A + 0.50 ∗ B

+ 4.81 ∗ C + 0.78 ∗ D − 0.54 ∗ C ∗ D

In actual factors

The interaction effect of ‘f’ and ‘d’ on MRR is shown in 
Fig. 7. Figure 7 shows that MRR increases with an increase 
in ‘f’ and ‘d’ respectively. This effect is due to the rise in the 
rate of plastic deformation at the higher cutting condi-
tions. It is clear from Fig. 7 that the higher MRR is obtain-
able at the high ‘f’ (0.143 mm/rev) and high ‘d’ (0.6 mm). 
Figure  8 shows the interaction effect of ‘d’ and ‘Q’ on 
MRR. From Fig. 8, it is noticed that as ‘d’ and ‘Q’ increases 
then MRR also increases. This is because of less tool wear 
obtained at the high flow rates. It was also observed 
from Fig. 8 that at maximum levels of ‘d’ (0.6 mm) and 
‘Q’(100 ml/h) could cause for higher MRR.

3.3 � Analysis of tool flank wear

Table 7 represents the ANOVA results for Tw before elimi-
nation of nonsignificant terms. The model terms like A, B, 

(5)

MRR = −6.039 + 3.806 ∗ 10−3 ∗ v + 10.549 ∗ f

+ 32.15764 ∗ d + 0.074 ∗ Q − 0.108 ∗ d ∗ Q

Fig. 5   SEM images of machined surfaces at a v = 315 rpm, f = 0.048 mm/rev, d = 0.2 mm and Q = 50 ml/h, b v = 545 rpm, f = 0.096 mm/rev, 
d = 0.4 mm and Q = 75 ml/h, c v = 775 rpm, f = 0.096 mm/rev, d = 0.4 mm and Q = 75 ml/h
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C and C2 are significant. To fit the quadratic model for Tw 
appropriate, the nonsignificant terms are eliminated by a 
backward elimination process. The ANOVA results of the 
reduced quadratic model for Tw are shown in Table 8. The 
reduced model results indicate that the model is signifi-
cant (p < 0.05) and ‘lack of fit’ is nonsignificant (p > 0.05). 

The R2 and adjusted R2 values 97.15% and 96.70% respec-
tively are close to each other. By seeing Fig.  9, it was 
observed that errors are normally distributed due to resid-
uals are falling on a straight line. Equations (6) and (7) indi-
cates the final predictive models for Tw in terms of coded 
and actual factors.

Table 5   ANOVA table for MRR (before elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 455.69 14 32.55 37.19 < 0.0001 (significant)
A 13.80 1 13.80 15.77 0.0012
B 4.52 1 4.52 5.16 0.0382
C 416.07 1 416.07 475.37 < 0.0001
D 11.05 1 11.05 12.62 0.0029
AB 0.53 1 0.53 0.61 0.4474
AC 0.20 1 0.20 0.23 0.6412
AD 1.17 1 1.17 1.33 0.2664
BC 0.38 1 0.38 0.43 0.5209
BD 0.13 1 0.13 0.15 0.7058
CD 4.69 1 4.69 5.36 0.0352
A2 0.095 1 0.095 0.11 0.7468
B2 0.65 1 0.65 0.74 0.4021
C2 2.24 1 2.24 2.55 0.1309
D2 0.65 1 0.65 0.74 0.4021
Residual 13.13 15 0.88
Lack of fit 9.30 10 0.93 1.21 0.4403 (not significant)
Pure error 3.83 5 0.77
Cor. total 468.82 29
Standard deviation = 0.94 R-squared = 0.9720
Mean = 12.26 Adj R-squared = 0.9459
Coefficient of variation % = 7.63 Pred R-squared = 0.8905
Predicated residual error of sum of squares (PRESS) = 51.33 Adeq. precision = 21.422

Table 6   ANOVA table for MRR (after backward elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 450.12 5 90.02 115.53 < 0.0001 (significant)
A 13.80 1 13.80 17.71 0.0003
B 4.52 1 4.52 5.80 0.0241
C 416.07 1 416.07 533.96 < 0.0001
D 11.05 1 11.05 14.17 0.0010
CD 4.69 1 4.69 6.02 0.0218
Residual 18.70 24 0.78
Lack of fit 14.87 19 0.78 1.02 0.5445 (not significant)
Pure error 3.83 5 0.77
Cor. total 468.82 29
Standard deviation = 0.88 R-squared = 0.9601
Mean = 12.26 Adj R-squared = 0.9518
Coefficient of variation % = 7.20 Pred R-squared = 0.9420
Predicated residual error of sum of squares (PRESS) = 27.20 Adeq. precision = 35.301
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In coded terms

In actual factors

The influence of interaction in terms of ‘f ’ and ‘d’ on Tw 
is shown in Fig. 10. Figure 10 reveals that the Tw increases 
with an increase in the ‘f’ and ‘d’ values. This result in rise 
of machining zone temperatures at the higher values of 

(6)
Tw = 0.91 + 0.037 ∗ A + 0.036 ∗ B + 0.27 ∗ C + 0.13 ∗ C2

(7)
Tw = 0.706 + 1.594 ∗ 10−4 ∗ v

+ 0.760 ∗ f− 1.158 ∗ d + 3.138 ∗ d2

‘f’ and ‘d’ respectively. From Fig. 10, it can be predicted 
that lower levels of ‘f’ (0.048 mm/rev) and ‘d’ (0.2 mm) 
produced low Tw.

Figure 11 shows the effect of interaction factors of 
‘d’ and ‘Q’ on Tw. It was observed that Tw increases with 
increase in ‘d’ and decreases with an increase in ‘Q’ as 
depicted in Fig. 11. From Fig. 11, As the ‘Q’ increases then 
friction at the contacting asperities reduces resulting in 
low machining zone temperature leads to low Tw. It was 
also noticed that at the low level of ‘d’ (0.2 mm) and a 
high level of ‘Q’ (100 ml/h) could produce low Tw. Fig-
ure 12 shows the SEM images of Tw at different cutting 
conditions. From Fig. 12, abrasion wear is found as lead-
ing wear mechanism due to the tool-workpiece contact 
nature and cutting forces. These findings match with the 
results in the literature [18].

4 � Conformation experiment

To validate the RSM predicted models, three confirma-
tion experiments were performed for the Ra, MRR and 
tool wear. To carry out the confirmation test, process 
parameters values were selected within the assumption 
range in the study. The predicted values were obtained 
through developed predictive models and actual val-
ues were obtained by performing the experiments 
at selected levels. Both predicted and actual results 
were compared and the percentage errors were calcu-
lated. Confirmation test results are listed in Table 9. It 
is observed that the percentage errors are very small 
between the predicted and experimental values for 
all the responses in the study. In the literature, similar 
results were found [34, 35].

Fig. 6   Normal probability plot of the residuals for MRR

Fig. 7   Response surface plot of MRR according to change of feed 
rate and depth of cut

Fig. 8   Response surface plot of MRR according to change of depth 
of cut and MQL flow rate
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Table 7   ANOVA table for Tw (before elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 1.49 14 0.11 44.47 < 0.0001 (significant)
A 0.024 1 0.024 10.14 0.0062
B 0.023 1 0.023 9.83 0.0068
C 1.32 1 1.32 551.88 < 0.0001
D 1.606E−003 1 1.606E−003 0.67 0.4250
AB 1.000E−004 1 1.000E−004 0.042 0.8406
AC 3.025E−003 1 3.025E−003 1.27 0.2780
AD 2.250E−004 1 2.250E−004 0.094 0.7631
BC 2.250E−004 1 2.250E−004 0.094 0.7631
BD 2.250E−004 1 2.250E−004 0.094 0.7631
CD 1.000E−004 1 1.000E−004 0.042 0.8406
A2 9.301E−004 1 9.301E−004 0.39 0.5419
B2 6.676E−004 1 6.676E−004 0.28 0.6047
C2 0.035 1 0.035 14.62 0.0017
D2 6.676E−004 1 6.676E−004 0.28 0.6047
Residual 0.036 15 2.387E−003
Lack of fit 0.020 10 1.988E−003 0.62 0.7546 (not significant)
Pure error 0.016 5 3.187E−003
Cor. total 1.52 29
Standard deviation = 0.049 R-squared = 0.9765
Mean = 0.98 Adj R-squared = 0.9545
Coefficient of variation % = 4.98 Pred R-squared = 0.9245
Predicated residual error of sum of squares (PRESS) = 0.11 Adeq. precision = 20.453

Table 8   ANOVA table for Tw (after backward elimination)

Source Sum of squares DOF Mean square F-value p value Prob. > F

Model 1.48 4 0.37 213.37 < 0.0001 (significant)
A 0.024 1 0.024 13.97 0.0010
B 0.023 1 0.023 13.55 0.0011
C 1.32 1 1.32 760.45 < 0.0001
C2 0.11 1 0.11 65.51 < 0.0001
Residual 0.043 25 1.733E−003
Lack of fit 0.027 20 1.369E−003 0.43 0.9194 (Not significant)
Pure error 0.016 5 3.187E−003
Cor. total 1.52 29
Standard deviation = 0.042 R-squared = 0.9715
Mean = 0.98 Adj R-squared = 0.9670
Coefficient of variation % = 4.25 Pred R-squared = 0.9617
Predicated residual error of sum of squares (PRESS) = 0.058 Adeq. precision = 40.408
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5 � Conclusions

•	 In MQL machining, the surface roughness increases 
with an increase in the feed rate and depth of cut 
whereas decreases with an increase in MQL flow rate. 
The MRR increases with an increase in spindle speed, 
feed rate, depth of cut and MQL flow rate respec-
tively. The tool flanks wear increases with an increase 
in the feed rate and depth of cut whereas decreases 
with increase in MQL flow rate respectively.

•	 ANOVA revealed that depth of cut is the most influen-
tial parameter on surface roughness, flank wear and 
MRR respectively. Spindle speed and feed rate also 
have a prominent effect on surface roughness.

•	 RSM developed models predicted the surface rough-
ness, flank wear and MRR values very close to the 
experimental results within the specified range in the 
work.

•	 It is recommended that while concerning environmen-
tal issues, the use of MQL with vegetable oil is much 
better than flood cooling because there is no problem 
of disposal of coolant and no recycling cost of coolants.

Fig. 9   Normal probability plot of the residuals for Tw

Fig. 10   Response surface plot of Tw according to change of feed 
rate and depth of cut

Fig. 11   Response surface plot of Tw according to change of depth 
of cut and MQL flow rate
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