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Abstract
Hydrocarbons from BTEX group are dangerous pollutants that can cause a threat to environment and human health. 
In many cases, their presence in an ecosystem is the result of accidents and petroleum products spills. For this reason, 
novel, more efficient sorbents are needed for immobilization of such pollutants. This paper presents an experimental 
study of recycled tires polymer fibers (RTPF) used as a low-cost sorbent for BTEX compounds in soils treated with cement. 
RTPF are a type of waste that contains polymer fibers with high content of rubber particles. The high porosity and large 
specific surface area of rubber result in possibility of use of RTPF as a removal material. Effectiveness of the application 
of RTPF as a BTEX removal material was evaluated on a basis of concentrations values above the surface of reacting 
mixture (at 25 ± 3 °C). It was found that RTPF addition increased BTEX immobilization efficacy, compared to the use of 
Portland cement alone. The maximum percentage reduction in BTEX compounds concentration was 33% for toluene. 
Lower level of removal was observed for ethylbenzene (21%), and substantially, small efficacy was noted for xylenes (8%) 
and benzene (7%). Additionally, in order to evaluate mechanical properties of soil–cement composites, analysis of their 
compressive strength after 28 days of maturation was performed. Tests showed a decrease in the compressive strength 
of soil–cement monoliths containing RTPF.

Keywords  End-of-life tires · Tires textile fibers · Rubber · Cement · Volatile organic compounds · Soil remediation · 
Material reuse

1  Introduction

End-of-life tires (ELT) should be considered as one of the 
fastest growing waste streams in the world. In the period 
between 2014 and 2016, their production in the 28 Euro-
pean Union member states increased from 3.3 to 3.5 mil-
lion tonnes per year. In Poland alone, around 283 thousand 
tonnes of scrap tires were generated in 2016 [1]. In 1999, 
European Commission introduced legislation forbidding 
disposal of used tires at landfill [2]. Since then, the pos-
sibilities of recycling of used tires have been studied in 
many countries.

ELT are a complex waste containing synthetic rubbers 
(butadiene and styrene-butadiene rubber), natural rubber, 
textiles overlays and steel belts [3, 4]. Table 1 shows the 
material composition of car and truck tires produced for 
European Union (EU) market. These types of tires represent 
the majority of tires sold on the EU. Generally, the tires 
composition varies by category (car, truck or industrial 
tires). Moreover, the differences in tires composition are 
visible at the intercontinental level [5]. For example, tex-
tiles used in car tire casings are most commonly made from 
natural rayon/nylon fibers in European Union. In turn, in 
the USA and Asia, textiles are made from polyesters fibers 
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(PET–poly(ethylene-terephthalate), PBT–poly(butylene-
terephthalate)) [5].

Inappropriate collection and storage of scrap tires can 
be hazardous to environment and human health, e.g., 
because of the risk of fire. According to the European 
Tyre & Rubber Manufacturers’ Association (ETRMA) data, 
rubber granules from ELT may contain substances such 
as diphenyl guanidine (0–150 ppm), N-1,3 dimethylbu-
tyl N’ phenyl-p-phenylendiamine (0–1000 ppm), aniline 
(0–100 ppm), mercapto-benzothiazole (0–200 ppm), para-
tert-octylphenol (0–200 ppm) and para-tert-butylphenol 
(0–100 ppm). In addition, in the case of volatile organic 
compounds, the following substances may be emitted: 
phenol, formaldehyde, ethanol, methanol, methyl isobutyl 
ketone, amines coming from sulfenamides, benzothiazole 
and nitrosamines (which may be present in tires imported 
from outside the EU) [8]. Despite the presence of volatile 
and semi-volatile compounds, their emissions from rub-
ber products are negligible [9, 10]. However, the risk of 
releasing chemicals from ELT may occur during their pro-
cessing. For example, employees are exposed to chemicals 
contained in the tire dust.

Due to the high calorific value of 33 MJ/kg, the end-
of-life tires are often directed to energy recovery [11]. 
According to data from 2016, 30% of scrap tires (86 thou-
sand tonnes) were used for energy recovery in Poland 
[1]. Another method of processing of used tires is material 
recovery. During the recycling process, three main com-
ponents are separated: crumb rubber, steel and textiles. 
For example, rubber is used for the production of other 
materials such as concrete, asphalts, rails or athletics tracks 
[12–16]. Steel wires are also used in concrete industry [17]. 
Moreover, high-quality steel from scrap tires is used for 
the production of new virgin steel [3]. According to the 
ETRMA report [3], textile fibers containing residual rubber 
represent a challenge for ELT recycling companies. They 
represent about 10% of end-of-life-tires weight, and each 
year, about 320 thousand tonnes of such fibers are gen-
erated in the European Union [18]. Textile fibers can be 
used as a source of energy or as reinforcement in concrete 
[19]. Other interesting application of components of scrap 

tires is the use of them as a sorbent for removal of organic 
compounds [20]. For example, recycled tires polymer fib-
ers (RTPF) could be utilized for removal of compounds 
from BTEX group.

BTEX is an acronym that refers to benzene, toluene, 
ethylbenzene and xylenes. That group of volatile organic 
compounds (VOCs) is considered as a very important fac-
tor in tropospheric chemistry [21], but it is also recognized 
as a hazardous environmental pollutant [22, 23]. Benzene 
is the most hazardous among that group and has been cat-
egorized as a known carcinogenic to humans (Group 1 in 
agents classified by the International Agency for Research 
on Cancer [24]). In case of ethylbenzene, there is a limited 
evidence of its carcinogenicity, so this compound was 
classified as possibly carcinogenic to humans (Group 2B). 
Toluene and xylenes are in Group 3 as agents not classifi-
able as to their carcinogenicity to humans, but their acute 
health effects are well known [25, 26].

BTEX compounds are generally ubiquitous in the envi-
ronment. However, they are mainly emitted to air from 
anthropogenic sources [27]. Their presence in ecosystem 
is related to fossil fuels extraction and processing [28, 29]. 
Furthermore, combustion of gasoline and diesel fuels in 
motor vehicle transport is the largest contributor to emis-
sions to atmospheric air [30–32]. BTEX pollutants also 
occur in indoor environments, mainly because they are 
used in variety of consumer products, e.g., solvents, paints, 
glues, cleaning products and building materials [22, 33, 
34].

BTEX pollution is not limited to air only. Those com-
pounds may spread into other compartments of the envi-
ronment [27]. BTEX could be a serious problem when they 
are present in groundwater [35, 36]. Soil contamination is a 
big concern as well [37, 38]. In many cases, the presence of 
BTEX in soil results from accidents or petroleum products 
spills [36, 39, 40].

The primary purpose of this study was the evaluation 
of the possibility of application of RTPF (containing a high 
amount of residual rubber) as a removal material for vola-
tile organic compounds. This paper presents the preliminary 
results of experiments of processing of contaminated soil 

Table 1   Composition of 
passenger car and truck tires

Material Car tires [5] Car tires [6] Car tires [7] Truck tires [5, 7]
(% by mass) (% by mass) (% by mass) (% by mass)

Rubber/elastomers 48 47 47 45
Carbon black/silica 22 25 21.5 22
Metals 15 14 16.5 25
Textiles 5 4 5.5 0
Zinc oxide 1 1.5 1 2
Sulfur 1 1 1 1
Additives 8 7.5 7.5 5
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with Portland cement alone and cement-RTPF mixture. Soil 
samples were spiked with benzene, toluene, ethylbenzene 
or isomeric mixture of xylene. Effectiveness of the applica-
tion of RTPF as a BTEX removal material was evaluated on 
a basis of instantaneous concentrations values above the 
surface of reacting mixture. Continuous measurements of 
compounds emitted during the stabilization process were 
performed using the flame-ionization detector. Moreover, 
the compressive strength of soil–cement monoliths (with/
without RTPF) was also evaluated.

2 � Experimental

2.1 � Soil samples and binders

The soil bed used in the research was collected from the 
rural areas of the Lower Silesia (Poland). The material was 
characterized by moisture at the level of 5.34% and low con-
tent of organic matter (by loss of ignition)—4.25% of dry 
weight. After appropriate homogenization and air-drying, 
soil was subjected to the particle-size distribution analysis. 
The results of sieving test showed that more than 90% of soil 
mass was the sand fraction (Table 2, Fig. 1). On the base of 
calculated substitutive diameters D10, D30, D60 (correspond-
ing to 10, 30 and 60% finer), the uniformity coefficient (CU) 
and coefficient of gradation (CC) were calculated.

(1)CC =
D2

30

D
10
⋅ D

60

(2)CU =
D
60

D
10

According to the experimental procedure, an uncon-
taminated soil samples (200 g) were placed in contain-
ers and spiked with benzene, toluene, ethylbenzene or 
isomeric mixture of xylene. BTEX compounds were con-
sidered separately, i.e., soil samples were spiked with the 
same amount of one (individual) solvent. The volume of 
liquid hydrocarbon (p.a. grade) injected into the soil was 
0.1 mL. Closed containers were shaken for 120 s in an over-
head shaker (Heidolph Reax 20/8, DE). Such prepared sam-
ples were processed with:

•	 Portland cement (CEM I) alone and
•	 the mixture of recycled tires polymer fibers and Port-

land cement.

In the case of CEM I, the material was up to PN-EN 197-1 
standard, had a durability class of 42.5 and had high early 
strength. Portland cement is made by mixing Portland 
cement clinker together with an appropriate amount of 
gypsum.

As regards to textile fibers, they were obtained from one 
of Polish tire recycling company. The plant specializes in 
the processing of various kinds of tires from passenger 
cars, truck and bus tires to large industrial tires. In case of 
tires produced for European Union (EU) market (which are 
the main waste material processed in selected plant), tex-
tiles are made from natural rayon/nylon fibers. Such waste 
tire textile fibers usually contain a high amount of residual 
rubber particles [41].

The textile cord used in experiment came from the 
process of recycling end-of-life car tires generated in the 
European Union (Figs. 2 and  3). Just like the soil, the textile 
cord was subjected to the particle-size distribution analy-
sis. Figure 4 shows the results of that analysis. It was found 
that about 60% of RTPF mass was the rubber fraction.

All spiked soil samples were stabilized with Portland 
cement at 50% by weight (expressed as weight of reagent 

Table 2   Soil characteristic

Parameter Value

Bulk density 1.42 g/cm3

Water content W 5.34%
Loss of ignition LOI 4.25% of 

the dry 
weight

Soil fraction –
 Cobble > 63 mm –
 Gravel 2–63 mm 4.03%
 Sand 0.063–2 mm 90.71%
 Silt 0.002–0.063 mm 5.26%
 Clay < 0.002 mm –

Substitutive diameters D10 0.12
D30 0.31
D60 0.58

Coefficient of gradation CC 1.42
Uniformity coefficient CU 4.98
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Fig. 1   Particle size distribution curve for the soil used in the study
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to weight of raw, uncontaminated soil). The addition of 
recycled tires polymer fibers was at 5% by weight of 
raw soil. The composition of the stabilizing mixture was 

determined based on the authors’ research on the effect 
of the RTPF dosage on removal of toluene [42, 43]. The 
studies showed that the percentage of removed toluene 
was enlarged as the RTPF dosage was increased. Unfor-
tunately, the RTPF dose of 10% of mass of soil resulted in 
significant (~ 62%) decrease in mechanical compressive 
strength. For this reason, in this research, a smaller dose 
(5%) was considered.

2.2 � Methodology of waste treatment process

The methodology for enclosed spaces (e.g., waste treat-
ment plants) has been assumed in this research. The treat-
ment process of spiked soil was performed in a planetary 
mixer Tecnotest B205/X5. The reactor was placed in a fume 
hood to prevent accumulation of gaseous contaminants 
vapors. Stabilization process started with simultaneous 
introducing of soil, Portland cement and RTPF into reac-
tor’s steel bowl. After that, the components were mixed 
with a constant speed (planetary speed 62 rpm, beater 
speed 140 rpm). The process was performed in two stages: 
1—homogenization of the soil–cement mixtures, 2—
initiation of the hydration of cement through introduc-
ing water. The amount of water was determined on the 
basis of research on workability of spiked soil–cement 
mixtures. Each stage lasted 180 s. The resulting mixtures 
were packed in containers and cured for 28 days at ambi-
ent temperature.

Gas samples from the above reacting mixture were 
transported via Teflon tubing to the measuring device. 
Sampling tubes with dust filters were introduced into the 
reactor bowl (about 2 cm below the rim of the steel bowl). 
Flame-ionization detector MicroFID (Photovac, US) was 
used in experiments to estimate the emission level of BTEX 
compounds. The device was calibrated against methane 
before each measurement series. The results of measure-
ments were presented as methane equivalent (CH4 eq.). 
The volume of sample taken by the instrument was 0.6 L/
min. Concentrations were recorded in 1-second intervals. 
Temperature and relative humidity in vicinity of the reactor 
were measured by means of AR236/2 data logger (APAR, 
Poland).

Efficacy (E) of the application of RTPF as a BTEX removal 
material was evaluated by comparing the average con-
centrations of analyzed contaminant measured above the 
surface of soil–cement mixture (with or without RTPF) and 
zero sample. Zero sample was a 200 g of soil spiked with 
the same amount of organic constituent. In this instance, 
cement (with or without RTPF) was not introduced into 
the reactor, while the rest of technological parameters 
remained unchanged. To determine complete character-
istics of BTEX compounds concentrations, 65 mL of water 
was introduced in the second stage of process too.

Fig. 2   Tires textile fibers

Fig. 3   Tires textile fibers magnified 30x
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Fig. 4   Particle size distribution curve for the RTPF used in the study
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2.3 � Compressive strength tests

In addition, the changes of the monoliths compressive 
strength were tested. Solidified soil samples must be char-
acterized by some mechanical parameters that will not 
cause change in their shape and structure. Unfortunately, 
the addition of textile fibers from tires (containing a high 
amount of residual rubber) to the soil–cement mixtures 
has a potential disadvantage of decreasing in compres-
sive strength [13, 19, 44]. Measurements were taken in 
three replications on solidified samples after 28 days of 
maturation.

The compressive strength change percentage (fRc ) was 
calculated as follows:

where fca is the average compressive strength of solidi-
fied soil–cement mixtures (without textile fibers) and 
fca
RTPF is the average compressive strength of solidified 

soil–cement mixtures containing textile fibers.

3 � Results and discussion

3.1 � Efficacy of BTEX removal

Depending on the composition of stabilizing–binding 
mixture, the process of organic contaminants immobi-
lization can be divided into three categories: (a) direct 
physical immobilization of organic contaminants, (b) sorp-
tion of organic contaminants (as a result of application of 
additional reagents, e.g., activated carbon), (c) reduction 
in mobility of organic contaminants as a result of appli-
cation of reagents characterized by oxidative–reductive 
properties. The above-mentioned mechanisms may occur 
simultaneously.

The BTEX compounds immobilization efficacy in cement 
matrices with RTPF depends on possibilities of their physi-
cal encapsulation and sorption by polymer materials. The 
organic solvent vapors may be adsorbed onto the surface 
of rubber particles. The adsorption process is limited by 
a number of factors, i.e., temperature conditions, surface 
area of sorbents, the interaction between binding compo-
nents and adsorbent materials. For example, simultaneous 
addition of cement and sorbent may cause blocking of 
sorption sites (by a binding material coating) [45]. Moreo-
ver, Amenghawon et al. [20] showed that toluene adsorp-
tion capacity (from aqueous solutions) increased with a 
reduction in waste tire rubber particles size.

In absorption process, the polymer materials’ ability 
to remove BTEX is affected by the molecular volume of 

(3)f
R

c
=

f RTPF
ca

− fca

fca

⋅ 100%

compound, its concentration and free space in the poly-
mer matrix.

In case of physical encapsulation of BTEX vapors, But-
ler L. et al. [46] have demonstrated that toluene added 
to the cement leads forming vesicular structures that are 
preserved in the cured cement. The vesicles are roughly 
spherical, are randomly distributed throughout the sample 
and have diameters ranging from 20 to 250 μm.

All experiments were conducted in laboratory with fol-
lowing conditions of temperature and humidity (averaged 
values): (a) 22 °C and 55% RH in benzene measurements, 
(b) 23 °C and 48% RH in toluene measurements, (c) 28 °C 
and 60% RH in ethylbenzene measurements, (d) 27 °C and 
40% RH in xylenes measurements. It should be noted that 
those conditions were not stable during treatment pro-
cess. Increase in relative humidity was observed, especially 
after introduction of water in second stage of mechanical 
mixing (hydration stage).

The changes in concentrations of BTEX compounds 
in the reactor are presented in Fig. 5 (average momen-
tary concentrations from two repetitions). Concentra-
tions of BTEX compounds, detected by flame-ionization 
device, were in ranges: (a) < 0.1–1777 ppm (CH4 equiva-
lent) in benzene measurements, (b) < 0.1–954 ppm (CH4 
equivalent) in toluene measurements, (c) 0.1–479 ppm 
(CH4 equivalent) in ethylbenzene measurements and (d) 
2.7–275 ppm (CH4 equivalent) in xylenes measurements. 
The widest ranges of concentrations were recorded for 
zero samples as expected. However, BTEX emission behav-
ior was not repeatable for every sample, slightly different 
maximum concentrations and time shifts of occurrence 
of concentrations peaks were observed. Results of con-
tinuous measurements showed that the greatest risk of 
releasing BTEX compounds is connected with the stage of 
homogenization of soil with binding–stabilizing compo-
nents [43, 47]. The highest momentary concentrations of 
BTEX compounds in the reactor were detected between 
37 and 80 s of the process.

The research showed some limitations in applying 
cementation technique for treating soil contaminated 
with volatile organic compounds. Table 3 presents the 
calculated percentage immobilization efficacy. The most 
part of emitted benzene and xylenes was lost during the 
cement-based stabilization process. In that case, the cal-
culated efficacies had negative values and for that reason 
were presented as zero. In case of soil spiked with ethylb-
enzene or toluene, sealing with a fine-grained Portland 
cement effectively lowered their concentration by 11% 
and 17% (with respect to the zero samples), respectively.

The research confirmed beneficial effect of addition 
of textile fibers from tires (containing a high amount of 
residual rubber) on lowering BTEX compounds concen-
tration. As a result of introduction of RTPF, a decrease in 
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maximum momentary concentrations by: (a) 19.9% for 
benzene, (b) 50.3% for toluene, (c) 33.8% for ethylben-
zene and (d) 21.9% for xylenes was observed with respect 
to the zero sample (Table 3). Moreover, the continuous 
measurements results showed that the RTPF addition 
reduced the averaged concentrations of BTEX in the whole 
process (Fig. 5). Introduction of textile fibers, containing a 

high amount of residual rubber, resulted in greater interior 
surface area and micropore volume available for adsorp-
tion and encapsulation. The highest reduction in exam-
ined hydrocarbons concentration in a reactor was for tolu-
ene (33.0%), followed by ethylbenzene (21.1%), benzene 
(7.7%) and xylenes (7.0%). This was consistent with some 
previous research concerning the application potential 

Fig. 5   Effect of recycled tires 
polymer fibers on BTEX com-
pounds concentration
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Table 3   BTEX immobilization efficacy in solidified soil samples

Contaminant Sample Maximum momen-
tary concentration

Average concentration Immobiliza-
tion efficacy 
(E)Homogenization stage Hydration stage Process

(ppm CH4 eq.) (ppm CH4 eq.) (ppm CH4 eq.) (ppm CH4 eq.) (%)

Benzene Zero sample 1698 589 23 305 –
CEM I 50% 1604 571 49 309 0
CEM I 50% + RTPF 5% 1360 529 35 282 8

Toluene Zero sample 920 318 14 166 –
CEM I 50% 865 264 12 138 17
CEM I 50% + RTPF 5% 457 199 23 111 33

Ethylbenzene Zero sample 478 320 108 214 –
CEM I 50% 414 262 120 191 11
CEM I 50% + RTPF 5% 316 222 115 169 21

Xylenes Zero sample 266 184 81 132 –
CEM I 50% 262 174 131 153 0
CEM I 50% + RTPF 5% 207 145 102 123 7
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of textile fibers as a sorbent for removal of toluene [42, 
43]. Unfortunately, used tire material was found to be less 
effective at removing toluene vapors from soils in com-
parison with diatomaceous earth [42], rubber granules 
[48] or activated carbon [48]. The differences in effective-
ness of the above-mentioned materials are a result of their 
adsorption capacity (which depends on the component 
size and the structure of its specific surface area). Oh et al. 
[49] reported toluene adsorption capacities for granular-
activated carbon and ground tire rubber of 10620 mg/kg 
and 398 mg/kg, respectively. In turn, diatomaceous earth 
and compost are characterized in toluene adsorption 
capacity at the level of 2000 mg/kg and 1430 mg/kg [50]. 
Despite that tire waste materials are less effective than the 
activated carbon, they could be useful in removing petro-
leum product contaminants like BTEX.

Moreover, continuous measurements confirmed that 
added water may cause release of volatile organic com-
pounds (Fig. 4). For example, an increase in the concen-
tration of the xylenes and ethylbenzene was observed 
upon hydration. It can be explained by the fact that water 
filled up empty spaces and soil cracks. An increase in 

concentration of xylenes was recorded in all tests samples 
(zero sample and cement with/without RTPF). In case of 
soil spiked with benzene, such increase was only observed 
for the samples treated with cement alone. For samples of 
soil contaminated with toluene, no significant changes of 
its concentration were observed after water introduction.

3.2 � Compressive strength

Table 4 shows the changes in compressive strength (fc) of 
solidified soil–cement mixtures with respect to the textile 
fibers presence. There are no regulations according to min-
imum compressive strength of solidified waste in Polish 
legislation. In this context, a value of 0.4 MPa was adopted 
as minimum compressive strength. Such compressive 
strength level enables storage of waste having a specific 
density of 1.5 tonnes/m3 in 27-meter layers. About 28 days 
after casting, the mean value of soil–cement monoliths 
compressive strength (without textile fibers) was 15.9 MPa. 
It was found that the addition of recycled tires polymer 
fibers has a significant effect on mechanical parameters. 
Addition of tires textile fibers to soil–cement mixtures (at 

Table 4   Compressive strength 
for soil–cement mixtures with/
without RTPF

Contaminant Sample Number Compressive 
strength

Average com-
pressive strength

Compres-
sive strength 
change

(MPa) (MPa) (%)

Benzene CEM I 50% 1 14.1 15.6 –
2 17.1
3 15.7

CEM I 50% + RTPF 5% 1 9.1 10.2 − 34.8
2 10.2
3 11.3

Toluene CEM I 50% 1 15.3 15.8 –
2 16.9
3 15.2

CEM I 50% + RTPF 5% 1 8.3 9.8 − 38.2
2 10.1
3 10.9

Ethylbenzene CEM I 50% 1 15.8 16.2 –
2 15.8
3 16.9

CEM I 50% + RTPF 5% 1 11.1 10.9 − 32.8
2 11.3
3 10.2

Xylenes CEM I 50% 1 15.4 15.9 –
2 16.4
3 16.0

CEM I 50% + RTPF 5% 1 11.3 9.8 − 38.3
2 8.5
3 9.7
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a constant dose of 5% by the weight of soil) decreased the 
compressive strength, as shown in Table 4.

The reduction in mechanical strength of the 
soil–cement samples containing 5% of RTPF (by weight 
of soil) was more than 33% (compared to the mixtures 
without textile fibers). Many researchers confirmed the 
decrease in the mechanical properties of cement-based 
mortars and concrete containing high amounts of rubber 
or textile fibers from recycled tires [10, 13, 14, 19, 44]. It 
can be explained by the low stiffness of rubber particles 
and the lack of binding between the rubber particles and 
cement [14, 16, 51]. Another factor that affects the com-
pressive strength is the ability of the rubber particles to 
entrap air in its jagged surface texture. Therefore, the air 
content in concrete tends to increase with the increasing 
quantity of rubber particles or RTPF [15, 19]. Su et al. [14] 
showed that rubber particles sizes can also influence the 
compressive strength of rubberized concrete. Finer rubber 
particles may fill the pore which results in the decrease 
in void spaces content and leads to higher compressive 
strength (as compared to concrete with larger rubber 
particles).

4 � Conclusions

Every operation of neutralizing waste contaminated with 
volatile organic compounds is characterized by technical 
parameters that can influence the evaporation of such 
pollutants during processing. Experiments confirmed 
the possibility of the use of recycled tires polymer fibers 
as low-cost material to remove selected volatile organic 
compounds. The obtained results proved that the concen-
tration of BTEX compounds in reactor could be reduced, 
although not avoided, by textile fibers containing residual 
rubber. The effectiveness of the textile fibers as a removal 
material of BTEX compounds was determined on the basis 
of continuous measurements using FID detector. The use 
of textile fibers was most efficient in preventing evapo-
ration of toluene. The average toluene concentration in 
reactor was reduced from 166 ppm CH4 eq. (zero sample) 
to 111 ppm CH4 eq. (CEM I 50% + RTPF 5%). In case of other 
solvents, the average concentration was reduced: (a) from 
305 ppm CH4 eq. to 282 ppm CH4 eq. for benzene, (b) from 
214 ppm CH4 eq. to 169 ppm CH4 eq. for ethylbenzene and 
(c) from 132 ppm CH4 eq. to 123 ppm CH4 eq. for xylenes. 
It should be noted that temperature has an impact on 
the removal of BTEX compounds. The experiments were 
performed at temperature of 25 ± 3 °C and humidity of 
50 ± 10%, and the presented results are adequate only for 
similar conditions.

The mechanical tests showed a decrease in the com-
pressive strength of soil–cement monoliths containing 

RTPF. The reduction in mechanical strength of the samples 
containing 5% of RTPF (by weight of soil) was more than 
33% (compared to the soil–cement combination). It can 
be explained by low density of recycled tires textile fibers 
and high elasticity of rubber particles. As a result, rubber-
ized cement paste is much softer compared to hardened 
cement paste without RTPF. Another factor that affects the 
compressive strength is the lack of binding between the 
rubber particles and cement.

In conclusion, recycled tires polymer fibers may be con-
sidered as a promising low-cost sorbent for supporting the 
removal of low concentrations of selected organic pollut-
ants from soils. Such approach may be applied, especially 
in countries without developed infrastructure that ena-
bles, e.g., usage of thermal technologies for neutralizing 
those kinds of waste. In such situation, RTPF should be rec-
ognized as a technology that is economically justified and 
can be implemented in a relatively short time. Moreover, 
that approach is promoting a kind of synergism between 
two kinds of waste (RTPF and BTEX contaminated soils). 
Such waste management creates environmental benefits 
and extends the life cycle of tires. Additionally, the RTPF 
could be used as a component of more complex, but also 
low-cost, waste-derived mixtures with higher overall effi-
cacy. However, the compressive strength changes of final 
monoliths show that RTPF should be used with caution. 
For this reason, further researches are necessary to resolve 
this issue.
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