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Abstract
Tuning the photocatalytic property of zinc oxide (ZnO) nanoparticles (NPs) is timely. Dependence of photocatalysis upon 
size, morphology and effective surface area of the particles used has led to optimization in various synthesis procedures. 
The current article addresses to dictate a cost-effective, bio-friendly, modified ease-process for this issue. The synthesis 
of ZnO NPs with differing photophysical properties, sizes and morphologies, in order to tune its photocatalytic activity, 
have been extensively studied. Polyethylene glycol as the structure directing agent and different synthesis strategies 
were adopted. Spectroscopic and microscopic characterization techniques were employed to understand the nature 
of the as-synthesized samples. Photocatalytic property and photostability of the samples were determined based on 
experiments performed with common xanthene and azo dyes. Based on analysing the results, certain characteristics, 
such as smaller particle size, less agglomerated structure, higher surface area and superior lifetime of the photogenerated 
electrons and holes upon light illumination, were essential for ZnO NPs to act as an efficient photocatalyst.
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1 Introduction

Environmental problems associated to organic wastes 
disposed in water bodies without proper treatment is a 
concern and should be accounted using appropriate tech-
nologies [1, 2]. Conventional techniques [3], employed for 
the removal of water pollutants, suffer from several dis-
advantages like high cost, accumulation of toxic sludge, 
environmental pollution, and others. An alternative to 
these techniques is photocatalysis [4] using semicon-
ductor nanomaterials (SNMs), which efficiently degrades 
organic wastes, such as dyes, drugs, etc. from aqueous 
media [5–10].

Amongst SNMs, zinc oxide (ZnO) nanoparticles (NPs) 
have proven to be a highly promising photocatalyst, 
under ultra-violet (UV) as well as solar light irradiations 
[1]. ZnO has a direct wide band gap energy of ~ 3.37 eV 
and has numerous applications due to its nano- and 
microstructural properties [11–13]. The various applica-
tions and multidimensional properties of ZnO NPs have 
been elaborately discussed by Mishra et al. [14]. The rapid 
formation and stability of reactive oxidative species (ROS) 

in ZnO NPs makes it a highly promising photocatalyst. It 
has been well established that when the photon energy 
is higher than the bandgap energy of the photocatalyst, 
energy absorption takes place which subsequently results 
into the transfer of electrons from the valence band (VB) 
of the photocatalyst towards its conduction band (CB), 
while generating holes in the former [6, 8]. Provided there 
is less radiative recombination of the as-formed electrons 
and holes, ROS may be generated in the reaction medium. 
These ROS then proceeds the reaction further and leads 
to the breakdown of complex organic molecules, such as 
dyes [15]. The various defect states present in ZnO NPs 
[16], such as zinc and oxygen vacancies, may trap either 
electrons or holes leading to their reduced recombination 
and thereby, generating higher number of ROS [17].

Alteration of photocatalytic properties may be achieved 
using different synthesis methods [1, 18, 19], which convey 
various morphologies of ZnO NPs, such as rods, spheres, 
tubes and others, with particle size as small as 2–10 nm 
[20–23]. However, care must be taken about the cost, com-
plexity, feasibility and toxicity of the method opted for syn-
thesis [24]. Ni et al. [22] have demonstrated a cost-effective 
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and simple hydrothermal process for the synthesis of 
ZnO nanorods. Likewise, Akir et al. [25] employed an eco-
friendly synthesis technique for the fabrication of various 
morphologies of ZnO NPs. Thus, application specific struc-
ture of ZnO NPs may be prepared using various synthesis 
procedures and parameters.

Particles in the nano-size regime are although benefi-
cial, their stability is a major concern. Modification in the 
synthesis process using different binders may solve this 
problem since capping approach enables the control of 
agglomeration by providing steric hindrance to individual 
particles belonging to the nano-size regime [26–29]. An 
example is the work reported by Chakraborty et al. [30], 
wherein, they have demonstrated the role of Polyethyl-
ene glycol (PEG) to control size of the so-formed ZnO NPs 
(7.7–21 nm). Similarly, the use of various capping agents 
for structure oriented growth of ZnO NPs have been exten-
sively studied in the previous reports [31, 32]. However, 
as far as the photocatalytic application is concerned, care 
must be given such that the capping agents do not pas-
sivate the photocatalysts’ surface entirely, which would in 
turn cause less generation of ROS due to hindrance pro-
vided at the surface by the binder molecules [33]. Capping 
approach should be such that the NPs do not agglomerate 
while keeping the reactive sites available for activity.

Considering these facts, the present study deals with 
PEG capped synthesis of ZnO NPs. Structural, optical and 
elemental characterizations were employed for analysing 
the as-obtained ZnO samples. Common xanthene and 
azo dyes were used to compare the efficiency of the as-
synthesized photocatalysts. As per Authors’ perspective, 
the comparison of different synthesis processes to obtain 
ZnO NPs in a cost-effective, bio-friendly way and its char-
acterization for material’s property understanding, with 
application towards degradation of organic contaminants 
(textile by-products) have been systematically presented 
here. To the best of Author’s knowledge, comparison on 
such synthesis methods, in order to obtain highly efficient 
photocatalyst for dye degradation, have not yet been 
reported elsewhere.

2  Experimental details

2.1  Chemicals

All the chemicals were of analytical grade and used 
without further purifications (99% purity). Zinc acetate 
dihydrate [Zn(CH3COO)2.2H2O], Rhodamine B (RhB), 
p-Benzoquinone (p-BQ) and Sodium hydroxide (NaOH) 
were purchased from Loba Chemie. Methylene Blue (MB), 
Tertiary Butyl Alcohol (t-BA) and Ethylene Diamine Tetra 
Acetate (EDTA) were purchased from Merck. Polyethylene 

glycol (PEG) and Methanol were purchased from Rankem. 
Deionized (DI) water (resistivity: 18.5 MΩ-cm) was used 
for all analysis.

2.2  Instrumentation

PAN Alytical Spectris technologies PW 3040/60 X-ray dif-
fractometer with Cu Kα1 radiation (λ= 1.54056 Å), work-
ing voltage of 40 kV and current of 30 mA was used to 
analyse the powder X-ray diffraction (XRD) pattern of the 
samples. High resolution Transmission Electron Micros-
copy (HRTEM) with  LaB6 source and voltage of 200 kV was 
used for the microstructural analysis. IRAffinity-1S Shi-
madzu Fourier Transform Infrared Spectrophotometer was 
employed to obtain the Fourier Transform Infrared Spec-
troscopic (FTIR) spectrum. UV–Visible (UV–Vis) absorp-
tion spectra of all the samples were performed using Shi-
madzu 1800 UV–Vis spectrophotometer. Surface defects 
and photophysical studies were analysed using Shimadzu 
Spectrofluorophotometer (RF-5301 PC) with an excitation 
wavelength of 320 nm. The intensity of sunlight was meas-
ured using a lux-meter (MEXTECH; model no. LX-1010B) 
with the measured intensity of (1120 X 100) lux for all the 
photocatalytic experiments.

2.3  Methodology

2.3.1  Synthesis of ZnO NPs

Two different methods were employed for the synthesis of 
ZnO NPs designated as Z-01 and Z-02. The methods have 
been described pictorially in Fig. 1.

2.3.2  Photocatalytic studies

The photocatalytic studies were performed based on the 
methodology and experimental parameters presented 
in  Flowchart 1. Degradation efficiencies of the photocata-
lysts were calculated from decrease in the concentration of 
dyes relative to the absorption measurements.

For the assessment of stability, Z-02 sample was used for 
the degradation of RhB and MB in two consecutive experi-
ments while keeping the same reaction conditions (0.05 g 
catalyst + 50 ml of RhB and MB solutions: 80 min and 45 
min of solar irradiation, respectively). The photocatalyst 
was recovered by centrifugation after each experiment. 
To appreciate the role of ROS in the reaction medium 
towards degradation of the respective dyes, radical scav-
enging experiments were performed; the procedure used 
was similar as given above. Based on the degradation effi-
ciency of Z-02 in the presence of radical scavengers, the 
most active ROS was determined. The amount of Z-02 was 
taken as 0.05 g for each experiment. The radical scavengers 
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Fig. 1  Pictorial representation of ZnO NPs synthesis for: a Z-01, and b Z-02

Flowchart 1  Details on the procedure employed to carry out the photocatalytic degradation studies
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used were: 15 mg of t-BA as hydroxyl radical (∙OH) scaven-
ger, 15 mg of p-BQ as superoxide radical (O2

∙−) scavenger 
and 15 mg of EDTA for trapping holes  (h+).

3  Results and discussion

3.1  Structural, optical and microstructural 
characterizations

Figure 2 shows the XRD patterns with wurtzite structures 
[22] of Z-01 and Z-02 samples (diffraction peaks at 2θ 
values of 31.59°, 34.23°, and 36.06° for Z-01 and 32.36°, 
35.02°, and 36.87° for Z-02). Shifts of approximately 1° in 
the peak positions for Z-02 was observed. Diffraction peak 
shifts may be attributed to the presence of microstrain 
in the sample. In addition, the broadening of diffraction 
peaks in the XRD pattern is an indication for the presence 
of microstrain in the respective sample. Microstrain may 
be induced in the sample due to crystal imperfection and 
distortion, which may be calculated using Eq. (1) [34].

where, ε is the isotropic microstrain and C is the propor-
tional constant whose value lies between 4 and 5, with 
C = 4 corresponding to the maximum (upper limit) of strain 
[35].

Employing Eq. (1), the values of microstrain for Z-01 
sample was calculated to be 0.00359 while for Z-02 it was 
calculated to be 0.27733. From these values of micro-
strain, negligible effect may be expected in Z-01 whereas, 

(1)� cos � = C� sin � +
k�

D

for Z-02, the value of microstrain is more prominent. In 
addition, two types of microstrain have been identified, 
namely, tensile strain and compressive strain depending 
upon the shift in the XRD peak positions to higher or lower 
angles, respectively [36]. In this case, as is shown in Fig. 2, 
shift in the XRD peak positions of Z-02 is toward the higher 
2θ values, indicating the presence of tensile strain in the 
sample. Further, the broadening of XRD peaks represent 
smaller crystallite size, therefore, formation of smaller crys-
tallites in Z-02 compared to Z-01 may be expected. Using 
the Debye Scherer equation [6], average crystallite sizes 
of 21 nm and 11 nm for Z-01 and Z-02, respectively, were 
calculated. This confirms the presence of smaller crystal-
lites in Z-02. Additionally, the values of lattice (d) spacing 
for (101) plane, as calculated from Bragg’s equation [36], 
were found to be 2.48 Å for Z-01 and 2.42 Å for Z-02 sam-
ples, respectively.

To determine the existence of PEG on the as-synthe-
sized ZnO NPs, FTIR spectra of Z-01 and Z-02 were recorded 
in the scanning range of 600–3400 cm−1 and are presented 
in Fig. 3. The spectra of both Z-01 and Z-02 show similar 
band positions with slight difference in their transmittance 
intensity, indicating strong and weak adsorption of PEG on 
the surface of Z-02 and Z-01, respectively. The prominent 
FTIR band positions [37–40] are marked in Fig. 3. The band 
at 1387.8 cm−1, assigned to the C–O–H bending vibration 
of adsorbed PEG on ZnO surface [40] and the band appear-
ing at 776 cm−1, attributed to the bending of long poly-
meric chain [40], confirms the successful adsorption of PEG 
on both the samples.

The UV–Vis absorption spectra for Z-01 and Z-02, meas-
ured by ultra-sonically dispersing the samples in DI water, 
are shown in Fig. 4a. The given spectra are corrected for 
water contribution. The representative absorption peaks 
are slightly blue shifted with respect to the absorption 
peak of bulk ZnO appearing at around 380 nm [41]. These 
shifts may be attributed to the presence of smaller parti-
cles in the respective samples. The occurrence of strong 
narrow absorption peaks may be ascribed to the intrinsic 
band gap absorption of ZnO NPs due to electron transi-
tions from the valence band of  O2p to the conduction band 
of  Zn3d. Moreover, the existence of sharp peak indicates 
that the particles are smaller in size with a narrow particle 
size distribution [42, 43]. From the spectra curves, band-
edge absorption beginning at 1000 nm wavelength was 
observed, suggesting that more absorption states or 
defect energy bands exist in the samples [44]. Figure 4b 
shows the estimation of optical band gap energies  (Eg) for 
Z-01 and Z-02 samples calculated using the Tauc equation 
(Eq. 2),

(2)Eg = h� −

(

�h�

B

)2

,

Fig. 2  XRD spectra of ZnO JCPDS 36-1451, Z-01 and Z-02 depict-
ing diffraction planes for wurtzite structure of ZnO with ~ 1° degree 
shift in the 2θ values for Z-02 w.r.t Z-01 due to microstrain effect 
(tensile strain)
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where α is the absorption co-efficient, hʋ is the photon 
energy, and B is a proportionality constant.

The band gap energy calculated from the plot of (αhʋ)2 
versus hʋ (shown in Fig. 4b) by the extrapolation of linear 
portion of the curve to energy axis for as-synthesized Z-01 
and Z-02 are 3.2 eV and 3.18 eV, respectively. These val-
ues are lower than the band gap of bulk ZnO (3.37 eV). It 
has been reported that blue-shift in the absorption peak 
arises when size of the particle decreases giving rise to 
larger band gap energy. However, in this case for ZnO 
NPs, band gap energy smaller than that of bulk ZnO has 
been observed [45] which may be due to the existence 
of valence-band donor level overlap by the surface states 
[46] or the insertion of defect levels within the band gap 
[47].

To understand the photophysical  phenomenon of 
the as-synthesised ZnO NPs, Photoluminescence (PL) 
studies were carried out with excitation wavelength of 
320 nm. It has been well established that the UV-range 
emission, called radioactive recombination, occurs due 
to the recombination of excitons, while, the visible 

range emission, called non-radiative recombination, cor-
responds to the recombination of electrons in a deep 
defect level or a shallow surface defect level with holes 
present in the VB [48].

The PL spectra of Z-01 and Z-02 samples are pre-
sented in Fig. 5a, wherein, the prominent peaks in PL 
emission are marked. The non-radiative recombination 
is pre-dominant in both the cases, indicating the occur-
rence of defect states in the samples which resulted 
in lowering of the optical bandgap energy. The sharp 
Lorentzian peak centred at around 642 nm represents 
the orange-red emission, which exists due to the transi-
tion of electrons from CB to oxygen interstitials region 
[49]. Additionally, the intensity of orange-red emission 
is stronger for Z-01 as compared to Z-02. This indicates 
that relatively more oxygen interstitials are present in 
Z-01 than Z-02 [50]. A small hump in the green emission 
region observed in both the samples represent recom-
bination of a shallowly trapped electron with a deeply 
trapped hole at valence band of Zn and oxygen inter-
stitials [51].

Fig. 3  FTIR spectra of as-
synthesized ZnO samples with 
corresponding values and 
bonding information

Fig. 4  a UV–Vis absorption 
spectra, and b Tauc plot of Z-01 
and Z-02 samples, respectively
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The blue-emissions occurring at 453 nm and 471 nm, 
as shown in Fig. 5b, corresponds to the singly ionised Zn 
vacancies [52]. This figure shows the existence of two blue-
green emission bands (or weak green emission) at 484 nm 
and 494 nm, which may be attributed to the transition 
between oxygen vacancy and oxygen interstitial defects 
[50]. The presence of such multiple peaks in the visible 
region is typical for ZnO NPs [53]. The near band gap exci-
tonic emission occurring in the UV-region at ~ 384 nm may 
be ascribed to the radiative recombination between the 
excitons (i.e. electrons in the conduction band and holes in 
the valence band) [54]. Hence, the as-synthesized ZnO NPs 
(both Z-01 and Z-02) have surface defects, as supported 
by the UV–Vis spectroscopic analysis. Moreover, the rela-
tively smaller orange-red emission band and weak near 

band-edge emission in case of Z-02 than Z-01, suggests 
that recombination of electron and hole pairs in Z-02 is 
limited as compared to Z-01.

To determine the microstructures of Z-01 and Z-02 sam-
ples, TEM characterizations were performed as depicted 
in Fig. 6a, b which represents the TEM images of Z-01 and 
Z-02, respectively. As may be observed from Fig. 6a, parti-
cles in Z-01 are highly agglomerated. This means that the 
functionality of PEG in Z-01 was not sufficient for control-
ling agglomeration. As a result, determination of particle 
size in this sample could not be carried out. However, in 
case of Z-02, the formation of ZnO nanorods is quite visi-
ble, which may be observed in Fig. 6b, wherein, PEG played 
the role of structure directing agent. The difference in the 
functionality of PEG in these samples may be attributed 

Fig. 5  a PL spectra of Z-01 and 
Z-02 showing various emission 
states, and b magnified view of 
blue-emission region

Fig. 6  TEM images of a Z-01, 
and b Z-02, c HRTEM image 
displaying the lattice fringes 
of Z-02, and d SAED pattern of 
Z-02, respectively
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to the different mechanisms of ZnO NPs synthesis. The 
average particle size in Z-02 ranges from 25–60 nm. Fig-
ure 6c represents the High resolution TEM (HRTEM) image 
of Z-02. The value of d-spacing is calculated as 0.205 nm 
(2.05 Å) for (101) plane of Z-02, which is consistent with the 
value obtained from the XRD analysis (2.42 Å).  Figure 6d 
represents the selected area electron diffraction (SAED) 
pattern of Z-02 through which, nature of the sample may 
be identified. Herein, the SAED pattern confirms the poly-
crystalline nature of Z-02.

The elemental composition and oxidation states on 
the surface and sub-surface of the as-synthesized sam-
ples were investigated through XPS analysis.  Figure 7a, 
b shows the XPS spectra of Z-01 and Z-02, respectively. 
The wide survey scan of Z-01 is depicted in fig.: A, with 
figs. (i) and (ii) representing the Zn 2p core levels and O 1s 
level, respectively. The appearance of two strong peaks at 
1022.90 eV [55, 56] and 1045.9 eV [57] are evident from fig.: 
(i), which corresponds to the binding energy core levels of 
Zn  2p3/2 and Zn  2p1/2, respectively. The spin-orbital energy 
difference of 23 eV indicated that Zn is present in the sam-
ple as  Zn2+ [45]. XPS spectra of O 1s of Z-01, as shown in 
fig.: (ii), has been deconvoluted into two peaks (Gaussian 
fitting) at 529.9 eV and 531.5 eV, respectively. The peak 
at the lower binding energy (529.9 eV) is accredited to 
the anionic (2−) states of oxygen in the wurtzite geom-
etry of  Zn2+ ion array [58], while the peak at the higher 
binding energy (531.5 eV) corresponds to bulk oxygen (O 
1s) involvement from the adsorbed oxygen of the poly-
mer used (PEG) [59, 60]. Similarly, fig.: B shows the wide 
survey scan of Z-02, while figs.: (iii) and (iv) represent the 
Zn 2p and O 1s levels, respectively. Similar to Z-01, two 
strong Zn peaks appeared at binding energy values of 
1023.14 eV [61, 62] and 1046.14 eV [61], respectively for 

Z-02, corresponding to Zn  2p3/2 and Zn  2p1/2 sub-shells 
with the spin-orbital energy difference of 23 eV, indicat-
ing the presence of  Zn2+ ions. The deconvoluted peaks of 
oxygen appearing at 530.3 eV corresponds to the presence 
of O2

- in Z-02 [63, 64].

3.2  Mechanism of ZnO nanorods formation

The growth unit of ZnO nanocrystal has usually been 
described to be either Zn(OH)2 or [Zn(OH)4]2- species 
depending upon the pH of the reaction [65]. Based on Lit-
erature [66, 67], in strong alkaline medium, the latter acts 
as the dominant species for ZnO nuclei formation. Here, 
as the concentration of  OH- ion is relatively high than  Zn2+ 
ions (MZn

2+:M−
OH = 1:5), ZnO nuclei must have been predomi-

nantly formed from the dehydration of [Zn(OH)4]2− spe-
cies. Τhe reaction involved the mixing of zinc salt with 
NaOH and PEG, which led to the formation of Zn ion 
 (Zn2+). This  Zn2+ then reacted with hydroxyl ion to form 
[Zn(OH)4]2− under alkaline condition. The nucleation pro-
cess guided the bi-directional growth of [0001] (positive) 
and [0001] negative faces of the crystal because of dipole 
interaction. Therefore, the formation of [Zn(OH)4]2− species 
directed the growth of rod-like ZnO NPs, mainly bounded 
by hexagonal prism [0110]. Moreover, in the crystallisation 
process, a possible interaction exists between the precur-
sor and the polymer (PEG), wherein, PEG not only serves 
as a growth director but also acts as a binder to prevent 
agglomeration of the particles. Various types of developed 
complexes of [Zn(OH)4]2− get adsorbed on newly formed 
ZnO nuclei, leading to the elongation of c-axis. This then, 
extend predominantly towards the [0001] facet, causing 
an increase in the number of elongated ZnO particles. 

Fig. 7  XPS spectra of a Z-01, and b Z-02, where, (A) XPS wide survey spectra of Z-01, (B) XPS wide survey spectra of Z-02, (i) Zn 2p for Z-01, 
(ii) deconvoluted spectrum of O 1s for Z-01, (iii) Zn 2p for Z-02, and (iv) deconvoluted spectrum O 1s for Z-02, respectively
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A schematic mechanism depicting the growth of ZnO 
nanorods has been provided in Fig. 8.

3.3  Photocatalytic studies

A xanthene dye, RhB and an azo dye, MB were selected for 
evaluating the photocatalytic activities of the as-synthe-
sized Z-01 and Z-02 under solar irradiation. The temporal 
adsorption spectral changes of the dye solutions, taking 
place during sunlight illumination, have been illustrated 
in Figs. 9 and 10 for RhB and MB, respectively. For compari-
son, photolysis processes were also conducted for these 

dye solutions under identical conditions. It may be seen in 
Fig. 9a that after 160 min of photolysis, negligible reduc-
tion in the intensity of RhB peaks appearing at 554 nm and 
512 nm, respectively, indicating that RhB solution is fairly 
stable towards solar irradiation. The absorbance maximum 
of RhB decreased sharply within 40 min when the aque-
ous solution of RhB mixed with Z-02 sample was exposed 
under solar irradiation. The absorption maximum of RhB 
further decreased to reach a minimum (~ 0), indicating 
that the chromophoric group as well as the dye dimer of 
RhB molecule have broken down. Thus, the presence of 
photocatalyst is essential to accelerate the degradation 
process. In terms of exhibiting efficient photocatalytic 
activity, bulk ZnO is also a potential candidate [68]. A com-
parison based on the photocatalytic effect of Z-01, Z-02 
as well as bulk ZnO towards RhB degradation has been 
studied. From Fig. 9b, it may be observed that, over the 
same period of time (80 min), bulk ZnO offered 84% of 
degradation efficiency, while the photodegradation effi-
ciencies of both the capped samples (Z-01 and Z-02) were 
above 90%, confirming the activity of NPs towards faster 
dye degradation. 

The photocatalytic degradation of dyes is favoured by 
the activity of ROS in the reaction medium [69–71]. These 
ROS, particularly, hydroxyl radicals  (OH∙), superoxide radi-
cals (O2

∙−) and holes  (h+), undergo redox-reactions with 
the adsorbed dye molecules to form simple inorganic 
compounds. Results of the radical scavenging experi-
ments are shown in Fig. 9c. In the absence of scavengers, 
maximum degradation occurred, while in the presence of 

Fig. 8  Schematic representation for the possible formation mecha-
nism of ZnO nanorods

Fig. 9  a UV–Vis absorption 
spectra depicting decrease in 
the absorbance maximum of 
RhB with respect to time of 
irradiation in the presence of 
Z-02, b percentage of Photo-
catalytic degradation of RhB by 
Z-01, Z-02 and bulk ZnO, c role 
of reactive oxidative species 
(ROS) towards RhB photo-
catalytic degradation, and 
d reusability of Z-02 for RhB 
degradation, respectively
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different radical scavengers, the percentage of degrada-
tion decreased significantly. This indicates that all ROS 
are important for efficient photocatalytic degradation of 
dyes. Least photodegradation occurred with EDTA and 
t-BA, indicating that the radicals complimentary to these 
scavengers, i.e.  h+ and  OH∙, respectively, were the species 
mostly responsible for degrading RhB compared to O2

∙−. 
Another important aspect of a good photocatalyst is its 
stability against multiple usage. Figure  9d represents the 
efficiency of Z-02 towards RhB degradation over 3 con-
secutive cycles which is identical, indicating that the sam-
ple Z-02 is fairly stable. Therefore, Z-02 may prove to be a 
beneficial candidate for industrial applications.

Photocatalytic degradation of MB was performed to 
test whether the as-synthesized samples were effective 
towards an azo dye or not. MB shows a strong absorbance 
band at around 664 nm, which represents the chromo-
phoric group and a shoulder peak at around 612  nm, 
corresponding to the dye dimer. Figure 10a shows the 
decrease in absorbance spectra of MB dye due to the 
effect of photocatalytic reaction in the presence of Z-01. 
As may be observed, MB is a stable dye under sunlight 
exposure. However, this photolysis reaction may be accel-
erated through the addition of ZnO photocatalyst, which 
drastically accelerates the reaction process. Figure 10b 
represents the decrease in absorption maxima of MB due 
to Z-02 addition. On comparing Fig. 10a, b, Z-02 has exhib-
ited relatively better photocatalytic activity than Z-01, 
which may be attributed to its smaller particle size and 
limited electron-hole pair recombination. From Fig. 10c, 
the percentage of MB degradation by Z-01 and Z-02 were 

calculated to be 77% and 95% in 45 min, respectively. This 
indicates that in case of MB dye also, Z-02 is more compe-
tent than Z-01. In terms of stability, Z-02 confirms that it is 
a stable photocatalyst with negligible loss in degradation 
percentage over three consecutive cycles, as depicted in 
Fig. 10d.

An important point is the fact that MB degradation 
occurred much faster than RhB degradation. This may be 
due to the negative zeta potential of ZnO which makes the 
adsorption of cationic dye, MB, more favourable than RhB 
[72]. The better photocatalytic activity of Z-02 as compared 
to Z-01 may be due to the smaller particle size, fine struc-
ture (nanorod) with relatively lesser agglomeration and 
higher surface defects in the sample. Further, the pathway 
of dye degradation follows two basic mechanisms, one is 
by N-demethylation and the other through the destruc-
tion of conjugated structure [6]. Here, the degradation is 
probably due to the destruction of conjugated structure 
[6]. The mechanism of RhB degradation may be explained 
according to Scheme  1. Photoexcitation of electrons 
take place in ZnO NPs when exposed to solar radiation. 
These electrons reduce adsorbed oxygen molecules into 
superoxide radicals (O2

∙−) and the water molecules to form 
hydroxide  (HO∙) or hydroperoxyl radicals (HO2

∙). Addition-
ally, holes in the valence band oxidise the adsorbed water 
or  OH− and produce ∙OH. These ROS then degrade dye 
molecules (represented by ‘R’ in Scheme 1) into simple 
inorganic molecules [73].

Fig. 10  a UV–Vis absorption 
spectra of MB degradation by 
Z-01 under sunlight exposure, 
b UV–Vis absorption spectra 
of MB degradation by Z-02 
under sunlight illumination, 
c percentage of MB degrada-
tion by Z-01 and Z-02, and d 
reusability of Z-02 towards MB 
degradation, respectively
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4  Conclusions

This work reports a successful tuning of the photocatalytic 
properties of ZnO NPs using different synthesis methods. 
On the basis of obtained results, smaller crystallite size, 
more number of defect states and nanorod structure 
of Z-02 proved to be important parameters contribut-
ing towards faster photodegradation with 99% of RhB 
degradation in 120 min and 95% of MB degradation in 
45 min. Higher adsorption capability of MB over RhB, led 
to its faster degradation than RhB. Moreover, due to the 
larger surface area of the particles belonging to the nano-
size regime, enhanced photodegradation was observed 
with Z-01 and Z-02 compared to bulk ZnO.
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