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Abstract
An effective comparison among several methods for extraction of the modal parameters from the frequency response 
functions measurements is presented in this research. In particular, several curve fitting methods, which are the peak 
amplitude method, the circle fit method, the least square complex exponential method, the eigensystem realization 
algorithm method and the rational fraction polynomial method were implemented in Matlab environment and com-
pared in terms of natural frequencies, modal damping and mode shapes. Measurements were performed on a carcass 
of the gearbox in free–free condition. A hammer has been used with a periodic impulsive excitation signal. The natural 
frequencies values obtained by all methods were very similar and the differences between the results were insignificant. 
The peak amplitude and the circle fit gave good results for the damping ratios. The rational fraction polynomial method 
did the best job in detecting the damping and frequency values. The results obtained by the least square complex expo-
nential method and the eigensystem realization algorithm method were reasonable for both frequency and damping.

Keywords Eigensystem realization algorithm · Least square complex exponential · Modal analysis methods · Rational 
fraction polynomial · Implementation modal analysis by Matlab ®

List of symbols
ak  Coefficients of the numerator polynomial of 

�(j�)
A  State transition matrix characterizing the 

dynamics of the system
Ar
pq

  Modal constant for mode r
bk  Coefficients of the denominator polynomial of 

�(j�)
B  Input matrix
C  Output matrix
D  The direct input–output transmission matrix
fr  Natural frequency of mode r (Hz)
[H]  Hankel matrix
hpq(t)  Impulse response function corresponding to 

�pq(j�)
h̃pq  Vector formed by hpq(t) elements
i  Index
j�  Laplace variable
N  Number of degrees-of-freedom of the system
p  Number of measured response locations

q  Number of force input locations
t   Time
Δt  Simple time
[U]  Orthogonal (or unitary) matrix of left singular 

vectors, in the SVD technique
[V]  Orthogonal (or unitary) matrix of right singular 

vectors, in the SVD technique
x(t)  State vector
y(t)  Output vector
�pq(j�)  Receptance FRF (mm/N)
�u  Vector space unscaled eigenvector
�  Mode shape in term of physical coordinate of 

the system
�r  Damping factor of mode r
�  Phase angle (rad)
Δ�  Variation of phase angle between �i and �i+1
�r  System pole of mode r
�  Circular frequency (rad/s)
�r  Natural frequency of mode r (rad/s)
[�]  Singular value matrix
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Operators
[…]T  Transpose matrix
[…]−1  Inverse matrix
F

−1  Inverse Fourier trasformation

Abbreviations
FRF  Frequency response function
CFM  Circle fit method
ERAM  Eigensystem realization algorithm method
IRF  Impulse response function
MDOF  Multi degree of freedom
LSCEM  Least square complex exponential method
PPM  Peak amplitude or pick picking method
RFPM  Rational fraction polynomial method
SDOF  Single degree of freedom

1 Introduction

Nowadays, technologies play a great role in human life, 
advancing the ways of living and working but engineers 
still have many issues to solve in various filed of technol-
ogy. The vibration of mechanical structure remains one of 
the most studied problems due to the difficulty to com-
pletely avoid vibration in many applications.

Currently, a large number of algorithms and literature 
for curve fitting structural data is available; consequently, 
the determination of the optimal method has become dif-
ficult for each situation. Hence, the main objective of this 
paper is the comparison among several modal parameter 
extraction algorithms from response vibration measure-
ments in order to highlight not only their pros and cons. 
Moreover, this article focuses on how these methods can 
be implemented in a simple way in order to find the nat-
ural frequencies and the damping ratios to make them 
easy to use in the dynamic environment. As these authors 
are aware, in the literature the detailed explanation on 
the steps used to implement these methods or the tricks 
necessary to achieve good results are not provided. This 
mostly happens when the least square complex expo-
nential method, the eigensystem realization algorithm 
method and the rational fraction polynomial method are 
used. on the other hand, the peak amplitude and the cir-
cle fit methods are well clarified and achieved. Therefore, 
it was decided to use the latters to get initial estimation of 
the modal parameters. Furthermore, the implementation 
of these methods highly differs between authors. In this 
work, a simplified and efficient implementation on Matlab 
® is illustrated, in order to extract modal parameters. The 
basic problem in experimental modal analysis is to extract 
the natural frequency and especially the damping ratio of 
dynamical structure. With this knowledge, a theoretical 
finite element models [1] can validate and gain a better 

comprehension of corresponding structure. A further 
widely used application of these modal parameters is to 
control the health of a structure. The modal analysis meth-
ods can be separated in two leading categories which are 
the time domain and the frequency domain methods [2]; 
the earliest method works in the frequency domain and 
is classified as an SDOF algorithm such as the peak ampli-
tude method (PPM) [3] and the circle fit method (CFM) 
[4]. These methods give errors in results, particularly in 
the damping estimation, where the modes are close to 
each other and coupled. In addition, the SDOF algorithm 
should not be used when the data contains noise around 
the resonance [5]. When the MDOF algorithms operate in 
the time domain and frequency domain methods, data 
are managed by assorting the FRFs in the domain. The 
least square complex exponential method (LSCEM) is con-
sidered one of the fast time domain methods. [6, 7]. This 
method uses the FRFs as an input in spite the fact that 
it works in the time domain. The LSCEM uses the Least 
Square Method to find the modal parameters. The eigen-
system realization algorithm method (ERAM) is another 
major MDOF time domain approach [8, 9]. This method 
uses the Singular Values Decomposition of the so-called 
Hankel Matrix which is usually a matrix with a high num-
ber of rows and columns; for such a reason this algorithm 
is computationally complex [10]. One more MDOF is the 
rational fraction polynomial method (RFPM) [11]; it works 
in the frequency domain and it uses the Least Square 
technique to minimize the error function. For more infor-
mation concerning modal analysis techniques can be 
addressed in Ref [12, 13].

In the frequency domain method, the lower number of 
order is, the more accurate the results are. However, they 
have specific problems related to the fast Fourier trans-
form (FFT) analysis [14, 15], such as the leakage [16]. Fur-
thermore, the frequency domain methods determine the 
frequency response function, but this task usually requires 
the input excitation data to be detailed. In time domain, 
signals are monitored by the time domain methods using 
output responses only. Time domain methods are consid-
ered very useful for experimental tests due to this charac-
teristic. Another useful property of time domain method 
is the ability to recognize two modes when they are very 
close one to each other. In general, the time domain work 
better than the frequency domain when the damping is 
low, and the frequency domain estimators work better for 
high damping, as demonstrated in [17, 18].

It has always been a difficult task to define the poles 
of a system, including the damping and the frequency, 
from the response vibration responses. In this work, the 
carcass, one of the gear box components, was sepa-
rately considered for a better estimation of the FRFs 
[19]. The measurements were carried out after adding 
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a constrained layer to the carcass of gear box to make 
the damping degree similar to the free–free condition. 
The structure was excited by a hammer with a periodic 
impulse. The residues or the zeros of the system Fre-
quency Response Function (FRFs) can be equivalently 
determined using the periodic response. The original 
contribution of this study is related to the implemen-
tation of several methods in Maltab ® to extract their 
modal parameters in order to then compare their 
results, discuss the limits of each method and its suitable 
domain of employment. For the comparison, the follow-
ing common methods of modal analysis were used: peak 
amplitude methods (PPM), circle fit method (CFM), least 
square complex exponential method (LSCEM), eigen sys-
tem realization algorithm method (ERAM) and rational 
fraction polynomial method (RFPM). The process fol-
lowed to determine the poles is shown in the flowchart 
of Fig. 1.

2  Background and algorithms 
implementation

2.1  The peak picking method (PPM)

The PPM, sometimes referred as a peak-amplitude 
method or 3 dB method, is a single-input single output 
(SISO) and it is the simplest of the modal parameter esti-
mation methods that works in the frequency domain [20, 
21]. It consists of separating each single mode in order 
to determine their modal parameters. Thus, the natural 
frequency, damping factor and residues will be deter-
mined as follows, respectively:

(1)�r = max(FRF)

(2)�r ≅
�a − �b

2�r

(3)Ar
pq

= 2|�̃�|pq𝜔2

r
𝜁

Note that �a and �b are the frequencies on the half-
power points.

2.2  Circle fit method (CFM)

The CFM in the past was known as the Kennedy–Pancu 
method [4]; it is a single-input single output method and it 
works in the frequency domain. A detailed study has been 
established in Ref [22]. Similar to the PPM, it is designed 
to separate each single mode in the system. The concept 
of this method is to consider the FRF values in the vicin-
ity of the resonance as a circle in the Nyquist plot. In fact, 
once the natural frequency and the damping factor were 
estimated, the diameter of circle is used to estimate the 
residues. According to the algorithm, the Circle-Fit method 
can be described by the following sequences:

• Selection of points to be used.
• Circle fitting based on these points and calculation of the 

fitting quality.
• Estimation of damping ratios and natural frequencies
• Calculation of multiple damping estimates and their 

mean and scatter.
• Determination of the modal constant.

The robustness of this method has been demonstrated 
by several studies as given in Ref. [13–23].

2.3  Least Square Complex Exponential Method 
(LSCEM)

The LSCEM was introduced in 1979 [7], it is a single-input 
multi-outpout method (SIMO) and it works in the time 
domain. This method starts using the FRF receptance of a 
general MDOF system with a general viscous damping. Then, 
the impulse response function will be obtained by an inverse 
Fourier trasformation as follows:

(4)�r = max(Δ�)

(5)�r =
�2

i+1
− �2

i

2�r

(
�i+1 tan

(
�i+1
2

)
+ �i tan

(
�i
2

))

(6)Ar
pq

= 2|�̃�|pq𝜔2

r
𝜁

�pq(j�) =
2N∑
r=1

Ar
pq

j� − �r

F
−1

⟶ hij(t) =

2N∑
r=1

Ar
pq
e�r t

PPM CFM LSCEM ERAM RFPM

Fig. 1  Analysis procedure’s flowchart



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:781 | https://doi.org/10.1007/s42452-019-0806-8

For the lth sample.

Equation (7) extended to the full data set of l  samples, 
gives:

Or, in compact form:

[V ] and [C] are unknowns.
This equation can be solved by using Prony’s Method 

[24], the roots �r for an underdamped system always occur 
in complex conjugate pairs. It always exists a polynomial in 
Vr of order l  with real coefficients β, (called the Autoregres-
sive coefficients) such as the following relation is verified:

After some steps explained in detail in the Ref [8], the 
following equation will be obtained:

From Eq. (11), coefficients β will be determined by using 
the single impulse response via a Least Square Method. 
Instead of using a single impulse response function (IRF), 
LSCEM estimates coefficients β by using several IRF’s, as 
follows.

In compact form,

Coefficient � will be obtained by using pseudoinverse 
technique. Now coefficients �0, �1,… �2N−1,are known and 

(7)

hl =

2N∑
r=1

CrV
l
r
l = 0, 1… ,N − 1

with

{
Cr = Ar

pq

Vr = e�r t

(8)

⎡⎢⎢⎢⎣

1 1 1 … 1

V1 V2 V3 … V2N
⋮ ⋮ ⋮ ⋮ ⋮

Vl
1
Vl
2
Vl
3
… V2N

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

C1
C2
⋮

C2N

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

h0
h1
⋮

h2N

⎤⎥⎥⎥⎦

(9)[V ][C] =
[
h
]

(10)�0 + �1V + �2V
2 +⋯ + �lV

l = 0

(11)

⎡⎢⎢⎢⎣

h0 h1 h2 … h2N−1
h0 h1 h3 … h2N
⋮ ⋮ ⋮ ⋮ ⋮

h2N−1 h2N h2N+1 … h4N−1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�1
�2
⋮

�2N−1

⎤⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎣

h2N
h2N+1
⋮

h4N−1

⎤⎥⎥⎥⎦

(12)

⎡⎢⎢⎢⎣

h11
h12
⋮

hp

⎤⎥⎥⎥⎦
[�] = −

⎡
⎢⎢⎢⎢⎣

h̃11
h̃12
⋮

h̃p

⎤⎥⎥⎥⎥⎦

(13)[H][𝛽] =
[
h̃
]

Eq. (10) can be solved to yield the Vr roots. Then, poles �r 
can be calculated as.

The mode shapes of the system can be calculated imme-
diately by substituting [V ] in Eq. (9). The challenge of this 
method is to construct a good Hankel matrix [H] where the 
number of columns represents the number of order and the 
number of rows are arbitrary. In order to minimize the Least 
Square Error, some studies supposed to consider a high 
number of rows [21, 25]. In this study the number of rows 
will be determined by increasing the number of rows one 
at a time then the best number of rows will be found by 
observing the stabilization diagram [26]. If the stabilization 
diagram obtained was not clear enough, the range of time 
should be changed. A small diagram in Fig. 2 explains the 
procedure of the implementation in Matlab ®.

If it is not possible to obtain a clear stabilization diagram, 
the range of selected data must be changed and the same 
procedure mentioned above will be repeated. This method 
suffers when the damping is high as demonstrated in Ref 
[27].

2.4  Eigensystem realization algorithm method 
(ERAM)

The ERAM is a multi-input multi-output method (MIMO) and 
it works in the time domain [9]. It includes information not 
only from different output locations, but also from several 
input reference points on the structure. This method suc-
ceeded in dealing with the problem of missing one of the 
vibration modes from output responses, this occasionally 
happens following the application of a SIMO method. The 
Singular Values Decomposition (SVD) in this method can sig-
nificantly reduce the effect of noise [7]. The ERAM is a very 
effective method for system identification by using Hankel 
matrix; further details about this method can be found in 
Ref [13, 28].

(14)�r =
ln
(
Vr
)

Δt

Fig. 2  Steps of the LSCEM implemented in Matlab ®
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Let assume a state space dynamic system as follows:

Let consider an impulse force at t = 0, and the initial condi-
tion equal to zero:

Hence, by iterating the system of Eq. (11) in time, the fol-
lowing parameters will be obtained.

where y(0), y(1), y(2)… , y(t) are the so called Markov 
parameters.

By constructing the Hankel matrix H0 of the Markov 
parameters as:

And by apply the SVD to the matrix H0

And by shifting the Hankel matrix as follows:

After some manipulations [13], the identified discrete 
state-space Â, B̂ and Ĉ can be written

(15)x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

⎧
⎪⎨⎪⎩

u(0) = 1;

u(t) = 0, t > 0

D = 0

x(0) = 0; → y(0) = 0;

x(1) = Ax(0) + Bu(0) = B → y(1) = CB;

x(2) = AB; → y(2) = CAB;

(16)H0
⏟⏟⏟
(pxq)

=

⎡⎢⎢⎢⎣

y(0) y(1) … y(p)

y(1) y(2) … y(p + 1)

⋮ ⋮ ⋱ ⋮

y(q) y(q + 1) … y(p + q − 1)

⎤⎥⎥⎥⎦

(17)

⎡⎢⎢⎢⎣
H(0)

⏟⏟⏟
pxq

⎤
⎥⎥⎥⎦
= [U]
⏟⏟⏟
px2N

[�]
⏟⏟⏟
2Nx2N

[V]T

⏟⏟⏟
2Nxq

(18)H1
⏟⏟⏟
(pxq)

=

⎡⎢⎢⎢⎣

y(1) y(2) … y(p + 1)

y(2) y(3) … y(p + 2)

⋮ ⋮ ⋱ ⋮

y(q + 1) y(q + 2) … y(p + q + 1)

⎤⎥⎥⎥⎦

(19)
[
Â
]
=
[
�2N

]− 1

2

[
U2N

]T
[H(1)]

[
V2N

][
�2N

]− 1

2

(20)
[
B̂
]
=
[
�2N

]1∕2[
V2N

]T [
Eq
]

(21)
[
Ĉ
]
=
[
Ep
]T [

U2N

][
�2N

] 1

2

In modal analysis, the goal is to determine matrices Â and 
Ĉ , where the eigenvalues of Â consist of the complex con-
jugates poles of the system. From each pole the natural fre-
quency and the damping ratio can be obtained. The mode 
shapes are related to matrix Ĉ . By using matrix Â and by solv-
ing the Eigen-problem, the mode shapes can be determined 
in terms of the physical coordinates of system:

The transformation given by Eq. (11) must be used:

� =
{
�1,�2,… ,�2N

}
 is the eigenvalues and 

[
�u

]
 is the 

eigenvector. The poles will be determined by the following 
formulae:

The ERAM was implemented in Matlab ® by fixing a num-
ber of order N and generating the matrix 

[
Â
]
 by iteration. For 

each iteration, matrix 
[
Â
]
 was generated as a square matrix 

(1 × 1, 2 × 2,…,N × N). Then it was possible to extract the 
eigenvalues and the eigenvector. Furthermore, the poles 
were calculated by applying Eq. (24) and the physical mode 
shapes by using Eq.  (20). Thus, the poles and the mode 
shapes were determined. The final step consists of plotting 
the stabilization diagram from which the stable poles are 
extracted. Figure 3 represents the main steps used to imple-
ment this method in Matlab ®.

2.5  Rational fraction polynomial method (RFPM)

This method works in the Frequency Domain [11], and it 
is a single-input single-output method (SISO), based on a 
multi degrees of freedom approach. The Rational Polynomial 

(22)
[
Â
][
𝜓u

]
= 𝛬

[
𝜓u

]

(23)
�

⏟⏟⏟
px1

= [C]
[
�u

]

(24)�r =
ln
(
�r

)
Δt

Fig. 3  Steps of the ERAM implemented in Matlab ®
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Method (RFPM) is a special version of the general Curve-Fit-
ting method, but it is based on the FRF which is expressed 
in the Rational fraction form [13]. Thus, the FRF requires an 
expression of the frequency response function as the ratio of 
two polynomials, with the roots of numerator permitting to 
determine the modal constant while the roots of the denom-
inator yielding the poles (frequency, damping). Generally, 
the numerator and the denominator orders are independ-
ent one to each other. The denominator is considered as the 
characteristic polynomial of the system. By Curve-Fitting the 
FRF against the analytical form in Eq. (25), and then solving 
the roots of the numerator and the characteristic polynomi-
als, the zeros and poles of the FRF can be determined.

The curve fitting in the RFPM consists of determin-
ing the coefficients ak (with k = 0,… 2N − 1) and 
bk (with k = 0,… 2N) , in such a way the error between the 
analytical formulae (25) and the FRF is minimized over a 
chosen range; more information is given in Ref [29].

The RFPM was implemented in Matlab ® by firstly select-
ing a small range of frequency and by “invfreqs” command 
the coefficients ak and bk were determined. Then, the poles 
and the residues were determined by using “residue” com-
mand. More information about “invfreqs” and “residue” 
command are included in Ref [30]. If it is not possible to 
obtain a clear stabilization diagram, the range of the fre-
quency will be changed. Figure 4 describes the important 
steps that were used to implement the RFPM.

This method requires more time with respect to other 
methods to achieve a good estimation for the frequency 
and damping ratio.

(25)�(j�) =

∑2N−1

k=0
ak(j�)

k

∑2N

k=0
bk(j�)

k

3  Measurement and analysis

Measurements were carried out on an aluminum carcass of 
gearbox with dimension of about 150 mm by 100 mm by 
40 mm with carcass’s thickness of 5 mm. The carcass was 
supported by soft bungee cords fixed on a frame, in order 
to consider its dynamic behavior as a free–free condition. 
Figure 5 shows the set-up of the test measurement used in 
this study. As it can be seen, the periodic impulsive excita-
tion is generated by using a hammer (PCB 068C04), while 
the response is measured by using PCB piezoelectric accel-
erometer (freq. range 1–10000 Hz). One accelerometer was 
positioned, and the system was excited by a hammer in 
34 points. In particular, the response point was remained 
fixed during the tests, while the excitation changed from 
one measurement point to another in order to get the FRFs 
for all the considered points [31, 32]. The measured data 
were recorded using software LMS Test-Lab ® [33] and the 
post processing was performed in Matlab ® environment. 
The signals were acquired by using Nyquist frequency of 
12,800 Hz and frequency resolution Δf = 1.5625Hz com-
promising with the type of carcass gear box and the kind 

Fig. 4  Steps of the RFPM implemented in Matlab ®

Fig. 5  Measurement set-up

Fig. 6  Amplitude of all the measured frequency response functions
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of constraint condition. An exponential window for the 
force signals is used in order to decrease the leakage. The 
input autopower-spectra, output power-spectra and cross-
power-spectra are estimated and reserved for each meas-
urement location. In addition, the FRFs are determined 
by using Hv estimator [33]. The coherence function is con-
trolled as an on-line check of data quality. The periodic 
response was calculated by using the synchronous averag-
ing method as reported in [19] with the aim of obtaining a 
good estimation of the frequency response function.

In detail, 34 periodic responses were selected to have 
a better estimation of the modal parameters, i.e. natural 
frequencies and damping ratios. The method used to make 
the EMA is the traditional procedure in which both excita-
tion and response are measured together to obtain the 
accelerance. Figure 6 shows all the FRFs measured, in total 
34 functions are plotted.

Five methods used for the estimation of modal param-
eters are shown in this work. At the beginning, the Peak 
Amplitude and Circle Fit were the simplest methods to 
be applied to calculate the first estimation as their imple-
mentation is easier with respect to the other methods. 
Once the results were obtained by these two methods, 
they were compared with the results of several methods 
that, according to literature, are considered more accurate; 
these methods are the LSCEM, ERAM, and RFPM.

A stabilization diagram was constructed for the last 
three methods to identify the physical modes from the 
computational modes. Normally, a tolerance, in percent-
age is given for the stability of each modal parameters.

4  Results and discussion

The natural frequencies and damping ratios were 
extracted for the first 5 modes by the methods described 
in Sect. 2, in the following manner. In the LSCEM, ERAM 
and RFPM, all modes fulfilling the stabilization criteria with 
tolerance 1% for the natural frequencies, 5% for the damp-
ing ratios and the MAC [34] values greater than 90%.

In the LSCEM the stable poles that have stability in 
frequency and damping in the stabilization diagram 
were plotted. The LSCEM stability diagram shows that 
the vectors are not engaged, because the non- physical 

Table 1  Estimated 
natural frequencies, and 
corresponding normalized 
random errors, er, for the 5 
methods

PPM CFM LSCEM ERAM RFPM

fr[Hz] fr[Hz] fr[Hz] er
(
fr

)
% fr[Hz] er

(
fr

)
% fr[Hz] er

(
fr

)
%

Mode 1 1709 1707 1706 0.005 1706 0.002 1705 0.001
Mode 2 2125 2124 2125 0.067 2118 0.031 2123 0.021
Mode 3 3415 3414 3340 0.089 3413 0.013 3413 0.034
Mode 4 3964 3963 3962 0.076 3964 0.008 3967 0.001
Mode 5 4343 4343 4340 0.003 4341 0.023 4340 0.004

Table 2  Estimated damping 
ratios, and corresponding 
normalized random errors, er, 
for the 5 methods

PPM CFM LSCEM ERAM RFPM

�r% �r% �r% er
(
�r
)
% �r% er

(
�r
)
% �r% er

(
�r
)
%

Mode 1 0.27 0.23 0.29 0.08 0.28 0.616 0.29 0.042
Mode 2 0.55 0.51 0.53 0.069 0.51 0.125 0.65 0.029
Mode 3 0.44 0.53 0.45 0.073 0.3 0.190 0.25 0.131
Mode 4 0.45 0.47 0.53 0.04 0.54 0.132 0.47 0.010
Mode 5 0.74 0.74 0.72 0.029 0.76 0.012 0.84 0.008

Fig. 7  Stabilization diagram extracted by LSCE
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poles appear with the increase of the number of orders. 
Consequently, it will be hard to reach a good estimation 
of the mode shapes. In the ERAM the stability of vector 
and the stable poles were schemed. In order to compare 
the mode shapes between the iteration, the Modal Assur-
ance Criterion (MAC) was used to detect the stability of 
vectors. When the RFPM method is applied, the stability 
of the vector can be rarely found because as the number 
of orders increases the ill conditioning problem starts to 
appear. Therefore, its plot was eliminated in the stabiliza-
tion diagram of the RFPM.

The results are summarized in Tables 1 and 2, where the 
average value of poles and the corresponding scatter are 
listed and schemed in the Figs. 10 and 11. The scatter was 
calculated as the normalized random error er (standard 
deviation divided by the average value) for LSCEM, ERAM 
and RFPM. It is important to mention here that the mini-
mum number of pole estimates of each mode was 12.

The estimation of the stable poles can be seen in 
Figs. 7, 8 and 9. Figures 7 and 8 show the stabilization 
diagrams extracted by LSCEM and ERAM, respectively, 
with a number of order 80. In both cases, the presence of 
5 physical modes can be detected in the frequency range 
[0 4500] Hz. It can be noticed that the stable poles start 
to appear when the number of order surpasses 26 for the 
LSCEM (Fig. 7). In Fig. 9 all modes were isolated, and for 
each mode a stabilization diagram was established with 
a number of order 20. When the frequency bandwidth is 
narrowed around the Peaks, these modes immediately 
appear when the number of order exceed one, and their 
estimation becomes more accurate.

It is evident from Table 1 that the natural frequen-
cies of all modes determined by these methods were 
very similar and their errors er were very low; thus, the 
difference between the method results is insignificant. 
Regarding the damping factor, it can be noted in Table 2 
that the results were very distant, and it is difficult to 
detect a good damping estimation. The comparison 
between the PPM and CFM and the other methods in 
Table 2 shows that their results were slightly different, 
while some similarity can be noticed on several modes. 
It can be deduced that although the PPM and CFM are 
generally considered simple and very basic as described 
in Sect. 2, they managed to give good results in compari-
son to the other methods. Therefore, these two methods 
can be very useful as a first estimation because they pro-
vide good results for the major part of the modes.

In this study, the error values er is an indicator of how 
good a method works. When the error is low, the stability 
of the poles is high in the stabilization diagram, hence 
the method can be considered reliable. In this context, 
a comparison was made between RFPM, ERAM and 
LSCEM in Figs. 10 and 11; it was clear that the RFP was 
the method that presented the lowest values of error 
which make it the best method among the three studied. 
The only issue here is that the error obtained by RFPM 
was the lowest on all the modes except the third mode, 
where it has a value (0.15%) greater than the error given 
by the LSCEM and almost equal to the one given by the 
ERAM. This error can be due to the noise present in the 
experimental FRF.

5  Conclusions

This paper presents a comparison between several 
methods of experimental modal analysis for the detec-
tion of the frequency and damping ratio values. The 
results achieved during the study serve to understand 
the factors affecting the accuracy of the frequency and 
the damping in respect to the method in use. It can be 
observed that the natural frequency values obtained 
by all methods were very similar and the differences 
between the results were insignificant.

It was revealed that it is convenient to use the Peak 
Picking Method and Circle Fit Method as a first estima-
tion; these methods succeeded in giving good estima-
tion of the natural frequency and damping. They are also 
simple to use and fast to implement.

Fig. 8  Stabilization diagram extracted by ERAM
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Regarding the other methods, if the stability of poles 
dispersed in the stabilization diagram was taken into 
consideration, the Rational Fraction Polynomial method 
did the best job in detecting the damping and frequency 
values. This method presented the least scatter on all 
modes except on the third, probably due to the noise 
present in the measured frequency response func-
tion. The results obtained by the LSCEM and the ERAM 
were reasonable for both frequency and damping. The 

(a) (b)

(c) (d)

(e)

Fig. 9  a Stabilization diagram close to the first mode; b second modes; c third mode; d fourth mode; e fifth mode
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Fig. 10  Scatter of frequency for each mode, determined by LSCEM, 
ERAM and RFPM
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scatter was found slightly greater in the ERAM than in 
the LSCEM.

In addition, it has been noted by following this proce-
dure of implementation. The fast method to extract the 
natural frequencies and the damping ratios was the ERAM 
next come the LSCEM then the RFPM.
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