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Abstract
In this paper, a modified equivalent circuit model is proposed to elucidate the electrical behavior of Organic Solar Cells 
(OSCs). In this way, this single diode model uses a voltage-dependent series resistance to enhance the modeling accuracy 
while benefiting from the simplicity of the equivalent circuit. The voltage dependency of the series resistance of OSCs 
is mainly related to internal processes of charge extraction and charge transport. The charge extraction at electrodes 
is influenced by space charge effect and many other physical parameters including exciton lifetime, dissociation rate, 
and free carrier recombination.The carrier transport process from donor/acceptor interface to electrodes is governed by 
its mobility. On the other hand, carrier mobility of organic material depend on field variation. The voltage-dependent 
series resistance is not often used in the today’s OSC circuit models due to a lack of a reliable field-dependent extrac-
tion approach. This proposed model expands its application in finding optimum bias, behavior analysis and efficiency 
improvement of OSCs. At first, a genetic algorithm curve fitting is applied to the measured current–voltage characteristics 
to extract the model’s parameters assuming an average constant series resistance. Then a new algorithm is proposed for 
extracting the voltage-dependent series resistance. Finally, consistency of the extracted field dependent series resist-
ance with previous literature is presented. The results shows that the average mean square errors of the predicted J–V 
characteristics by the proposed approach for five cells under test is improved by a factor of 106 in comparison with those 
of a constant value R

s
 approach. This is the first successful extraction of voltage dependent series resistance of OSCs from 

DC current–voltage characteristic.
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1 Introduction

Organic photovoltaic cells (OPCs) represent a highly 
attractive candidate for harvesting solar energy because 
of promising properties such as mechanical flexibility, low 
cost fabrication, light weight, ease of processability and 
semi-transparency [1, 29]. The single junction bulk hetro-
junction (BHJ) organic solar cells (OSCs) have reached 
power conversion efficiencies (PCE) surpassing 11% [21], 
however, further electrical performance and reliability 
improvements are required. In recent years, promising 
OSCs with non-fullerene acceptors (NFAs) has also been 
introduced [12]. In comparison with OSCs with fullerene 
acceptors, NFAs provide larger power conversion efficiency 
( 14% for single junction and  18% for tandem cells), excel-
lent stability and tunability of bandgaps, energy levels, 
crystallinity and planarity. Usually, electrical simulation 
and modelling are performed prior to solar cell installation 
in order to optimize the performance of the overall system.

The physical modeling required for exciton and car-
rier transport studies is often performed with differential 
equations [30, 48]. These equations can be numerically 
solved by discretization methods including finite differ-
ence method [23] or meshless methods such as chebichef 
function method [15]. Solving these models results in pre-
dicting the behavior of organic solar cell and achieving 
all information at each point inside the device [8, 31]. In 

photovoltaic system design, a simulation with low com-
putational burden is needed to predict the module perfor-
mance and consequently to optimize the power output. 
Therefore, an equivalent circuit model elucidating the 
electrical behavior of OSCs is of vital interest [28].

Equivalent circuit models of OSCs are both simple and 
fast. They are also very useful for understanding how differ-
ent factors influence on the behavior of solar cells [2, 11, 36]. 
The models simplicity limits the fitting quality (the process 
that fits the models parameters to the measured I–V curve). 
Therefore, the equivalent circuit models are often used 
possess additional or modified elements [2, 11, 17, 19, 26, 
32–34, 36, 46, 50]. The single diode model based on Shock-
ley relation, shown in Fig. 1, is often employed for modeling 
organic/inorganic solar cells [5, 43]. The equivalent circuit 
implements the Shockley relationship as:

where J is the current density, V is cell voltage, Jph is gen-
erated photocurrent,J0 is the saturation current density 
under reverse bias, Rp is the parallel or shunt resistance, Rs 
is the series resistance, Vt is the thermal potential and n is 
the ideality factor.

In this paper, we proposed a new equivalent circuit with 
a voltage-dependent series resistance based on Eq.  (1). 
This voltage-depended series resistance reflects the field 

(1)J = J0

(
exp

(
V − JRs

nVt

)
− 1

)
+

V − JRs

nVt
− Jph
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dependency of the organic materials. In this paper, voltage 
dependency of the series resistance is explained using a 
simple expression, see Eq. (10). Different approaches have 
already been suggested for extraction of series resistance 
[37]. For example, Rs can be extracted from the slope of the 
dark current–voltage curve (at voltages higher than the 
open circuit voltage) [37] or if we consider a voltage inde-
pendent photocurrent, we can extract the Rs from the slope 
of J dV

dJ
 versus J [57]. In another method a closed form rela-

tion is given to extract the Rs at open circuit bias [9]. Though, 
these methods have their own advantages and shortcom-
ings, none of them is suitable for extraction of the voltage-
dependent series resistance. In this paper, a numerical algo-
rithm is proposed for extraction of Rs(V ) which in fact is an 
extension to the method in [37]. Other parameters of the 
equivalent circuit are also extracted employing an intelligent 
optimization method. The multi junction OSCs would be 
modeled with multi-diodes equivalent circuits. Although in 
this work we focused on modeling single-junction cells, basi-
cally our model can be extended for multi-junction cells, too.

The rest of paper is organized as follows. In Sect. 2, a basic 
of series resistance in OSC and the algorithm implemented 
for the conventional parameters extraction are described. 
In Sect. 3, after obtaining an analytical equation to calculate 
the voltage-dependent at open circuit voltage ( Voc ), the volt-
age-dependent extraction approach for other bias points is 
explained and two verification criteria are given. In Sect. 4, 
the new method for variable series resistance is explained.
In Sect. 5 proposed method is applied to the measured J–V 
curves and the results are discussed. Finally, the conclusion 
is presented.

2  Series resistance model

The series resistance ( Rs ), which is influenced by charge 
carrier mobility ( �n and �p ), is one of the key parameters 
that affects the electric performance of OSC in terms of 

fill factor (FF) [62] and the mobility is affected by traps or 
other barriers (hopping) [5, 25]. Also, dense photocarri-
ers around the electrode of OSC, because of difference 
between carrier mobilities, results in space charge accu-
mulation (limit) and degradation of electrical properties 
such as the series resistance. Several analytical and numer-
ical approaches have been proposed to obtain the accu-
rate value of series resistance [4, 9, 10, 16, 27, 35, 37, 41, 
42, 45, 51, 61, 62] , however, few of them focused on the 
voltage dependency of series resistance [22, 27, 40, 62]. 
Since any rising in Rs reduces efficiency of the cell, many 
researchers tried either to use suitable materials [59] or 
develop better manufacturing technologies [24] to reduce 
it. Both of these groups need more accurate models for 
better understanding and designing OSCs. Rs is basically 
determined by charge mobility; however, other phenom-
ena, such as space charge limitation and traps, have strong 
influences on it as well. Series resistance ( Rs ) of a typical 
OSCs is showed in Fig. 2, consists of two parts including 
external part and internal part as:

The external part ( Rext
s

 ) is usually considered as a constant 
value and consist of the contacts resistance ( Relec ) and 
buffer layers ( Rbuff).

Usually one of the contacts is made with Aluminium or sil-
ver that has large conductivity, hence its series resistance 
is negligible. But the other contact commonly is made with 
ITO or FTO that has higher resistance. Assuming lateral cur-
rent flow, the ITO series resistance ( Relec ) is [47]:

(2)Rs = Rext
s

+ Rint
s

(3)Rext
s

= Relec + Rbuff

(4)Relec =
W2

3�electelec

Fig. 1  The typical single diode model

Cathode

HTL 

ETL

Anode (Transparent or mesh)

Fig. 2  Schematic structure of the five cells under test
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where W is device width (in our case 3 mm), is anode thick-
ness and is anode contact conductivity. The series resist-
ance of all other layers is the ratio of their thickness over 
electric conductivity.The 1 nm LiF layer (as buffer) has 
series resistance of about 1ΩCm−2 [60] and for thin buffer 
layer it is negligible.

In the bulk heterojunction OSCs, the internal part of 
series resistance ( Rint

s
 ) is mainly affected by the active 

layer carrier transport and traps and defects at interfacial 
boundaries [22]. The main idea behind variable is that 
charge carrier mobility in organic material varies as a func-
tion of the electrical field. The charge carrier mobility in 
organic materials obeys the Poole–Frenkle relationship 
[13],

where E is the electric field, �0 is the zero field mobility 
and � is the Poole–Frenkle constant which is determined 
as [48]:

where �0 is the vacuum permittivity, �r is the material per-
mittivity, T is the temperature and KB is the Stefan–Boltz-
mann constant. Similarly for active layer resistance we 
have:

when Electrical conductance of active layer is illustrated 
as Eq. (8):

For applying these equations for calculating resistance 
of active layer, electrical field distribution is needed. The 
electrical field is related to applying voltage to the elec-
trodes of cell. The modified drift-diffusion model is used 

(5)�(E) = �0exp
(
� ⋅ E0.5

)

(6)� =
q0.5

2vT
√
��0�r

(7)Rint =
Lactive

�activeA

(8)�active = q
(
n�n + p�p

)

for determining voltage distribution in BHJ solar cell [30]. 
Figure 3 shows the result of this simulation. In this figure, 
one dimensional inside voltage distribution of the simu-
lated organic solar cell is illustrated. It shows this distribu-
tion is approximately linear except near contacts. Thus we 
can suppose the distribution of inside potential is linear as:

where, x is axis that perpendicular to the surface cell. 
Factors a and b are determined according to boundary 
conditions. At this simulation linear regression determine 
a = − 0.01 and b = 0.61. Since electrical field is resulted by 
voltage derivation, it can be inferred E = a. Relations (5)–(8) 
and E=a lead to Eq. (10) that used for finding series resist-
ance in active layer.

Also, dependency of series resistance to applying bias vari-
ation can be influenced by the space charge. The space 
charge limit effect is a universal phenomenon in semicon-
ductor devices and also sets a fundamental electrostatic 
limit in electrical properties of organic semiconductor 
devices with unbalanced photocarriers mobility and high 
exciton generation efficiency [3, 39, 49, 53]. Photo current 
and series resistance may take effect of this phenomena 
but it is not inspected in this paper. Considering Eqs. (2) 
to (10), the voltage dependency of the series resistance 
is obvious.

3  Modeling J–V curve

Considering a field-dependent series resistance in OSC 
equivalent circuit improves the accuracy of the model. In 
this paper we propose a method for extracting a voltage-
dependent series resistance from current–voltage (J–V) 

(9)Vapp = ax + b

(10)Rint =
Lactive

q
(
n�0n + p�0p

)
exp

(
� ⋅ a0.5

)

Fig. 3  Distribution of internal 
voltage
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characteristics. This method can be applied to both dark 
and illuminated measured J–V curves. However, due to 
light intensity dependency of OSC parameters [52, 54], an 
illuminated J–V curves is more realistic and it is preferred 
for extraction in our work.

Charles et  al. [9] presented a practical method of 
extracting single diode equivalent circuits parameters, 
including constant value series resistance, from J–V char-
acteristics. Jain and his coworker [25] used the Lambert 
W-function for a similar purpose. In another effort, an ana-
lytical method is developed to calculate the parameters 
of the solar cells using Trans Function Theory [51]. In this 
work, we have employed an artificial intelligent fitting 
algorithm based on a genetic algorithm to extract J0 , Rp , n 
and Jph from measured J–V curves. The population is con-
sidered equal to 50 chromosomes (it is not critical, and the 
population size has effect on convergence time) and mean 
square error (MSE) is used as fitness (objective) function:

where P denotes number of measured current density 
points and JMes

k
 and corresponding JCal

k
 show the measured 

and the calculated current density at each measurement 
point, respectively. Equation (1) is used for calculating JCal

k
 

in each generation based on the extracted parameters in 
that generation.

In this fitting algorithm (GA), in addition to above men-
tioned parameters, a constant value Rs , so called RGA

s
 , is also 

extracted. On the other hand, the simplest method to find 
approximated value of the series resistance is obtained 
from the voltage–current differentiation at open circuit 
voltage as below:

In fact, Rops  is the dynamic resistance at open circuit volt-
age. However, some other researchers prefer to derive the 
series resistance at maximum power (operation point), as 
below [11]:

One can also obtain the series resistance at large bias volt-
ages as:

(11)MSE =
1

P

P∑

k=1

(
JMes
k

− JCal
k

)

(12)Rop
s

=
dV

dJ
|V=Voc

(13)Rmp
s

=
dV

dJ
|V=Vmp

(14)R∞
s
=

dV

dJ
|V=∞

4  Voltage dependent series resistance 
extraction

Prior to extracting voltage-dependent series resistance, it 
should be noted that in some OSCs, an S-shaped deforma-
tion or S-kink emerges within the fourth quadrant of the 
measured J–V characteristics. In OSCs, the S-kinks origin 
has been attributed to various physical phenomena such 
as charge accumulation at the cathode interface [14], the 
presence of strong interface dipoles [20], unbalanced 
charge transport and interfacial energy barriers [7]. Both 
S-kink and voltage-dependent photocurrent can also be 
caused by space charge limitation (SCL) [58], interfacial 
energy barriers shifting and charge transport dissociation 
and recombination [38]. In order to model these phenom-
ena a voltage-dependent current source or additional 
diodes should be included in the model [18]. The presence 
of such a bend in J–V curve reduces the solar cell’s fill fac-
tor seriously and thus represents a reduction in the cell’s 
power conversion efficiency. Thus, usually these effects 
are avoided, minimized or shifted using suitable materi-
als selection and modification of the fabrication processes 
[14, 44, 56]. Therefore, a constant value photocurrent is 
considered in our model.

If a voltage dependent series resistance is assumed, 
from Eq. (1), we can drive d

dJ
 as follows:

Considering Eqs. (12) and (15), Roc
s

 at the open circuit volt-
age ( J = 0 and V = Voc ) is:

In which Rops  and Voc can be easily obtained from measure 
J–V curves, however, J0 , n and Rp are achieved using the 
genetic algorithm method as discussed in previous sec-
tion. If series resistance varies with changing bias voltage, 
then analytical relation cant be received. So, relation (16) 
is acceptable only in open circuit voltage.

In (1), if Rs << Rp (where, Rp is typically more than several 
orders of magnitude larger than Rs ), 

J

J0
>> 1 (this approxima-

tion holds only for forward biases)and J́ = J − Jph we can 
write:

(15)

1 = −
dJph

dJ
+ J0exp

(
V − JRs

nVt

)(
1

nVt
+

1

Rp

)

×

(
dV

dJ
− Rs − J

dV

dJ
⋅

dRs

dV

)

(16)
Roc
s

= Rop
s

−
1

J0

nVt
exp

(
Voc

nVt

)
−

1

Rp
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And differentiation of the above equation gives ( dJ́ = dJ):

In Eq. (18) one can draw J́ dV
dJ

 as a function of J, then the 
slope will represent the extracted Rs . We should remem-
ber that Jph is already extracted using the proposed GA 
algorithm. In the event of a constant Rs a regression is 
usually used for calculation of the slope. But if Rs is volt-
age dependent, the slope is a function of applied voltage. 
Therefore, in our method, the regression process is applied 
to the measured data over a limited voltage window 
for each bias point ( Vi ). This approach is called Window 
Regression Algorithm (WRA) and it is explained as below:

(17)

⟹ J́ = J0 ⋅

(
exp

(
V − JRs

nVt

)
− 1

)

⟹
J́

J0
+ 1 = exp

(
V − JRs

nVt

)

⟹
V − JRs

nVt
≅ ln

(
J́

J0

)

(18)J́
dV

dJ
≅ ⋅Rs ⋅ J + nVt

(19)Rvar
s

(Vi) = m

(
J́
dV

dJ
, J

)
|V=Vi

where, m denotes slope. The window regression width is 
limited to 2N + 1 measured data around the desired extrac-
tion point. For example, the Fig. 4 illustrates the window 
regression results around Vi with N = 10 . The extracted Rvar

s
 

at Vi = 0.55V  is 48 ohms. In this way, the variable series 
resistance can be calculated for each point. In the other 
side, the exact value of Rs at Voc is given in Eq. (16) and can 
be used for verification of the extracted results as follows:

(20)Rvar
s

(Voc) = Roc
s

Fig. 4  a An example of using 
the WRA introduced in Eq. (18). 
b The corresponding regres-
sion error percentage. In this 
window the maximum regres-
sion error is 0.03%

Table 1  Different cells and their corresponding processes used

Cells Active Layers Solvents 
annealed

A P3HT:C60 Cl-naph:CB No
B P3HT:C60 M-naph:CB No
C P3HT:C60 ODCB Yes
D P3HT:PC61BM ODCB No
E P3HT:C60 ODCB No
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5  Application to organic solar cells

In this section, our extraction method is applied to the 
measured J–V characteristics of five BHJ cells based on the 
blend of P3HT:C60 and P3HT:PC61BM. Figure 2 illustrates 
structure of these five OSCs.

In these OSCs, PEDOT:PSS and LiF are used as buffer 
layers and the active layer materials are listed in Table 1. 
In all cells, P3HT (poly(3-hexylthiophene)) is employed 
as electron donor polymer and cheap fullerene C60 and 
[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) are 
also used as electron acceptors.

The solvents used are 1-Chloronaphtalene mixed with 
Chlorobenzene (Cl-naph:CB), 1-Methylnaphtalene mixed 
with Chlorobenzene (M-naph:CB) and ODCB. The cells A 
and B are prepared with the two first solvent mixtures. 
The annealed cell of C (P3HT:C60) and also D and E cells 
are processed using ODCB solvent. First, the proposed GA 
method is used to extract J0 , n, Rp , Jph and a constant value 
RGA
s

 for all cells variants and the results are presented in 
Table 2. The OSC A that prepared with Cl-naph:CB has the 
least series resistance among all other four cells. In com-
parison with other cells, because the cells’ area is constant 
(0.09 cm2 ), it can be infer that cell A has a lower active area 
series resistance due to larger carrier mobility.

The diode ideality factor (n) is related to types of 
recombination and quantitatively describes the active 
layer morphology. One possible explanation could 
be, a larger n implies more aggregation and larger 
polymer:fullerene interfacial areas and higher exci-
ton dissociation probability within the active layer [6]. 
Table 2 shows the biggest n for the variant D (made of 
P3HT:PC61BM). In fact, solubility of PC61BM in ODCB 
solvent is much higher than others. The lowest ideal-
ity factor of cell B (in Table 2) indicates that this struc-
ture behaves more similar to a bilayer OSC. By compar-
ing the FFs of C and E cells (see Fig. 5), annealed and 
untreated cells processed with ODCB solvent, respec-
tively, indicates performance enhancement by anneal-
ing. Also, one can see that the photocurrent improves 

and the series resistance decreases by annealing. These 
are mainly due to P3HT recrystallization, which in turn 
enhances the carrier mobility and improves the charge 
transport.

The series resistance at maximum power point, higher 
applied voltages and open circuit voltage is extracted 
using Eqs. (13), (14) and (16). Table 3 shows these results 
for the five OSCs under test. From the extraction results it 
is obvious that the Rs decreases by applied voltage, which 
is mainly related to the field dependency of the carriers 
mobility. This has been already confirmed in previous 
researches [22, 27, 62].

Also, by using relation (18) and the proposed WRA, the 
voltage dependent series resistances ( Rs(V ) ) for all the cells 
under test can be extracted from J–V characteristics. The 
results are presented in Fig. 6. The extracted results pre-
sented in Fig. 6 show that generally the series resistance 
decreases by increasing the voltage. These results show a 
good consistency with the simple approximation model 
given in Eq. (10). It should be mention that by consider-
ing a voltage dependent, the J–V curves predicted by the 
modified single diode equivalent circuit have a much better 

Table 2  Extracted model parameters with the proposed genetic 
algorithm for all the cells variants

Cells A B C D E

J
0
(�.A) 1.52 4.4 13 27.4 0.97

n 3.2 2.5 3.3 4.6 3.2
Jph(mA) 8.7 8.5 5.9 5.4 1.8
Rp 310 340 194 370 514
Rs 4.5 6.9 6.4 15 6.5
MSE 2.5e−8 1.3e−8 5.3e−9 1e−9 1.1e−7

A
B
C
D
E

0        0.1       0.2        0.3      0.4       0.5       0.6
Applied Voltage (V)      

10

8

6

4

2

0

-2

-4

-6

-8

mC/A
m(

ytisneDtnerruC
2 )

Cell A B C D E

Voc 0.465 0.475 0.475 0.585 0.545

Jsc 8.6 8.5 5.7 5.2 1.8

FF 53 50 41 40 36

X10-3

Fig. 5  J–V characteristics of the cells under test

Table 3  Extracted series resistance from different methods for all 
the cell variants

R
s
(

�

Cm2
) A B C D E

R
mp
s

47 41 81 68 300

Roc
s

8 10 11 25 30

RGA
s

4.5 6.9 6.4 15 6.5

R∞
s

1.2 2.1 3.3 1.8 4.5
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fitting to the measured J–V characteristics. Table 4 compares 
the MSE of the fitting process of GA extraction to those of 
the new WRA approach. For a better comparison, the series 

resistances extracted using relations (12), (13), (16) and (18) 
along with the extracted voltage dependent are illustrated 
in a separate diagram for each cell variant in Fig. 6.

Fig. 6  Extracted voltage dependent series resistances for the cells under test



Vol.:(0123456789)

SN Applied Sciences (2019) 1:619 | https://doi.org/10.1007/s42452-019-0613-2 Research Article

A good agreement between the extracted voltage 
dependent Rs at open circuit point ( RVar

s
(Voc) obtained 

from WRA) and Roc
s

 which was calculated from accurate 
equation of (16) is obtained. The difference between 
RVar
s

(Voc) and Roc
s

 for cell E is mainly related to the limita-
tion in measuring the extremely low current values at Voc . 
However, it is obvious that the simple dynamic resistance 
at maximum power point ( Rmp

s  achieved from Eq. (13) is 
not a very good approximation for the series resistance 
value at this voltage. In addition, RVar

s
(Voc) at considerable 

high applied voltages reduces to a constant value that 
is a good approximation for the fixed part of the series 
resistance ( Rfix

s
 ). On the other hand, since in this region the 

diode behavior is mainly controlled by its series resistance, 
the dynamic resistance ( R∞

s
 ) is a very good estimation of 

RVar
s

(∞) . That means:

Therefore, the final modified equivalent circuit model is 
similar to that of Fig. 7.

The voltage dependency of Rs is mainly due to the elec-
trical field dependency of mobility of the organic material. 

(21)R∞
s
=

dV

dJ
|V=∞ ≅ Rfix

s

The charge carrier density increases exponentially with 
voltage, which is reflected in the conductivity (Eq.  8).This 
can explain the exponential drop in Rs observed in the 
moderate voltages in Fig. 6. Space charge accumulation 
also affects the internal electrical field and as a result the 
series resistance changes. Since the photo generated car-
riers density is very low in dark condition, the space charge 
accumulation is decreased and voltage dependency of Rs 
reduces. In Fig. 8 the extracted series resistances of OSC 
under dark and light (AMG1.5) conditions are compared.

The series resistances as a functions of voltage are 
extracted using the proposed algorithm from the meas-
ured I–V curves of an OSC with glass/ITO/PEDOT/MEH-PPV: 
PCBM (1:4)/LiF/Al structure [55]. Although the dark series 
resistance is higher than that of under illumination, the 
light Rs shows a stronger nonlinearity behavior versus the 
applied voltage. For example, for the voltage range of 0.7 V 
to 1.8 V we have only a 30% variation in the dark Rs against 
55% changes in the light Rs . This considerable difference 
between the dark and light measured series resistances 
justifies that using the dark Rs instead of the light Rs in PV 
arrays modeling under illumination is erroneous.

6  Conclusion

In this paper, we proposed an electrical equivalent circuit 
model for OSCs where its accuracy is highly improved by 
considering a voltage-dependent series resistance. Using 
a proposed WRA for this model, the series resistance pro-
file was extracted and compared with the results obtained 

Table 4  MSE for the cells under test considering constant or vari-
able R

s

*Fourth quarter of J–V curve only

**First and fourth quarter with constant value of Rs
***First and fourth quarter with variable extracted R

s

MSE * ** ***

A 2.5e−8 2.1e−2 1.5e−10
B 1.3e−8 8.6e−3 1.2e−10
C 5.3e−9 5.7e−4 3.7e−10
D 1e−9 1.0e−2 7.6e−12
E 1.1e−7 6.5e−5 1.3e−11
Average 2e−8 8e−3 1.3e−10

)(var VRs

fix
sRint

sR

phJ
pRD

Fig. 7  Extracted voltage dependent series resistances for the cells 
under test

Fig. 8  The extracted series resistances of a typical OSC under dark 
and light conditions.RGA
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by analytical equations at Vmp , Voc and high applied volt-
ages. The extracted results confirm reporting a single value 
Rs of OSC is not generally an accurate approach. Finally, 
the modified model was applied to measured J–V curves 
of five different cells, in which the active layers are pro-
cessed using different materials and solvents. The solvent 
considerably influenced the active layer crystallinity and 
its charge carrier mobility, hence, the series resistance is 
largely affected. Moreover, a voltage dependent series 
resistance provides a good knowledge about the behavior 
of the OSC at different applied voltage regions. The pro-
posed model can be used for better understanding the 
devices physics and to investigate the effects of different 
parameters including fabrication process parameters, 
geometry and morphology of the active layer on the cell 
electrical characteristics.
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