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Abstract
In this paper the compound difference anti-synchronization between chaotic systems of integer order and fractional 
order has been studied. Numerical simulations have been performed considering Rikitake chaotic system of integer and 
fractional order, El-Nino chaotic system of integer and fractional order and generalized Lotka–Volterra chaotic system of 
integer order as master systems and generalized Lotka–Volterra chaotic system as slave system. Numerical simulations 
validate the effectiveness of the strategy.
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system · Rikitake system · Generalized Lotka Volterra system

1 Introduction

The systems found in nature are non linear systems and 
they are generally found to be interacting in a non linear 
manner with other systems. Though these systems have 
their own unique identities but interactions between 
them lead to unpredictable behavior. A common method 
of this non linear interaction is the compound effect of 
interacting systems. While the difference synchronization 
can be considered as a replacement of combination syn-
chronization, however not much work has been done in 
this direction. Also, applying such techniques to chaotic 
systems of different structures and orders increases the 
flexibility of the method thereby increasing its application 
by manifolds.

Chaos synchronization is a process of having different 
chaotic systems(non-identical or identical)following the 
same path, i.e. the dynamics of one system is locked into 
the another, thereby causing their synchronization in a 
way that the state of one asymptotically approaches to the 
other. The idea of synchronization was given by Pecora and 
Caroll [1], when two chaotic systems with different initial 

conditions were made stable by designing suitable con-
trollers. To control the chaotic behavior of these systems 
many synchronization schemes have been developed 
such as complete synchronization, anti-synchronization, 
combination synchronization, compound synchronization, 
difference synchronization etc. [2–5] using various control 
techniques such as active control, sliding mode control, 
adaptive control, tracking control etc. These techniques 
are easily applicable on physical, chemical, biological, 
economical models. Also, work using these techniques 
have been extended using delay differential equations 
where the function’s derivative at any time is dependent 
on the solution at previous time making them infinite 
dimensional and hence difficult to analyze analytically. 
These differential equations find applications in popula-
tion dynamics, lasers, neuro-sciences, control systems 
[6]. Also, parameters have a significant role in chaotifying 
the systems and hence in chaos synchronization, thereby 
making parameter estimation a key point of Chaos Theory. 
Notable work has been done in this direction involving 
designing of an adaptive approach to estimate the uncer-
tain parameters [7–11].
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With the leaping of cyber-crime cases, designing of 
techniques which involve combination of systems and 
further compound-combination of systems would help 
increase the anti-attack resistance of systems as predict-
ing the unique way in which the systems have been added 
or multiplied is not an easy task. This would help increase 
the security of transmission of information which is the 
need of the hour.

Therefore designing of new synchronization techniques 
by various methods started to grow. Synchronization which 
initially was found to be difficult to achieve in case of one 
master and one slave chaotic system found its generaliza-
tion in the form of combination synchronization [12] (two 
chaotic master systems are synchronized with one chaotic 
slave system or vice-versa), combination-combination syn-
chronization [13] (involving synchronization of two or more 
chaotic master systems with two or more chaotic slave sys-
tems), compound synchronization [14, 15] (includes three 
chaotic master systems categorized as scaling and base 
master systems with one chaotic slave system ), compound-
combination synchronization [16] (comprising of both com-
pound and combination synchronization) and so on.

Though difference synchronization (where difference 
of state variables of two chaotic systems synchronize with 
the third) is considered as a substitute for combination 
synchronization, it still adds to the diversity of the types 
of synchronization.

Synchronization techniques composed from many dif-
ferent synchronization techniques [16–19] produce com-
plex signals as on splitting the signals onto different parts 
and loading into different chaotic master systems increases 
the anti-attack and anti-translated capability as compared 
to the usual transmitted signal. Motivated by the above 
discussion compound difference anti-synchronization 
promises to be a meaningful expansion in this direction.

In this article the compound difference anti-synchroni-
zation between the integer and fractional order Rikitake, 
integer and fractional order El-Nino and integer order 
generalized Lotka–Volterra chaotic system has been 
conducted. The numerical simulations and results of this 
article are shown graphically which show that the tech-
niques involved is reliable and effective for the desired 
synchronization.

The rest of the article is organized as follows: Sec-
tion 2: contains some preliminaries and problem formula-
tion. Section 3: describes the synchronization theory. In 
Sect. 4: we have designed the compound difference anti-
synchronization method using Active Control Method 
and its numerical simulations are displayed [1, 7, 20]. 
Section 5: consists of the compound difference anti-syn-
chronization method using parameter estimation method 
and its numerical simulations, which have been displayed 
graphically. Section 6: gives a comparison of the error 

convergence rates for different fractional orders and for 
different synchronization schemes Sect. 7 shows the uti-
lization of designed synchronization scheme in the field 
of secure communication. Section 8 concludes the article.

2  Preliminaries

2.1  Definition

CAPUTO DEFINITION: [21] As various definitions have been 
available for fractional order derivative, we have consid-
ered Caputo’s definition.

where n is integer, � is real number, (n − 1) ≤ 𝛼 < n and 
� (.) is the Gamma function.

Throughout our studies Caputo’s version of fractional 
derivative has been used.

2.2  Problem formulation

We now formulate the compound difference anti-synchro-
nization method [22, 23]. We now consider three chaotic 
master systems and one chaotic slave system. We describe 
the scaling master system by

and the base master systems by

Corresponding to the above, we describe the slave system 
by

where x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T , z = (z1, z2, ...,

zn)
T ,w = (w1,w2, ...,wn)

T  are the state vectors of the 
respective systems. f,h,r,g are continuous functions. 
u = (u1, u2, ..., un)

T ∶ Rn × Rn × Rn × Rn → Rn.
We define the compound difference anti-synchroniza-

tion error as

w h e r e  A = diag(a1, a2, ...., an)B = diag(b1, b2, ...., bn)C =

diag(c1, c2, ...., cn)D = diag(d1, d2, ...., dn)andD ≠ 0

Definition The compound of the chaotic master systems 
(1–3) are said to be in compound difference anti-synchro-
nization with slave system (4) if

aD
�
x
g(x) =

1

� (n − �) ∫

x

a

g(n)(�)d�

(x − �)�−n+1

(1)Dqx = f (x)

(2)Dqy = h(y)

(3)Dqz = r(z)

(4)Dqw = g(w) + u

e = Dw + Ax(Cz − By)

limt→∞||e|| = limt→∞||Dw + Ax(Cz − By)|| = 0.
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 Here, we assume X = diag(x1, x2, ...., xn), Y = diag(y1, y2, ....,

yn), Z = diag(z1, z2, ...., zn),W = diag(w1,w2, ....,wn)

3  Synchronization theory

In order to attain compound difference anti-synchroniza-
tion among the systems (1–4), we design the controllers as

where

Theorem The systems (1–4) will achieve the intended com-
pound difference anti-synchronization if the controller are 
designed as given in (5).

Proof The error is given by :
ei = diwi + aixi(cizi − biyi) for i = 1, 2, ..., n

The error dynamical system is given by:

where

We define the Lyapunov function as:
V (t) =

1

2
eT e

=
1

2

∑n

i=1
ei
2

⇒ DqV (t) =
∑

eiD
qei

=
∑

ei(−Kiei)

−
∑

Kiei
2

We choose (K1, K2, ...., Kn) in such a way such that DqV (t) 
is negative definite.Therefore, by the Stability Theory of 
Lyapunov, we get limt→∞ ||e|| = 0 . Hence, the compound 
of the master systems and slave system are anti-synchro-
nized.   ◻

(5)ui = −
�i

di
− gi −

Kiei

di

�i = aifi(cizi − biyi) + aixi(ciri − bihi) for i = 1, 2, ..., n

Dqei = diD
qwi + aiD

qxi(cizi − biyi) + aixi(ciD
qzi − biD

qyi)

= di(gi + ui) + aifi(cizi − biyi) + aixi(ciri − bihi)

= di(gi + ui) + �i

�i = aifi(cizi − biyi) + aixi(ciri − bihi)

= di

(
gi −

�i

di
− gi −

Kiei

di

)
+ �i

= −Kiei

4  Compound difference 
anti‑synchronization between Rikitake, 
El‑Nino, generalized Lotka Volterra 
chaotic systems via active control method

The scaling master system is the [24–26] chaotic Rikitake 
system of fractional order [27] given by:

where x = (x1, x2, x3) are the state variables of the scaling 
master system, A1,A2 are parameters. For A1 = 5,A2 = 2 , 
this system shows chaotic behavior for initial conditions 
( −4 , 2.5, 2) and fractional order q = 0.987 displayed in 
Fig. 1a

The base master systems are the chaotic fractional order 
El-Nino system [28] and the chaotic integer order general-
ized Lotka–Volterra system [29] described respectively as 
follows:

where 0 < q < 1, y = (y1, y2, y3) are the state variables of 
the base master system I.

For parameter values �� = 83.6, b = 10, c = 12 and ini-
tial conditions ( −2,3,5) the phase portrait shows chaotic 
behavior as displayed in Fig. 1b for q = 0.987.

where z = (z1, z2, z3) are the state variables of the sys-
tem (8). For a = 2.9851, b = 3, c = 2 and initial conditions 
(1.2,1.2,1.2)this system shows chaotic behavior as dis-
played in Fig. 1c.

The slave system is considered as the integer order cha-
otic generalized Lotka–Volterra system given as :

(6)

dqx1

dtq
= −A2x1 + x2x3

dqx2

dtq
= −A2x2 + (x3 − A1)x1

dqx3

dtq
= 1 − x1x2

(7)

dqy1

dtq
= ��(y2 − y3) − by1

dqy2

dtq
= y1y3 − y2 + cy1

dqy3

dtq
= −y1y2 − cy1 − y3

(8)

̇z1 = z1 − z1z2 + cz1
2 − az1

2z3

̇z2 = −z2 + z1z2

̇z3 = −bz3 + az1
2z3
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where w = (w1,w2,w3) are the state variables of the system 
(9) and u = (u1, u2, u3) is a control function to be designed. 
For a’ = 2.9851, b’ = 3, c’ = 2 and initial conditions (14.5, 3.4, 
10.1)the system shows chaotic behavior as displayed in 
Fig. 1d.

Here we assume A = diag(a1, a2, a3), B = diag(b1, b2,

b3), C = diag(c1, c2, c3), D = diag(d1, d2, d3).The scaling 
factors ai , bi , ci , di(i = 1, 2, 3) are chosen as required and 
may assume different or same values.

(9)

ẇ1 = w1 − w1w2 + c�w1
2 − a�w1

2w3 + u1

ẇ2 = −w2 + w1w2 + u2

ẇ3 = −b�w3 + a�w1
2w3 + u3

We define the error (e1, e2, e3) as:

Therefore,the error dynamical system so obtained is:

(10)

e1 = d1w1 + a1x1(c1z1 − b1y1)

e2 = d2w2 + a2x2(c2z2 − b2y2)

e3 = d3w3 + a3x3(c3z3 − b3y3)

(11)

ė1 = d1ẇ1 + a1 ̇x1(c1z1 − b1y1) + a1x1(c1 ̇z1 − b1 ̇y1)

ė2 = d2ẇ2 + a2 ̇x2(c2z2 − b2y2) + a2x2(c2 ̇z2 − b2 ̇y2)

ė3 = d3ẇ3 + a3 ̇x3(c3z3 − b3y3) + a3x3(c3 ̇z3 − b3 ̇y3)
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Fig. 1  Phase plots of the a fractional order Rikitake system, b fractional order El-Nino system, c integer order generalized Lotka–Volterra sys-
tem, d slave generalized Lotka–Volterra system respectively
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Therefore,error dynamical system simplifies to

We choose the control functions:

Substituting (13) into(12),we get
ė1 = −K1e1
ė2 = −K2e2
ė3 = −K3e3
We now take  the  Lyapunov func t ion as 

V (e(t)) =
1

2
e(t)e(t)T

=
1

2
(e1

2 + e2
2 + e3

2)  
̇V (e(t)) = e1ė1 + e2ė2 + e3ė3

= e1(−K1e1) + e2(−K2e2) + e3(−K3e3)

= −K1e1
2 − K2e2

2 − K3e3
2  

where K1, K2, K3 are positive constants.
⇒ ̇V (e(t)) is negative definite.

Therefore by the Stability Theory of Lyapunov ,we 
have that error vanishes with time,i.e. ei → 0 for i = 1, 2, 3 . 
Hence, the master systems (6–8) are now anti-synchro-
nized with the slave system (9)

Note
The compound of the master systems so generated 

here from scaling master system and base master systems 
is also a chaotic system as displayed in Fig. 2, this may not 
be the case in general.

Numerical simulations and results
Numerical simulations have been done using MATLAB. 

We take here ai = bi = ci = di = 1∀i = 1..3 , which means 
the slave system will completely anti-synchronize with the 
compound of the multi-drive master systems. Also K1, K2, K3 

(12)

ė1 = d1(w1 − w1w2 + 2w1
2 − 2.9851w1

2w3 + u1) + a1(−5x1 + x2x3)(c1z1 − b1y1)

+ a1x1(c1(z1 − z1z2 + 2z1
2 − 2.9851z1

2z3) − b1(83.6y2 − 83.6y3 − 10y1))

ė2 = d2(−w2 + w1w2) + a2(−5x2 + x1x3 − 2x1)(c2z2 − b2y2)

+ a2x2(c2(−z2 + z1z2) − b2(y1y3 − y2 + 12y1))

ė3 = d3(−3w3 + 2.9851w1
2w3) + a3(1 − x1x2)(c3z3 − b3y3)

+ a3x3(c3(−3z3 + 2.9851z1
2z3) − b3(−y1y2 − y3 − 12y1))

(13)

u1 = −
�1

d1
− g1 −

K1e1

d1

where �1 = a1f1(c1z1 − b1y1) + a1x1(c1r1 − b1h1)

u2 = −
�2

d2
− g2 −

K2e2

d2

where �2 = a2f2(c2z2 − b2y2) + a2x2(c2r2 − b2h2)

u3 = −
�3

d3
− g3 −

K3e3

d3

where �3 = a3f3(c3z3 − b3y3) + a3x3(c3r3 − b3h3)

have been chosen to be 1 for fractional order 0.987. The 
trajectories of the master systems(6–8) and slave system 
(9) are shown to get anti-synchronized in Fig. 3. Also, the 
error plot of the system converges to zero and have been 
displayed in Fig. 3 for the initial conditions (8.1,−1.1,2.5).

5  Compound difference 
anti‑synchronization between Rikitake, 
El‑Nino, generalized Lotka Volterra 
chaotic systems via parameter estimation 
method

The scaling master system is the chaotic Rikitake system 
given by:

where x = (x1, x2, x3) are the state variables of the scaling 
master system. For A = 2, B = 5 , this system shows chaotic 
behavior for initial conditions (2, −1,−2 ) as displayed in 
Fig. 4a.

(14)

̇x1 = −Ax1 + x2x3

̇x2 = −Ax2 + (x3 − B)x1

̇x3 = 1 − x1x2

−200

−100
0

100

−20
0

20
40

60
−50

0

50

100

150

Y(:,1).*(Y(:,7)−Y(:,4))

3−D phase plot of compound of the scaling and drive master systems

Y(:,2).*(Y(:,8)−Y(:,5))

Y
(:,

3)
.*

(Y
(:,

9)
−Y

(:,
6)

)

Fig. 2  Phase portrait of the compound of the master systems



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:757 | https://doi.org/10.1007/s42452-019-0776-x

The base master systems are the El-Nino chaotic system 
and generalized Lotka–Volterra chaotic system described 
respectively as follows:

where y = (y1, y2, y3) are the state variables of the base 
master system I.

For parameter values A1 = 83.6, B1 = 10, C1 = 12 and 
initial conditions ( −2,3,5) the phase portrait shows chaotic 
behavior as displayed in Fig. 4b.

(15)

̇y1 = A1(y2 − y3) − B1y1

̇y2 = y1y3 − y2 + C1

̇y3 = −y1y2 − y3 + C1

(16)

̇z1 = z1 − z1z2 + cz1
2 − az1

2z3

̇z2 = −z2 + z1z2

̇z3 = −bz3 + az1
2z3

where z = (z1, z2, z3) are the state variables of system 
(16). For a = 2.9851, b = 3, c = 2 and initial conditions 
(1,2,1.2,1.2) this system shows chaotic behavior as dis-
played in Fig. 4c.

The slave system is the generalized Lotka–Volterra sys-
tem given as :

where w = (w1,w2,w3) are the state variables of sys-
tem (17) and � = (�1, �2, �3) is a control function to be 
designed. For parameter values a1 = 2.9851, b1 = 3, c1 = 2 
and initial conditions (14.5, 3.4, 10.1)the system shows cha-
otic behavior as displayed in Fig. 4d.

(17)

ẇ1 = w1 − w1w2 + c1w1
2 − a1w1

2w3 + 𝜎1

ẇ2 = −w2 + w1w2 + 𝜎2

ẇ3 = −b1w3 + a1w1
2w3 + 𝜎3
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Fig. 3  a, b, c Trajectories of the anti-synchronized master and slave systems. d The simultaneous error plot of the system
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Here we assume A = diag(�1, �2, �3), B = diag(�1, �2, �3),

C = diag(�1, �2, �3),D = diag(�1, �2, �3) . The scaling fac-
tors �i , �i , �i , �i(i = 1, 2, 3) are chosen as required and may 
assume different or same values.

We define the error(e1, e2, e3) as:

Therefore,the error dynamical system so obtained is:

(18)

e1 = �1w1 + �1x1(�1z1 − �1y1)

e2 = �2w2 + �2x2(�2z2 − �2y2)

e3 = �3w3 + �3x3(�3z3 − �3y3)

(19)

ė1 = 𝛿1ẇ1 + 𝛼1 ̇x1(𝛾1z1 − 𝛽1y1) + 𝛼1x1(𝛾1 ̇z1 − 𝛽1 ̇y1)

ė2 = 𝛿2ẇ2 + 𝛼2 ̇x2(𝛾2z2 − 𝛽2y2) + 𝛼2x2(𝛾2 ̇z2 − 𝛽2 ̇y2)

ė3 = 𝛿3ẇ3 + 𝛼3 ̇x3(𝛾3z3 − 𝛽3y3) + 𝛼3x3(𝛾3 ̇z3 − 𝛽3 ̇y3)

Taking �i , �i , �i , �i = 1 Therefore,error dynamical system 
simplifies to

(20)

ė1 = (w1 − w1w2 + c1w1
2 − a1w1

2w3) + (−Ax1 + x2x3)(z1 − y1)

+ x1(z1 − z1z2 + Cz2
1
− az2

1
z3 − A1y2 + A1y3 + B1y1) + 𝜎1

ė2 = (−w2 + w1w2) + (−Ax2 + x1x3 − Bx1)(z2 − y2)

+ x2(−z2 + z1z2 − y1y3 + y2 − C1) + 𝜎2

ė3 = (−b1w3 + a1w
2
1
w3) + (1 − x1x2)(z3 − y3)

+ x3(−bz3 + az2
1
z3 + y1y2 + y3 − C1) + 𝜎3
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Fig. 4  Phase plots of the a fractional order Rikitake system, b fractional order El-Nino system, c generalized Lotka–Volterra system, d slave 
generalized Lotka–Volterra system respectively
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We choose the control functions:

(21)

𝜎1 = −w1 + w1w2 − ĉ1w
2
1
+ â1w

2
1
w3 + Âx1z1 − Âx1y1 − x2x3z1 + x2x3y1 − x1z1

+ x1z1z2 − ĉz2
1
x1 + âz2

1
z3x1 + Â1y2x1 − Â1y3x1 − B̂1y1x1 − K1e1

𝜎2 = w2 − w1w2 + Âx2z2 − x3x1z2 + B̂x1z2 − Âx2y2

+ x3x1y2 − B̂x1y2 + z2x2 − x2z1z2 + y1y3x2 − x2y2 + ĉ1x2 − K2e2

𝜎3 = b̂1w3 − â1w
2
1
w3 − z3 + y3 + x1x2z3 − x1x2y3 + b̂x3z3 − âz2

1
z3x3

− x3y1y2 − x3y3 + ĉ1x3 − K3e3
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Fig. 5  Parameter estimate for a scaling drive system, b Base drive system-I, c base drive system-II, d response system
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and the parameter update laws are designed as follows:

(22)

̇̂A = −x1z1e1 + x1y1e1 − x2z2e2 + x2y2e2 − K4eA

̇̂
B = −x1z2e2 + x1y2e2 − K5eB

̇̂A1 = −y2x1e1 + x1y3e1 − K6eA1
̇̂
B1 = x1y1e1 − K7eB1
̇̂
C1 = −x2e2 − x3e3 − K8eC1
̇̂a = −z2

1
z3x1e1 + z2

1
z3x3e3 − K9ea

̇̂
b = −x3z3e3 − K10eb

̇̂c = z2
1
x1e1 − K11ec

̇̂a1 = w2

1
w3e3 − w2

1
w3e1 − K12ea1

̇̂
b1 = −w3e3 − K13eb1
̇̂c1 = w2

1
e1 − K14ec1

where Ki > 0are constants, eA = Â − A, eB = B̂ − B, eA1 =

Â1 − A1, eB1 = B̂1 − B1, eC1 = Ĉ1 − C1, ea = â − a, eb = b̂ − b,

ec = ĉ − c, ea1 = â1 − a1, eb1 = b̂1 − b1, ec1 = ĉ1 − c1 a n d 
Â, B̂, Â1, B̂1, Ĉ1, â, b̂, ĉ, â1, b̂1, ĉ1 are the estimated values of 
the parameters A, B,A1, B1,C1, a, b, c, a1, b1, c1 respectively.

The Lyapunov function V, being a positive definite 
function on R14 and having a negative definite deriva-
tive on R14 , satisfies the condition of the Stability The-
ory of Lyapunov, the slave system anti-synchronizes 
with the compound of the master systems with the 
designed controllers (21) and parameter update law 
(22).
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Fig. 6  a, b, c Trajectories of the anti-synchronized master and slave systems, d the simultaneous error plot of the system
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Fig. 7  Error convergence for fractional order a 0.6, b 0.7, c 0.8, d, 0.9, e 0.943, f 0.987
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We now take  the  Lyapunov func t ion as 
V (e(t)) =

1

2
e(t)e(t)T

=
1

2
(e1

2 + e2
2 + e3

2 + eA
2 + eB

2 + eA1
2 + eB1

2 + eC1
2+

ea
2 + eb

2 + ec
2 + ea1

2 + eb1
2 + ec1

2) 

̇V (e(t)) = e1ė1 + e2ė2 + e3ė3 + eA ̇eA + eB ̇eB + eA1 ̇eA1

+ eB1 ̇eB1 + eC1 ̇eC1 + ea ̇ea

+ eb ̇eb + ecėc + ea1 ̇ea1 + eb ̇eb1 + ec1 ̇ec1

= e1(−K1e1) + e2(−K2e2) + e3(−K3e3) + eA(−K4eA)

+ eB(−K5eB) + eA1 (−K6eA1 ) + eB1 (−K7eB1 )

+ eC1 (−K8eC1 ) + ea(−K9ea) + eb(−K10eb)

+ ec(−K11ec) + ea1 (−K12ea1 )

+ eb1 (−K13eb1 ) + ec1 (−K14ec1 ) < 0

N u m e r i c a l  s i m u l a t i o n s  N u m e r i c a l  s i m u l a -
tions have been done using MATLAB. We take here 
�i = �i = �i = �i = 1∀i = 1..3 , which means the slave 
system will completely anti-synchronize with the 
compound of the multi-drive master systems. Also 
K1, K2, K3 have been chosen to be 1. The initial con-
ditions of the parameter estimates are chosen as 
Â = B̂ = Â1 = B̂1 = Ĉ1 = â = b̂ = ĉ = â1 = b̂1 = ĉ1 = 0.1 
The parameter estimates of the unknown parameters have 
been displayed graphically in Fig. 5. The trajectories of the 
master systems(6)-(8) and slave system (9) are shown to 
get anti-synchronized in Fig. 6. Also,the error plot of the 
system converges to zero and have been displayed in Fig. 6 
for the initial conditions (8.1, −1.1 , 2.5).

6  Comparison of the error convergence 
rates for different fractional orders 
and for different synchronization schemes

A comparison between the rate of error convergence using 
Active Control Method for different fractional orders brings 
to notice an interesting property which has been displayed 
in Fig. 7. On increasing the fractional order from 0.6 to 0.7 
the time of convergence increases from 2 units to 3 units, 
for fractional order 0.8 it reaches 4 units, for fractional order 
0.9 it increases by a unit to approx. 5.6 units and eventually 
becomes constant for fractional orders 0.943, 0.987 and 1.

Also, a comparison of rate of error convergence for 
order 1 using active control method and parameter esti-
mate adaptive method has been made which has been 
displayed in Fig. 8. For active control method error con-
verges to 0 at 5.6 units approx. and for parameter estima-
tion adaptive method error converges at 5.9 units approx.

7  Application in secure communication

Owing to the sensitive dependence of chaotic systems on 
initial conditions and parameter values, the application of 
chaos synchronization in the field of secure communica-
tion, image encryption, control systems etc. is growing, 
leading to designing of new synchronization techniques 
using various control methods.

We now display the application of the above designed 
novel synchronization technique in the field of secure 
communication. The main idea is to hide the information 
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Fig. 8  Error convergence for order one by a active control method, b parameter estimation adaptive method
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signal masking it with the chaotic signals and transmit to 
be recovered later only by the authorized receiver after 
carrying out the required synchronization. The following 
example illustrates this.

Let the information signal be v(t) = sin(7t) . We suit-
ably mask it with chaotic signal x1(z1 − y1) and transmit 
the encrypted signal v̄(t) . By performing the required 
synchronization with the chaotic system at the receiving 
end using the controller u1 as designed above, the origi-
nal information signal is recovered, v∗(t) . The results have 
been displayed in Fig. 9.

8  Conclusion

In this paper, compound difference anti-synchronization 
results have been computed using active control method 
and parameter estimate adaptive method. The results 
obtained from both the techniques have been compared. 
Also, a comparison between the error convergence rates 
for different fractional orders has been made.

Here we have considered the fractional and integer 
ordered Rikitake system, fractional and integer ordered El-
Nino system and the generalized Lotka Volterra system for 
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the numerical simulations. The computational results car-
ried out in this manuscript validate the theoretical results. 
Such techniques can be used to study the effect of the 
Earth’s magnetic field (Rikitake system), weather(El-Nino 
System) and other co-existing species (G.L.V-biological 
System) on a particular species (represented by the slave 
G.L.V. System).

Also, with the increasing demand of security of trans-
mission of information, the designed technique would find 
suitable application in field of secure communication, cha-
otic encryption and so on.

Further, in this direction we can extend these studies 
on systems interrupted by model uncertainties and exter-
nal disturbances. Also, we can conduct the study of com-
pound difference anti-synchronization on discrete time 
interval in comparison to the continuous time as taken in 
this manuscript.
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