
Vol.:(0123456789)

SN Applied Sciences (2019) 1:656 | https://doi.org/10.1007/s42452-019-0632-z

Research Article

Analytical Investigation of MHD Jeffery–Hamel flow problem with heat 
transfer by differential transform method

Ramakanta Meher1  · Nirav D. Patel1

© Springer Nature Switzerland AG 2019

Abstract
The aim of this research paper is to study and analyse the effects of Reynolds number, Hartmann number and thermal 
profile on velocity profiles of magneto hydro dynamics Jeffery–Hamel fluid flow between two non-parallel plates with 
angles 2θ and electromagnetic induction (E0). An approximate analytical solution of the problem that is formulated 
using the Navier–Stokes and continuity equations has obtained in the form of a convergent series using differential 
transform method. The nature and the variation of the velocity profiles of Jeffery–Hamel flow with heat transfer are 
discussed herewith considering different thermal profiles with distinct positive values of Ha and Re in both convergent 
and divergent channels. The authenticity and the usefulness of this method have demonstrated by comparing with the 
available results of optimal homotopy perturbation method and the numerical method.

Keywords Differential transform method · Heat transfer · Jeffery–Hamel flow · System of differential equations

List of symbols
P  Pressure
k  Conductivity of the thermal
ρ  Density
T  Temperature
Re  Reynolds number
E0  Electromagnetic induction
v  Kinematic viscosity
M  Magnetic field
θ  Half-angle between the two plates
Ha  Hartmann number

1 Introduction

There is a great importance of incompressible fluid flow 
with heat transfer in cooling systems of malls and nuclear 
plants. The effect of angle between two unparalleled walls 
on the velocity profiles of viscous fluid was first studied 
by Jeffery [8] and Hamel [6]. They derived a mathematical 
formulation to explain the behaviour of velocity profile 

in both divergent and convergent channels. Since then, 
due to its importance in industry applications, some 
researchers analysed the Jeffery–Hamel flow problem 
with nano-particle with the effect of the magnetic field 
and heat transfer. Rivkind and Solonnikov [21] computed 
the solution of the stationary problem with a finite num-
ber of “outlets” to infinity in the form of infinite sectors. 
Akulenko et al. [1] discussed the solution of steady viscous 
flow in a convergent channel by taking different values of 
Reynolds numbers to explain the physical phenomena of 
the problem. Makinde and Mhone [11] used a special type 
of Hermite-Padé approximation semi-numerical approach 
to obtain the solution of the MHD Jeffery–Hamel problem, 
whereas the same problem was also analyzed by Esmaili 
et al. [4] using Adomian Decomposition Method.

Many approaches, like Travelling Wave Transfor-
mation Method, Cole-Hopf Transformation method, 
Optimal Homotopy Asymptotic Method, Adomian 
Decomposition Method,  Reproducing Kernel Hilbert 
Space Method [16] and Generalized Boundary Element 
Approach were applied by several researchers to deal with 
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Jeffery–Hamel flow problem and other fluid mechanics 
problems which are inherently non-linear. Patil and Kham-
bayat [19] used this technique for the solution of linear dif-
ferential equation and later it was extended by Mirzaee [12] 
for finding the solution of a system of differential equation. 
Zhou et al. [23] applied this technique to the problems aris-
ing in electric circuit analysis. Similarly Ayaz [2] derived a 
solution of the system of partial differential equation using 
DTM whereas Chen and Ho [3] extended it to two-dimen-
sional DTM and obtained the solution of partial differen-
tial equation. Nazari et al. [17] used it to solve a fractional 
order integro-differential equation with non-vocal bound-
ary conditions. Hossein et al. [7] used Differential Transform 
Method and derived a solution of non-linear Gas Dynamics 
and Klein-Gordon equations arising in fluid flow problems. 
Muhmmad et al. [15] analysed the effects of magnetic fields 
between two parallel walls for the unsteady double phase 
nano-fluid flow and heat transfer using Differential Trans-
form Method. Khudir [9] extended the Differential Trans-
form Method to Fractional Differential Transform Method 
(FDTM) and solved an irrational order fractional differential 
equations. Kundu et al. [10] appllied DTM and investigated 
the thermal analysis of exponential fins under sensible and 
latent heat transfer. Mirzaee [13, 14] extended this method 
to three-dimensional fuzzy Differential Transform Method 
and obtained the solution of fuzzy partial differential equa-
tions. Sayed and Nour [22] extended it to Modified Frac-
tional Differential Transform Method using the Adomain 
Polynomials and investigated the behaviour of the projec-
tile motion with quadratic drag force with the local path 
angle, velocity and position at any time t. Patel and Meher 
[18] used it to compute the solution of Kolmogrove–Petro-
vskii–Piskunov equation and also studied the behaviour of 
saturation profiles in fingero-Imbibition phenomena dur-
ing two-phase fluid flow through porous media.

Fig. 1  3D Geometry of MHD Jeffery Hamel Flow

In this paper, the MHD Jeffery–Hamel fluid flow between 
two non-parallel plates with heat transfer is considered to 
analyse the effects of Reynolds number, Hartmann number 
and thermal profiles on velocity profiles of fluid flow. Dif-
ferential Transform Method is used to study the variation of 
velocity profiles during MHD Jeffery Hamel flow between 
two non-parallel plates and thermal profiles with different 
values of Reynolds number and Hartmann number in both 
divergent and convergent channels and also checked the 
accuracy and the validity of the obtained results by compar-
ing the obtained results with the results obtained by Optimal 
Homotopy Perturbation Method and Runge–Kutta Method.

2  Mathematical formulation of the problem

As shown in Fig. 1, consider a viscous fluid flow between 
two non-parallel plates with angles 2θ and (E0) elec-
tromagnetic induction. The continuity equation, the 
Navier–Stokes equation and the energy equation in cylin-
drical coordinates can be written as

(1)
1

l

�

�l
(lul) +

1

l

�

�l
(lu�) = 0

(2)

ul

�ul

�l
+

u�

l

�ul

��
−

u2
�

l
= −

1

�

�P

�l

+ v

[

1

l

�(l�ll)

�l
+

1

l

�(l�l�)

�l
−

�l�

l
−

E
0
M2

�l2
ul

]

(3)

ul

�u�

�l
+

u�

l

�u�

��
−

ulu�

l
= −

1

�l

�P

�l

+ v

[

1

l2

�(l�l�)

�l
+

1

l

�(l���)

��
−

�l�

l
−

E
0
M2

�l2
u�

]



Vol.:(0123456789)

SN Applied Sciences (2019) 1:656 | https://doi.org/10.1007/s42452-019-0632-z Research Article

where ρ is the fluid density, P is the pressure, v is the kin-
ematic viscosity, T is the temperature, k is the thermal con-
ductivity, Tp is the specific heat at constant pressure, E0 is 
the electrical conductivity, M is the induced magnetic field 
and the stress components are defined as

Upon considering the velocity field only along the 
radial direction, i.e., uα = 0 and substituting Eqs. (5)–(7) into 
Eqs. (2) and (3), the continuity, Navier–Stokes and energy 
equations become:

The relevant boundary conditions, due to the symmetry 
assumption at the channel centreline, are as follows:

and at the plates making the body of the channel:

where um and Tm are the middle line rate of movement and 
the constant wall temperature, respectively.

From the continuity Eq. (8), one can get,

in which h(l) is an arbitrary function of l only.
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Upon considering the dimensionless parameters:

into Eqs.  (4)–(9) and eliminating the pressure term, it 
obtains

Subjected to the boundary conditions

where Pr =
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temperature.

3  Differential transform method 
for ordinary differential equation

Differential Transform of function e(η) can be defined as 
follows:

where e()is original function and E(k) is the transformed 
function. The uppercase and the lowercase letters repre-
sent the transformed and the original function respec-
tively. The inverse differential transform of E(k) is defined 
as:

Using Eq. (20) in (21), it gives,

4  Solution through differential transform 
method

Upon applying the fundamental operations of differential 
transform method to Eq. (16)–(17), it obtains,
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And by using the conditions (18) and (19), it becomes,

In particular case, for Re = 50, Pr = 1, β = 3.492161428  10−13, 
� =
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Fig. 2  Comparison between DTM and numerical results for the 
velocity e(γ) when H = 0, θ = 7.5°

Equations (22) and (23) describes the velocity profile of 
Jeffery Hamel flow with heat transfer with fixed value of 
Reynolds and Hartmann numbers.

5  Convergence of solution

Theorem Let ϕ  be an operator from a Hilbert space H0 
into H0 and let E be an exact solution of Eqs. (16) and (17). 
Then 
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Definition For every i ∈ N ∪ {0}, Ψi can be defined as

Corollary If 0 ≤ 𝛹i < 1, i = 1, 2, 3,…, then 
∑∞

i=0
Ei is con-

verges to the exact solution E.
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6  Results and discussion

Figures 2, 3 and Tables 1, 2 discusses the comparison of 
the DTM results numerically as well as graphically with the 
existing OHPM and numerical results from which it can 
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Fig. 3  Comparison between DTM and numerical results for the 
velocity h(γ) when H = 0, θ = 7.5°

Table 1  Comparison between 
DTM (Differential Transform 
Method), OHPM and Numerical 
solution [5] when Ha = 0 and 
θ = 7.5° for e(γ)

Error-1 = |DTM – NM| & Error-2 = |OHPM − NM|

γ DTM OHPM NM Error-1 Error-2

0 1 1 1 0 0
0.1 0.977149189 0.977144496 0.977142605 6.58E−06 1.89E−06
0.2 0.911491341 0.911480205 0.911479228 1.21E−05 9.78E−07
0.3 0.811006335 0.811005466 0.81100524 1.1E−06 2.25E−07
0.4 0.686905033 0.686916303 0.686914822 9.8E−06 1.48E−06
0.5 0.551291472 0.55128953 0.551288321 3.15E−06 1.21E−06
0.6 0.415134502 0.415109174 0.415108895 2.56E−05 2.79E−07
0.7 0.287100777 0.2870555 0.287054632 4.61E−05 8.68E−07
0.8 0.173268068 0.173123152 0.173122139 0.000146 1.01E−06
0.9 0.077209769 0.076872106 0.076871576 0.000338 5.3E−07
1 0.0000002 0 0 0 0

Table 2  Comparison between 
DTM (Differential Transform 
Method),OHPM(Optimal 
Homotopy Perturbation 
method) and Numerical 
solution [5] when Ha = 0 and 
θ = 7.5° for e(γ)

Error-1 = |DTM − NM| & Error-2 = |OHPM − NM|

γ DTM OHPM NM Error-1 Error-2

0 − 9.13E−12 − 9.13456E−12 − 9.1344E−12 2.00E−19 1.55E−16
0.1 − 8.55E−12 − 8.56173E−12 − 8.554E−12 8.74E−19 7.75E−15
0.2 − 7.03E−12 − 7.02901E−12 − 7.029E−12 1.80E−19 1.80E−23
0.3 − 4.97E−12 − 4.9599E−12 − 4.9681E−12 2.66E−18 8.15E−15
0.4 − 2.83E−12 − 2.83035E−12 − 2.8304E−12 1.91E−17 1.30E−23
0.5 − 1.00E−12 − 1.01563E−13 − 1.00E−12 9.40E−17 9.02E−13
0.6 2.76E−13 2.75572E−13 2.76E−13 7.41E−18 8.00E−24
0.7 9.40E−13 9.68295E−13 9.40E−13 2.55E−18 2.85E−14
0.8 1.06E−12 1.06234E−12 1.06234E−12 2.32E−16 3.00E−24
0.9 7.68E−13 6.52409E−13 7.68E−13 6.37E−17 1.16E−13
1 0 0 0 0 0

Which implies limn,m→∞
‖

‖

Sn − Sm
‖

‖

 , i.e., 
{

Sn
}∞

n=0
 is a Cauchy 

sequence in a Hilbert space H and it convergence to S for 
S ∈ H.
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be observed that there is a good agreement between the 
obtained DTM results with the available results.

Figures 4, 5, 6, 7, 8, 9, 10, 11 and 12 discusses the varia-
tion of velocity profiles of the MHD Jeffery Hamel flow with 

the effects of different parameters. Figures 4 and 5 discuss 
the variation of velocity profiles for different Hartmann 
number keeping Re fixed, which shows that the flow veloc-
ity is increased as the value of Hartmann number increases 
with the fixed value of Reynolds number and it is more for 

Fig. 4  Variation of velocity profiles with different Hartmann num-
ber with θ = 7.5°

Fig. 5  Variation of velocity profiles with different Hartmann num-
ber with θ = 5°

Fig. 6  Variation of velocity profiles with different Reynolds number 
with θ = 5°

Fig. 7  Variation of velocity profiles with different Reynolds number 
with θ = 5°
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Fig. 8  Variation of velocity profiles with different Reynolds number 
with θ = 7.5°

Fig. 9  Variation of velocity profiles with different Reynolds number 
with θ = 7.5°

Fig. 10  Variation of velocity profiles with different angle with 
H = 250

Fig. 11  Variation of velocity profiles with different angle with 
H = 250
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higher Hartmann number i.e. H = 1000 and it is lower for 
H = 500.

Similarly, Figs. 6, 7, 8 and 9 discusses the variation of 
velocity profiles for different Reynolds number keeping Ha 

and θ fixed which shows that the flow velocity is decreased 
as the value of the Reynolds number is increased with the 
fixed value of Hartmann number and it is more for Re = 40 
while it is lower for Re = 60.

Figures 10, 11, 12 discusses the variation of veloc-
ity profiles in divergent channels with different angles 
for fixed Reynolds number Re = 50 and for different 

Fig. 12  Variation of velocity profiles with different angle with 
H = 1000

Fig. 13  Variation of thermal profiles with different Hartmann num-
ber

Fig. 14  Variation of thermal profiles with different Hartmann num-
ber

Fig. 15  Variation of thermal profiles with different angle for H = 0
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Hartmann number H = 200, 500 and 1000 which shows 
that the flow velocity decreases as the angel of incli-
nation is increases and it is higher for high Hartmann 

number H = 1000 and lower for low Hartmann number 
H = 200 keeping Re = 50 fixed.

The effect of Hartmann number, half angle θ and Reyn-
olds number on the thermal profile of flow is presented 
in Figs. 13, 14, 15, 16, 17 and 18. From Figs. 13, 14, it can 
be observed that the thermal temperature decreases as 
the value of Hartmann number increases and it is more 
for higher Hartman number i.e. for Ha = 1000. Similarly, 
Figs. 15, 16, 17 and 18 discusses the effect of the half 
angle θ on the thermal velocity profiles which shows 
that the thermal temperature of the velocity profiles 
decreases as the angle of inclination of the plane is 
increases with different Hartmann number and it is maxi-
mum for Ha = 1000.

Tables 3 and 4 discuss the comparison of the numeri-
cal results obtained by DTM with the numerical results 
of Runge–Kutta method for Re = 50 and θ = 7.5° while 
Tables 5 and 6 discuss the comparison of the numerical 
results of DTM with the numerical results of Runge–Kutta 
method for Re = 50, θ = 5° with different Hartmann num-
ber which shows that there is a good agreement between 
the obtained DTM results with the available numerical 
results.

Fig. 16  Variation of thermal profiles with different angle for H = 250

Fig. 17  Variation of thermal profiles with different angle for H = 500

Fig. 18  Variation of thermal profiles with different angle for 
H = 1000
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Table 3  Comparison of DTM 
with numerical solution for 
Re = 50 θ = 7.5°

γ Ha = 0 Ha = 250

DTM Numerical Error DTM Numerical Error

0 − 9.13441E−12 − 9.1344E−12 2.00E−19 − 8.52003E−10 − 8.52004E−10 1.123E−15
0.1 − 8.55398E−12 − 8.554E−12 8.74E−19 − 8.39596E−10 − 8.39597E−10 1.34578E−15
0.2 − 7.02901E−12 − 7.029E−12 1.80E−19 − 8.03247E−10 − 8.0325E−10 3.4678E−15
0.3 − 4.96806E−12 − 4.9681E−12 2.66E−18 − 7.45022E−10 − 7.4503E−10 8.247E−15
0.4 − 2.83035E−12 − 2.8304E−12 1.91E−17 − 6.67641E−10 − 6.67706E−10 6.48215E−14
0.5 − 1.00358E−12 − 1.0036E−12 9.40E−17 − 5.74626E−10 − 5.74674E−10 4.7798E−14
0.6 2.75572E−12 2.75572E−12 7.41E−18 − 4.69072E−10 − 4.69833E−10 7.60987E−13
0.7 9.39818E−12 9.39818E−12 2.55E−18 − 3.56657E−10 − 3.57124E−10 4.66886E−13
0.8 1.06234E−12 1.06234E−12 2.32E−16 − 2.39114E−10 − 2.39801E−10 6.87645E−13
0.9 7.68428E−12 7.68428E−12 6.37E−17 − 1.194E−10 − 1.20067E−10 6.66987E−13
1 0 0 0 0 0 0

Table 4  Comparison of DTM 
with numerical solution for 
Re = 50, θ = 7.5°

γ Ha = 500 Ha = 1000

DTM Numerical Error DTM Numerical Error

0 − 1.78329E−09 − 1.7833E−09 1.123E−14 − 3.88589E−09 − 3.8859E−09 1.123E−14
0.1 − 1.753E−09 − 1.75302E−09 1.34578E−14 − 3.80438E−09 − 3.80439E−09 1.34578E−14
0.2 − 1.66678E−09 − 1.66681E−09 3.4678E−14 − 3.57507E−09 − 3.5751E−09 3.4678E−14
0.3 − 1.53128E−09 − 1.53137E−09 8.247E−14 − 3.22288E−09 − 3.22296E−09 8.247E−14
0.4 − 1.35568E−09 − 1.35633E−09 6.48215E−13 − 2.7829E−09 − 2.78296E−09 6.48215E−14
0.5 − 1.15191E−09 − 1.15239E−09 4.7798E−13 − 2.29317E−09 − 2.29321E−09 4.7798E−14
0.6 − 9.29348E−10 − 9.30109E−10 0.60987E−12 − 1.78929E−09 − 1.79006E−09 7.60987E−13
0.7 − 6.98515E−10 − 6.98982E−10 4.66886E−12 − 1.30247E−09 − 1.30294E−09 4.66886E−13
0.8 − 4.64522E−10 − 4.6521E−10 6.87645E−12 − 8.43574E−10 − 8.44262E−10 6.87645E−13
0.9 − 2.3126E−10 − 2.31927E−10 6.66987E−12 − 4.10076E−10 − 4.10743E−10 6.66987E−13
1 0 0 0 0 0 0

Table 5  Comparison of DTM 
with numerical solution for 
Re = 50, θ = 5°

γ Ha = 0 Ha = 250

DTM Numerical Error DTM Numerical Error

0 − 2.55249E−11 − 2.55253E−11 3.5477E−16 − 3.39773E−09 − 3.39774E−09 1.523E−14
0.1 − 2.44293E−11 − 2.44298E−11 4.53558E−16 − 3.34662E−09 − 3.34664E−09 1.34568E−14
0.2 − 2.14395E−11 − 2.144E−11 4.64756E−16 − 3.19947E−09 − 3.1995E−09 3.4678E−14
0.3 − 1.71427E−11 − 1.71452E−11 2.42356E−15 − 2.9642E−09 − 2.96428E−09 8.247E−14
0.4 − 1.22738E−11 − 1.22773E−11 3.45558E−15 − 2.65311E−09 − 2.65318E−09 7.64821E−14
0.5 − 7.57541E−12 − 7.57905E−12 3.63636E−15 − 2.28112E−09 − 2.28117E−09 4.7798E−14
0.6 − 3.63315E−12 − 3.6367E−12 3.5477E−15 − 1.86328E−09 − 1.86404E−09 7.60987E−13
0.7 − 7.9376E−13 − 8.31636E−13 3.7876E−14 − 1.4163E−09 − 1.41677E−09 4.66886E−13
0.8 6.37297E−13 6.93057E−13 5.576E−14 − 9.51481E−10 − 9.52167E−10 6.86645E−13
0.9 9.3656E−13 9.72127E−13 3.5567E−14 − 4.79194E−10 − 4.79862E−10 6.67987E−13
1 0 0 0 0 0 0
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7  Conclusion

In this article, the flow behavior of the velocity profiles 
in MHD Jeffery–Hamel fluid flow between two unpar-
alleled plates with thermal profiles is discussed using 
Differential Transform Method at different slopes for 
different Reynolds number and Hartmann number in 
both convergent and divergent channels and derived 
the efficiency of the present method by comparing the 
obtained results with the available results obtained by 
the Optimal Homotopy Perturbation method and with 
the Numerical results. It can be concluded that Differ-
ential Transform Method is a reliable method that gives 
the solution in the form of a convergent series that can 
be easily handled in analysing the effect of Reynolds 
numbers, Hartmann numbers and half angle on both 
velocity profiles as well as on the heat transfer in MHD 
Jeffery–Hamel fluid flow.
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