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Abstract
A novel composite supercapacitor electrode material, MnO2 @ (004) preferred oriented TiO2 nanotube arrays (p-MTNAs) 
had been synthesized via anodizing method and hydrothermal deposition. The experimental results showed that the 
introduction of p-TNAs to MnO2 could improve the electrochemical properties compared to the MnO2 @ random crystal-
lography oriented TiO2 nanotube arrays (r-MTNAs), the reason was that the p-TNAs increased the electric conductivity for 
faster ion transport. The highest specific capacitance of p-MTNAs electrode could reach 190.6 F/g at the current density 
of 1 A/g. Moreover, p-MTNAs showed superior cycling stability, remaining 88% of its initial capacitance after 2000 cycles.
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1  Introduction

In recent years, great attentions had been paid on super-
capacitors (SCs) because of its own intrinsic characteristics 
including natural abundance, low cost and environmental 
friendliness etc. [1, 2]. The pseudocapacitors were mainly 
made of transition metals oxides such as manganese 
dioxide (MnO2) [3], ferric oxide (Fe2O3) [4], cobaltic oxide 
(Co3O4) [5], vanadic oxide (V2O5) [6] and cuprous oxide 
(Cu2O) [7]. Among above-mentioned oxygenate, MnO2 
was among the most promising materials in supercapaci-
tor system [8]. The capacitance of actual MnO2 was rarely 
achieving the theoretical specific capacitance owing to 
inherent low electronic conductivity and limited surface 
of thick layers. So there were two effective methods to 
increase performance: (1) MnO2 nanoparticles were syn-
thesized to increase the surface area, while adding a thin 
layer in electrochemical reactive redox process. (2) Con-
ductive materials were used to improve electrical conduc-
tivity [9].

Recently, highly ordered TiO2 nanotube arrays [10, 11] 
(TNAs) had stimulated more and more interests in the 
electrode materials for supercapacitor, but the poor elec-
tric conductivity of TNAs results in a relatively low specific 
capacitance. There were some strategies to improve the 
capacitance properties including the introduction of oxy-
gen vacancies [12], fabricated H-ion doping TNAs [13]. 
Compared with transition metal oxides, the capacitance 
of TNAs was still too low. So the important method to 
improve capacitance of TNAs was introduced metal oxides 
deposited on the surface of tubes to improve capacitance 
[14–16].

In this paper, the p-TNAs could provide high surface 
area and improve considerably electronic conductivity 
[17, 18]. The p-TNAs could be used as a suitable carrier for 
MnO2 nanoparticles to form composite electrode materials 
structures. The MnO2/p-TNAs electrodes contained advan-
tages of combining p-TNAs and MnO2 nanoparticles and 
exhibited high electrochemical performance and cycling 
stability.
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2 � Experimental

2.1 � Materials preparation

The p-TNAs were fabricated via the potentiostatic anodi-
zation method [17]. In brief, the p-TNAs were fabricated 
at 50 V in glycol electrolyte which contained 0.25 wt% 
NH4F and 2 wt% H2O for 2 h. The r-TNAs were fabricated 
at 60 V in glycol electrolyte which contained 0.25 wt% 
NH4F and 2 wt% H2O for 2 h. The crystallization process 
of p-TNAs and r-TNAs was obtained by annealing at Ar air 
atmosphere with a ramping rate of 5℃ min−1 up to 450℃ 
maintained 3 h. After annealing process, the p-TNAs and 
r-TNAs were put into a Teflonlined stainless steel autoclave 
containing 0.02 M KMnO4. The autoclave was then main-
tained at 150℃ for 5 h to donate as p-MTNAs and r-MTNAs.

2.2 � Material characterization

Field emission scanning electron microscopy (FE-SEM) 
used in the present this work was a FEI Quanta 250 FEG. 
High-resolution transmission electron microscopy (HR-
TEM) was carried out FEI Talos F 200X. X-ray diffraction 
(XRD) patterns were obtained with a Bruker D8 diffrac-
tometer using Cu Ka radiation (λ = 1.5418 Å, 40 kV, 40 mA). 
X-ray photoelectron spectrum (XPS) was performed on 
Thermo Fisher Escalab Xi + .

2.3 � Electrochemical measurements

All electrochemical properties were investigated by cyclic 
voltammetry (CV) and galvanostatic charge–discharge 
(GCD) measurements on an electrochemical workstation 
(IVIUM Ivium Stat.h, Netherlands) at room temperature. In 
a traditional three-electrode cell, the p-MTNAs was used 
as working electrodes, and an Ag/AgCl (3 M KCl) and a Pt 
poil were used as reference and counter electrodes, 1 M 
Na2SO4 solution as the electrolyte respectively. The cycling 
stability was measured by GCD tests up to 2000 cycles at a 
current density of 1 A/g.

3 � Results and discussion

Figure  1a showed a highly ordered nanotubes of the 
p-TNAs with a diameter of 90 ± 2 nm and wall thickness 
of 15 ± 1 nm, respectively. The morphology of p-MTNAs 
(Fig. 1b) had not unchanged compared with p-TNAs, so it 
could be seen from the above results that the deposition 
of MnO2 nanoparticles on TNAs surface was very uniform. 
The TEM and HR-TEM were used for further morphology 

and structure characterization. HR-TEM images of the 
p-MTNAs nanotube wall were displayed in Fig. 1c, d, which 
indicated that the lattice fringes and the mouth of nano-
tubes in parallel. Further analysis showed that the inter-
planar spacing was 0.236 nm which was in accord with the 
(001) plane of the anatase phase [17].

Figure 2a displayed the XRD patterns of Ti foils, the 
p-MTNAs and r-MTNAs. The XRD pattern of Ti foils indi-
cated the polycrystalline characteristic and the peak [18] 
at 2θ = 38.5, 40.3, 50.2 and 70.8o of the Ti foils, which cor-
respond to the (002), (101), (102) and (103) planes of hex-
agonal titanium (JCPDS no. 44-1294). The r-MTNAs showed 
the diffraction peaks at 2θ = 25.4, 38.0 and 48.2°, which cor-
respond to the (101), (004), and (200) planes of the TiO2 
anatase phase (JCPDS card no.21-1272). In addition, it was 
noteworthy that the p-MTNAs (Fig. 2a) showed the (004) 
preferred orientation and the r-MTNAs (Fig. 2a) was poly-
crystalline. Because MnO2 nanoparticles were relatively 
few, there was no diffraction peak of MnO2 nanoparticles 
in the XRD patterns. Figure 2b showed remarkable O1 s 
core level XPS spectra of p-MTNAs. The p-MTNAs samples 
exhibited the peak of 529 .6 eV which corresponds to the 
Ti4+-O bond. The decomposition of the O1s spectrum of 
p-MTNAs revealed three additional peaks centered at 
530.3, 531.2 and 532.1 eV which should be attributed 
to Mn4+-O, Ti3+–O and Ti–OH bonds respectively [20]. In 
Fig. 2c, the Ti 2p XPS spectra of the p-MTNAs in which 
two broad peaks centered were found at about 458.1 and 
463.9 eV, the peaks of p-MTNAs showed a negative shift 
comparison to the TNAs [11]. In Fig. 2d, the XPS spectra of 
p-MTNAs showed the peaks of Mn 2p3/2 and Mn 2p1/2 
centered at 642.1 and 653.9 eV, respectively [19].

Figure 3 showed the CV curves of the p-MTNAs and 
r-MTNAs at the scan rates of 100 mV s−1 in 1 M Na2SO4 
aqueous electrolyte. At 100 mV s−1, the shapes of all curves 
of the p-MTNAs and r-MTNAs were quasi rectangular (not 
perfectly rectangular owing to polarization resistance [20]) 
which indicated the desired capacitive behavior and high 
rate capability. The areal capacitance of the as-prepared 
samples were calculated from the CV curves using the fol-
lowing equation [21–23]:C

A
=

IΔt

AΔV
 The p-MTNAs showed 

higher specific capacitance (253 F/g) than the capacitance 
of r-MTNAs (93 F/g) at 5 mV s−1. The experimental results 
showed the existence of Ti3+ and oxygen vacancies led to 
ultrahigh conductivity [17], which was propitious to the 
charge transfer of the ions and electrons between active 
MnO2 materials and p-TNAs. As showed in Fig. 3b, along 
with the scanning rate increasing, the decreased Cg was 
ascribed to the reduction of the active reaction sites at 
high scan rate.

The GCD curves of the p-MTNAs and r-MTNAs were 
shown in Fig. 3c. It could be seen that all the discharge and 
charge curves were not perfect straight line, not perfectly 
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Fig. 1   FESEM images of the a 
p-TNAs and b p-MTNAs; TEM 
and HR-TEM images of the (c) 
and d p-MTNAs

Fig. 2   a XRD patterns of Ti foils, 
r-MTNAs and p-MTNAs; b XPS 
peaks of O 1s of p-MTNAs; c 
XPS peaks of Ti 2p of p-MTNAs; 
d XPS peaks of Mn 2p of 
p-MTNAs
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symmetrical and the obvious iR drops. The above results 
indicated that these p-MTNAs electrodes showed Faradic 
capacitive performance [24] and the intrinsically poor 
conductivity of p-TNAs and MnO2 nanoparticles. Figure 3c 
showed that the charge–discharge time of the p-MTNAs 
electrodes was significantly enhanced than the r-MTNAs 
electrodes at the current density of 1 A/g, indicating that 
the p-MTNAs electrodes possessed the higher specific 
capacitance. This result was well consistent with the above 
results of CV tests.

The long-term cycle stability of p-MTNAs electrode was 
also assessed in this paper by the representative galvano-
static cycling at a current density of 1 A/g for 2000 cycles 
(Fig. 3d). The results indicated that the p-MTNAs electrode 
showed 88% initial capacitance retention after 2000 cycles. 
It implied that p-MTNAs electrode revealed little capaci-
tance losses even after 2000 cycles.

4 � Conclusion

The composite structure MnO2/p-MTNAs was fabricated 
on metal Ti foils by the anodizing method and hydro-
thermal method. The improvement on specific capaci-
tances was turned out to be owing to the synergism of 
the existence of p-TNAs. The existence of oxygen vacan-
cies improved the inferior conductivity of TiO2 nanotube 
arrays. The deposition of MnO2 nanoparticles carried out 

fast and reversible faradaic redox reactions at the elec-
trode–electrolyte interfaces. The notable long-term cycle 
stability could also be obtained due to the excellent elec-
trical conductivity.
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