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Abstract
Tungsten inert gas welding is the most commonly used process for joining of aluminum alloy, which are highly demanded 
in aerospace application. In this process coarse grain structure, micro crack and porosity was obtained due to persisting 
thermal conditions when the fusion zone start to solidify. The formation of these defects on the weld region will result in 
reduction of weld strength about to half the parent material. To avoid these defects the top surface of gas tungsten arc 
welding are processed using friction stir processing up to certain depth from the top of the welds. Friction stir process-
ing destroyed the coarse grain dendritic structure in the tungsten welded joint, because of change in grains refinement 
and microstructure significantly improved the hardness of the friction stir processing (FSP) weld over the base metal 
and TIG weld. In this study, we compared the experimental result of TIG, FSW and (TIG + FSP) welded joint. Coarse grain 
structure was observed in TIG welding and fine grain structure was observed in FSP process. In addition very fine grain 
structure we observed in stir zone due to the effect of intense plastic deformation and temperature during TIG + FSP.
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1  Introduction

Friction stir welding (FSW) is a new technique of joint simi-
lar and dissimilar materials and it is environmental friendly 
and energy efficient [1, 2]. The friction stir welding has 
been successfully used to produce joint in Mg-alloy, Al-
alloy, Ti-Alloy and other alloy [3–7]. Comparison between 
TIG and FSW technique with a long established one the 
friction stir welding shown the advantages to tungsten 
inert welding. The used material Al-6082-T6 makes high 
claims to these techniques due to the problem of pore 
formation and hot cracks [8]. Another problem is the loss 
of strength and hardness caused by the microstructural 
instability in the heat affected zone (HAZ) [9].

In the recent year, FSW has been a research focus 
instead of TIG welding. Comparison to other welding 
process, FSW is versatile for magnesium alloy, aluminum 
alloy, copper alloy, steel and dissimilar alloy [10–15]. It is 
widely used for Al–Zn and Al–Cu series which have a poor 

performance [16–21]. The carbon migration takes place 
in dissimilar welded joint subjected to thermal loading 
at temperature of 625°. The micro-hardness and ultimate 
tensile strength of welded joint increase by increasing the 
pre-stress [22–24].

There are several techniques applied such as heat treat-
ment process, gas tungsten arc welding (TIG), arc melt-
ing and mechanical deformation process to modify the 
material properties in order to improve the joint proper-
ties. However these methods are not efficient and some of 
those are not applicable for using welded joints, where the 
joint strength is highly required. In recent year, friction stir 
welding becomes a prominent welding process for joining 
of aluminum alloy [1]. The joining of aluminum alloy mag-
nesium alloy can be easily weld by FSW process, moreover, 
it is also suitable for joining of dissimilar material [25–31]. 
Friction stir welding involves a cylindrical rotating tool of 
consumable or non-consumable material that plunges 
between the two plates and moves, stir and bounded 
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between them. The heat is produced during FSW process 
and generation of thermo-mechanical conditions devel-
ops a heterogeneous fine grained microstructure across 
the weld seam [32]. The stirred zone materials to soften 
without melting of parent material due to heat generated 
by the process of adiabatic heat and mechanical mixing 
with in the material [33]. The mechanical properties of 
FSW joint are mainly dependent on chemical composi-
tion and processing parameters of alloying element. The 
microstructural analysis of FSW joints shows the formation 
of new grain size in the weld zone with different amount 
of heat input by controlling the processing parameter 
[34–37].

The coarse grain structure, micro-cracks and porosity 
are obtained in TIG welding due to the unremitting ther-
mal conditions. Forming these defects on the weld zone 
will result in a reduction in weld strength. In this work, 
to avoid these defects, a friction stir processing is used 
to destroy the coarse-grained dendritic structure in the 
tungsten welded joint and very fine grain structure was 
observed in stir zone to the effect of intense plastic defor-
mation and temperature during TIG + FSP.

2 � Materials and method

2.1 � Selection parameter for TIG welding

When TIG welding is applied, rust, paint, dirt oil and other 
contamination must be removed from the welded material 
surface. The welding properties is also depended on the 
electrode condition, arc length, travel speed, current polar-
ity on weld shape, shielding gas coverage and angle of the 
torch. The welding parameter ranges taken into account 
for welding arc welding current of 120–180 amp gas flow 
rate of 15 L/min and welding speed of 90–105 mm/min.

2.2 � Selection parameter for FSW

After TIG welding on aluminum alloy, friction stir weld-
ing was applied on TIG welded joint. FSW involve plastic 

deformation and complex movement. FSW processing 
parameter such as welding speed, tool rotation and axial 
force on the welding characteristics. Weld were made by 
joining of two plates (200 × 60 × 7 mm) workpiece were 
clamped on the machine tool.

2.3 � Experimental procedure

The aluminum alloy used in this study in the form of plates 
with the dimension of (200 × 60 × 7 mm). The plates were 
cleaned with the help of acetone to remove the oil the oil 
and dirt etc. and steel wire brush was used to remove the 
oxide layer. During TIG welding. The optimized welding 
parameter such as welding current of 120 amp, a voltage 
of 20 V and the welding speed of 34 mm/min and argon 
shielding are used. Before friction stir welding the GTAW 
weld reinforcement are removed by machining it and flat-
tened the weld bead with its substrate sides for applying 
better friction stir processing, after marching of GTAW 
weld, FSP was applying at the transverse speed of 1.1 mm/
sec, target depth of 2 mm, rotational speed of 1200 rpm 
and vertical force of 8000 kg applied over the weld during 
FSP. The cylindrical tool was used during FSP of EN31 with 
pin length of 2 mm. The pin and shoulder diameter of FSP 
tool were 6 mm and 18 mm respectively [39].

3 � Results and discussions

3.1 � Tensile strength

The ultimate tensile strength of welded joint of Al-6083-T6 
and Al-2024 has been investigated by using of TIG, FSW 
and (TIG + FSP) welding process at different process 
parameter as shown in Fig. 1. The average tensile strength 
and their corresponding percentage elongation as shown 
in Tables 1 and 2 for TIG and FSW respectively. In each con-
dition three specimen were tested. The chemical composi-
tion for Al-6083-T651 and Al-2024 as shown in Tables 3 and 
4. The minimum ultimate tensile strength of 204.23 MPa 
was obtained at 160 amp current in TIG welding, whereas 

Weld bead

Weld direction

FSP zone after TIG

(a) (b)

Fig. 1   Weld bead formation and quality of weld, a TIG welding, b TIG + FSP
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maximum ultimate tensile strength of 223.65  MPa at 
tool rotation of 500 rpm, welding speed of 25 mm/min 
and axial force of 6KN was obtained in FSW process. The 
strength of both at GTAW and GTAW + FSP welds are lower 
than the parent material as shown in Figs. 2 and 3. The 
strength of TIG weld and TIG + FSP, however TIG + FSP joint 
showed better performance and its elongation is higher 
than the TIG welds. The ductility of the TIG + FSP welds are 
better than the TIG welds due to absence of porosity and 
other defects and improved microstructure characteristics.      

3.2 � Micro‑hardness

In this study, 2 mm thick cold rolled annealed and 6 mm 
thick hot rolled plate Al–Mg–Mn–Sc–Zr alloy were exam-
ined to study the effect of FSW and tungsten inert gas 
welding process on the microstructure and mechanical 
properties of welded joints as shown in Table 5.

Figure  4 shows the micro-hardness of FSW and TIG 
welded joint for cold rolled annealed and hot rolled 

aluminum alloy plate. The micro-hardness value for both 
the welding processes are low at the center of welded joint 
and the microhardness of the welded joint higher than 
the base material [43]. For hot rolled and cold rolled plate, 

Table 1   Processing parameter 
of TIG welding [38]

Specimen 
designation

Current (amp) Gas flow 
rate (l/min)

Tensile 
strength 
(MPa)

Microhard-
ness (HV)

Percentage 
elongation

Impact 
tough-
ness

B1 120 15 165 49 3.53 6
B2 140 15 204 57 4.52 8
B3 160 15 186 54 4.21 5
B4 180 15 173 49 4.11 4

Table 2   Processing parameter 
of friction stir welding [38]

Exp. no. Tool 
speed 
(rpm)

Welding 
speed (mm/
min)

Axial 
force 
(KN)

Tensile 
strength 
(MPa)

Percentage 
elongation

Micro-hard-
ness (HV)

Impact 
tough-
ness

1 300 25 6 202 5.4 52 15
2 700 25 6 221 6.4 55 19
3 500 15 6 229 6.3 58 15
4 500 35 6 244 7.8 60 18
5 500 25 4 234 5.8 57 16
6 500 25 8 250 6.7 55 20
7 500 25 6 265 7.1 65 24

Table 3   Chemical composition 
of Al-6082-T651 [38]

Si Cu Fe Mg Mn Zn Cr Ti Al

0.7–1.3 0.1 0.5 0.6–1.2 0.4–1.0 0.2 0.25 0.2 Balance

Table 4   Chemical composition 
of Al-2024 [39]

Si Cu Fe Mg Mn Zn Cr Ti Al

0.5 3.9 0.48 1.45 0.58 0.24 0.09 0.148 Balance
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Fig. 2   Comparison of stress strain diagram of Al-2024 for base 
metal, TIG and TIG + FSP
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the micro-hardness at FSW center is higher than the TIG 
weld center and the yield point stress of aluminum alloy is 
directly proportional to its hardness [46]. The distribution 
of micro-hardness is consistent with the result that tensile 
test sample of friction stir welding all broke at the weld 
center (Table 6).  

The hardness values of the TIG welds HAZ region exhib-
its higher hardness over the HAZ of the TIG + FSP joint. The 
distance away from the weld center towards unaffected 

base metal, the HAZ region after the TMAZ, in this zone 
the joints temperature is comparatively low and at this low 
temperatures, this zone experienced to induce a kind of 
ageing, hence it’s resulted in an enhancement of mechani-
cal properties. As a matter of fact, the microhardness of 
TIG + FSP joints as shown in Fig. 5 clearly indicates the low-
est hardness value are related to the TMAZ region and stir 
zone, while the hardness of HAZ region are slightly higher 
compared to the even un affected base metal. As seen from 
the microstructures and modified microstructure of the 
TIG + FSP weld of fine grain structure over the TIG coarse 
grain structure, the hardness distribution directly indicates 
the evidence of improved microstructural characteristics 
and mechanical properties of the TIG + FSP weld [39].
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Fig. 3   Comparison of tensile strength of Al-2024 for two different 
welding process TIG and TIG + FSP

Table 5   Tensile mechanical properties of base metal and welded 
joints [43]

Sample Tensile 
strength (MPa)

Yield strength 
(MPa)

Elongation (%)

Hot rolled plate
 Base plate 411 290 19.6
 FSW joint 380 239 12.5
 TIG joint 344 227 9.5

Cold rolled plate
 Base plate 423 322 20.7
 FSW joint 391 257 10.9
 TIG joint 365 246 10.2

Fig. 4   Microhardness of the welded joint, a cold rolled annealed plate, b hot rolled plate [43]

Table 6   Mechanical properties of Al-6082-T651 [38]

Ultimate tensile 
strength (MPa)

Yield strength 
(MPa)

Percentage 
elongation

Hardness (HV)

312–322 260 10–13 94

Fig. 5   Microhardness of welded joint at two different welding pro-
cesses TIG and TIG + FSP [39]
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Fig. 6   Optical micrograph of 
FSW for Al-alloy specimen from 
the experiment No 1 to 7 (at 
×100) [38]
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3.3 � Microstructure analysis of TIG, FSW 
and (TIG + FSP)

3.3.1 � Optical micrograph of FSW and TIG welded joints

Figures 6 and 7 illustrate the optical micrograph of FSW 
and TIG welded joints. The microstructure of the FSW joint, 
the weld region of FSW contain equiaxed and finer grain 
structure and TIG welded shows the elongated and coarse 
grain structure. The distribution of precipitates were differ-
ent in TIG and FSW welded joint [40–42]. Due to equiaxed 
and finer grain structure in FSW and dendrite structure in 
TIG welded joint and the tensile strength of FSW joint was 
higher than the TIG welded joint. 

During the welding process, the temperature at TIG 
weld center was higher than the FSW weld nugget zone, 
and the temperature at TIG weld center was higher than 
melting point of the alloy. Figure 8a–d, shows the opti-
cal microstructure of TIG welded joint. It shows the weld 
center of cold rolled annealed and hot rolled plate exhib-
its cast structure and the grain sixe of TIG welded joint of 
hot rolled plate, there are a few short feathery or pine tree 
structure (Fig. 8a), the boundary of semi-molten zone and 
heat affected zone (HAZ) is obvious (Fig. 8b), and there is 
very thin layer of equiaxed grains between the semi fused 
zone and the heat affected zone, the equiaxed and smaller 
than the grain structure of fused zone and HAZ as shown 
in Fig. (8c) [43].

Fig. 7   Optical micrograph of TIG welded joint at different current, a 120 amp, b 140 amp, c 160 amp, d 180 amp
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Fig. 8   Optical micrograph of TIG welded joint a–c hot rolled plate, d cold rolled plate [43]

Fig. 9   Optical microstructure of friction stir welded joint, a advancing side of hot rolled plate, b retreating side of hot rolled plate, c advanc-
ing side of cold rolled plate, d retreating side of cold rolled plate [43]
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Figure 9 shows the two kinds of welded joint thermo-
mechanically zone (TMAZ) and the weld nugget zone 
(WNZ). The microstructure of weld nugget zone in cold 
rolled annealed and hot rolled plate were crushed by the 
strong stirring effect of rotating tool. Because of tempera-
ture at weld nugget zone was very high, the dynamic 
recrystallization takes place small and uniform equiaxed 
grains emerge at weld nugget zone. The thermo-mechani-
cally zone is weaker heating affected zone than weld nug-
get zone but stronger than HAZ. The boundary at retreat-
ing side is vague and at advancing side is obvious [43]. 
The relative rate between rotating pin and base metal 
reached a peak in advancing side and it was the lowest in 
the retreating side. The stain degree and rate were greater 
in the advancing side, and the distortion of fibrous micro-
structure in the advancing side is more severe than that 
in retreating side [44], which brought the asymmetry of 
micro-hardness distribution.

Figure 10 shows a microstructure of the TIG weld with 
the formation of different zone [39]. The grain size of the 
base metal is completely modified after welding process, 
and a columnar epitaxial grains can be clearly seen from 
the HAZ and partly melted zone (PMZ), which are formed 

at high temperature adjacent to fusion zone. In this zone, 
the precipitates which are parent hardened experience a 
heat treated of over ageing that can cause to phase forma-
tion, resulting in deteriorating the mechanical properties 
of weld [38–40]. It is observed that the microstructure of 
HAZ and partly melted zone contain coarse and grown 
epitaxial dendritic grains of α-aluminum and θ-phase [45]. 
The grown dendritic grains are caused due to the cool-
ing and solidification rate of the weld pool and presence 
of Mg and other element in the eutectic phase. The pres-
ence of insufficient amount of Mg in weld metal resulted 
in the formation of weak precipitates and not enough to 
form intermetallic compounds. The zone of the weldments 
exhibited the micro crack in the grain boundaries where 
the precipitates and rich in concentration and wider gap 
between dendrites led to defect formation.

The new approach of using friction stir welding over 
the TIG welds resulted in a significant improvements in 
the weld zone. In TIG welding, there are still the presence 
of porosities in the weld zone, which resulted in the care-
fully understanding of various spruces of these contami-
nants to identify the cause and take the necessary actions 
to get rid of porosities as shown in Fig. 11 [39]. The defect 

Fig. 10   Microstructure of the TIG welded joint at various zone, a parent material, b HAZ, c fusion zone, d partially melted zone [39]
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free microstructure with the refines grain sizes in the 
weld zone are depicted in Fig. 11. In this fig, it is found 
that than course and grown dendritic structure are com-
pletely modified in the HAZ and TMAZ. It may be due to 
the breaking of the dendrites and precipitates completely 
and refined than into a new shape formation as shown 
the (TIG + FSP) weld microstructure. The grain size of the 
stir zone is much finer that the TIG fusion zone, there is 
no evidence of porosity in the weld zone. The small pits 
also hard to find the TIG + FSP welds and complete defect 
free weld are achieved. On the other hand, it is worth to 
mention that the tool motion induces the greater stresses 
thus resulted in fine grain structure formation, which can 
allow a partial recovery of the weld metal strength proper-
ties and this effect can be seen only on weld nugget [32].

4 � Conclusions

A new approach of TIG + FSP process can improve the 
microstructure and mechanical properties of TIG welded 
joint. In this study, to avoid coarse grain structure, poros-
ity and micro-crack, friction stir processing is used after 
Tungsten inert gas welding. FSP is used to destroy the 

coarse-grained dendritic structure in the tungsten 
welded joint and very fine grain structure was observed 
in stir zone to the effect of intense plastic deformation 
and temperature during TIG + FSP. The microstructure 
and mechanical properties of TIG welded joint and 
TIG + FSP welded joints were studied to understand the 
behavior of grain structure of both processes. The follow-
ing conclusions are made during this study.

•	 The defect and porosity found in TIG weld can com-
pletely eliminated by using friction stir processing.

•	 The friction stir processing over TIG weld completely 
modified the mechanical and microstructure proper-
ties of TIG welded joint.

•	 The micro-hardness of the TIG + FSP weld is higher 
than the TIG weld due to fine grain structure in 
TIG + FSP welds.

•	 The ultimate tensile strength and elongation of 
welded joint of (TIG + FSP) are higher than those of 
TIG and FSW joints, the strength of TIG, FSW and 
(TIG + FSW) are lower than the parent material.

•	 The weld nugget zone of friction stir welding and the 
molten zone of TIG welding are the weakest zone of the 
welded joints.

Fig. 11   Microstructure of (TIG + FSP) welds at various zone, a base material, b HAZ, c stir zone, d thermo-mechanically affected zone)
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