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Abstract
Graph-based methods have been widely applied in clustering problems. The mainstream pipeline for these methods is 
to build an affinity matrix first, and then use the spectral clustering methods to construct a graph. The existing studies 
about such a pipeline mainly focus on how to build a good affinity matrix, while the spectral method has only been con-
sidered as an end-up step to achieve the clustering tasks. However, the quality of the constructed graph has significant 
influences on the clustering results. Unlike most of the existing works, our studies in this paper focus on how to refine 
the original graph to construct a good graph by giving the number of clusters. We show that spectral clustering method 
has a good property of block structure preserving by giving the priori knowledge about number of clusters. Based on 
the property, we provide an iterative regularization framework to refine the original graph. The regularization framework 
is based on a well-designed reproducing kernel Hilbert spaces for vector-valued (RKHSvv) functions, which is in favor of 
doing kernel tricks on graph reconstruction. The elements in RKHSvv are multiple outputs affinity functions. We show 
that finding an optimal multiple outputs function is equivalent to construct a graph, and the associated affinity matrix 
of such a graph can be obtained in a form of multiplication between a kernel matrix and an unknown coefficient matrix.

Keywords  Graph-based · Affinity matrix · Spectral clustering method · Regularization framework

1  Introduction

Graphical representations, which characterize the affini-
ties among data points, have played an important role in 
machine learning, image processing [1–4], writer iden-
tification [5–7], visual tracking [8–12], and especially for 
clustering problems [13–16]. For graph-based clustering 
methods, the graph construction is guided under certain 
learned or pre-defined pairwise similarities [17, 18]. Most 
graph-based clustering methods focus on how to build a 
good affinity matrix, and regard the graph construction 
as a back-end operation [19–21]. In this paper, we aim to 
explore the great potential value of graph construction. 
By analyzing the prior knowledge of the number of clus-
ters, it is proved that the spectral clustering method has 

better block structure preservation. We propose a graph 
refining strategy to iteratively optimize the affinity matrix 
of the graph, which can significantly improve the cluster-
ing result. Such a strategy is based on the block structure-
preserving property of spectral clustering method: given 
an original affinity matrix � , a new affinity matrix � can 
be obtained by doing spectral clustering on the Laplacian 
matrix of � . If � is a block diagonal matrix, so is the new 
matrix � . Moreover, � and � have the same block struc-
ture. Based on this property, the original affinity matrix � 
can be refined by forcing � and the constructed affinity 
matrix � to have the same block structure. Then, the refin-
ing strategy can be achieved in an iterative manner (Fig.1).

In fact, the graph refining strategy can be formulated 
with a regularization framework [22–24]. The starting 
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point of this framework is to find a multiple output 
affinity function: f ∶ � → ℝ

N , which can be used to 
measure the affinities between the input instance 
and the other N instances. The multiple output affinity 
function f can be chosen in a well-designed hypoth-
esis space, called reproducing kernel Hilbert spaces of 
vector-valued functions (RKHSvv), which is in favor of 
doing kernel tricks on graph reconstruction. Given N 
instances (�1, �2,… , �N) ∈ � , an affinity matrix � of these 
instances: � = [f (�1), f (�2),… , f (�N)] , can be obtained. 
And the affinity matrix � can be obtained in a form of 
multiplication between a kernel matrix and an unknown 
coefficient matrix. Besides, a specific graph refining 
model can be also provided. The coefficient matrix in 
such a model can be solved column by column by a 
standard convex quadratic programming method [25]. 
We evaluate the proposed model on both synthetic and 
real data, and promising results are obtained. To summa-
rize, the main contributions of the paper are as follows:

–	 We provide a graph reconstruction strategy which 
can refine the original graph by giving the number 
of clusters. Such a strategy is based on the block 
structure-preserving properties of spectral clustering.

–	 We formulate an iterative regularization framework 
to implement the graph refining strategy and design 
a new reproducing kernel Hilbert spaces of vector-
valued functions as the hypothesis space for the reg-
ularization framework. To the best of our knowledge, 
this paper is the first one introducing RKHSvv to study 
the clustering problems.

–	 We provide an effective graph refining model based 
on the iterative regularization framework.

The rest of the paper is organized as follows: We give a 
related work in Sect.  2. The model RKHSvv which we 
formulated to study the clustering problems is given 
in Sect. 3, the property of block structure preserving is 
derived in Sect. 3.1, and the framework formulation is 
provided in Sect. 3.2. We give the definition of RKHSvv 
and the corresponding representer theorem in Sect. 3.3. 
Using the representer theorem and a Euclidean distance 
loss function, we provide a specific graph refining model in 
Sect. 3.4. The optimization method is provided in Sect. 3.5, 
the experimental results are given in Sect. 4, and the con-
clusion is drawn in Sect. 5.

2 � Related work

As an extensive review of graph clustering and regulariza-
tion framework beyond the scope of this paper, we review 
the work related to our approach including graph-based 
clustering and the framework of regularization, the repro-
ducing kernel theory will be a review as well.

Graph clustering is the combination of vertices of the 
graph, taking into account the edge structure of the graph; 
each cluster should have multiple edges, and the cluster is 
relatively small [19, 21]. Generally speaking, given a data-
set, the goal of clustering is to divide the dataset into mul-
tiple categories, so that the elements assigned to a par-
ticular class are similar or connected in some pre-defined 
sense. However, not all graphs have the structure of natu-
ral clusters. If the structure of the graph is completely uni-
form, and the edges are distributed on the vertex set, the 
clustering of any algorithm is arbitrary [26].

Regularization has become the main theme of machine 
learning and statistics. It provides an intuitive and prin-
ciple tool for learning from high-dimensional data. The 
consistency of the results of the practical algorithms and 
general theory of linear algebra has been studied in-depth 
by means of Euclidean norms or regularized Hilbertian 
specifications [27–29]. While based on the advantages 
of dealing with nonlinear problems, the kernels methods 
have been widely used in the literature [30–32].

Reproducing kernel theory has significant implementa-
tions in integral equations, differential equations, prob-
ability, and statistics [33]. In the recent times, this theory 
is applied for various model problems by many authors 
[34–36]. The simplest and most practical method of mul-
titask learning is the regularized multitask learning, which 
solutions to related tasks are close to each other. Due to 
its general and simple formulation, regularized multitask 
learning has been applied to various types of learning 
problems, such as regression and classification [37]. And 
some works [38–40] generalized RKHS of scalar-valued 
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Fig. 1   An illustration for the proposed graph refining strategy, 
where �,� and � are the original affinity matrix, the intermediary 
affinity matrix and the final output affinity matrix, respectively. 
The step a is the initialization of � . In step (b), we construct � by 
minimizing the differences between � and � . Mutually, in step (c), � 
conducts to build a new � by spectral clustering method and a cer-
tain pre-defined affinity measurement function. After certain num-
ber of alternations, we expect the graph of estimated � and the 
graph of intermediary � will have the same cluster structure, which 
means there exists a permutation matrix � such that �� and �� are 
both diagonal block and have the same block structure
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functions to vector-valued cases to deal with the multiple 
task learning [41].

Our works can be regarded as an extension to such a 
generalization in clustering problem. Nie et al. [42] pro-
vided methods to reconstruct a graph from the original 
graph, which is related to ours in the aspect of the problem 
consideration. Compared with [42], our works in this paper 
can be considered as a more general formulation, which 
lets [42] be the special cases of ours.

3 � The proposed approach

In this section, we will first introduce the block structure-
preserving property and then propose the iterative reg-
ularization framework for graph refining based on the 
reproducing kernel Hilbert spaces for vector-valued, fol-
lowed by the method and optimization, with which the 
block structure can enhance the model.

3.1 � Block structure preserving

We have the following lemma about block diagonalization:

Lemma 1  [43] If � ∈ ℝ
N×N  ,  the spectrum of � is 

�(�) = {�1,�2,… ,�s} , there exist such a nonsingular matrix 
�  a n d  a  s e t  o f  m a t r i x  (�1,�2,⋯ ,�s)  t h a t 

�−1�� = diag

⎡⎢⎢⎢⎣

�1 0 ... 0

0 �2 ... 0

... ... ... ...

0 0 ... �s

⎤⎥⎥⎥⎦
 and the spectrum of �i is 

�(�i) = {�i}   .  T h a t  m e a n s ,  �−1�� = diag

⎡⎢⎢⎢⎣

�1�1�
T

1
0 ... 0

0 �1�2�
T

2
... 0

... ... ... ...

0 0 ... �
s
�
s
�T
s

⎤⎥⎥⎥⎦
 , where �i�i�

T
i
= �i.

Given an affinity matrix � ∈ ℝ
N×N , where N is the num-

ber of instances, the spectral clustering methods optimize 
the following problem by:

where � ∈ ℝ
N×C , C is the number of clusters, and �� is 

the Laplacian matrix of � . The optimal solution �∗ can be 
obtained by finding the C eigenvectors of L� correspond-
ing to the C smallest eigenvalues. Equation (1) can be 
regarded as a feature extraction procedure, which gener-
ates N new samples of C-dim features from original pair-
wise affinities � . Therefore, each row of � is a data point. 
Using these data points, we can construct a new affinity 
matrix by setting some pre-defined affinity measurement 

(1)�∗ = min
�,�T�=�

tr(�T���),

function. Suppose that we use the inner product as the 
measurement function and all of rows in � are normalized, 
we have an affinity matrix � , and � = �∗�∗T .

From Lemma 1, we can easily have the following theo-
rem about �.

Th e o re m   1   I f  � ∈ ℝ
N×N = ��T ,� ∈ ℝ

N×C ,�T� = �  , 
there exist such a nonsingular matrix  �  and a 
s e t  o f  u n i t  v e c t o r s  (�1, �2,⋯ , �C)  t h a t  s a t i s f y 
�−1�� = diag(�1�

T
1
, �2�

T
2
,⋯ , �C�

T
C
).

Proof   S i n c e  rank(�) = rank(��T ) = C  ,  w e  h a v e 
�(�) = {�1,�2,… ,�C} ,  where �1 = �2 = ⋯ = �C = 1 . 
From Theorem  1, there exist such a nonsingular 
matrix � and a set of unit vectors (�1, �2,⋯ , �C) that 
�−1�� = diag(�1�

T
1
, �2�

T
2
,⋯ , �C�

T
C
) . 	�  □

We also have the following theorem about � when � is 
diagonally block.

Theorem 2  Given a diagonal block affinity matrix � with C 
blocks, its Laplacian matrix is denoted as �� . If �∗ is the opti-
mal solution of Eq. (1), where the Laplacian matrix is �� , the 
affinity matrix � = �∗�∗T  is also a diagonal block and the 
blocks structure is same as � (see Fig. 2).

Proof  We unfold the expression in Eq. (1):

where (⋅)ij denotes the element in the i-th row and the 
j-th column. Intuitively, the construction of � is guided 
by � . Maximizing 

∑N

i,j=1
(�)ij(�)ij makes the data points in 

� becomes similar to those of � . Meanwhile, from Theo-
rem 1, we know � is similar to a certain diagonal block 
matrix. Therefore, � should have the same block structures 
as � . 	�  □

Theorem 2 reveals that the spectral clustering has a 
property of Block Structure Preserving [44]: given an 
original affinity matrix � which is diagonal block, the affin-
ity matrix which constructed by doing spectral clustering 

(2)

�∗ = min
�T�=�

N�
i,j=1

(�)ij‖�i − �j‖22

= min
�T�=�

�
−

N�
i,j=1

(�)ij⟨�i , �j⟩
�

= max
�T�=�,�=��T

N�
i,j=1

(�)ij(�)ij ,
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on �� is also diagonal block and has the same block struc-
ture as the original affinity matrix � (shown in Fig. 2).

3.2 � The iterative regularization framework 
for graph refining

Let � denote the input space, in which each ele-
ment represents a certain sample. Let � ⊂ ℝ

N denote 
the affinity space, the element in � indicates the 
affinities of N samples. Given a set of observations: 
{(�i , �i)|�i ∈ �, �i ∈ �, i = 1, 2,… ,N} , the number of 
clusters: C, and two loss function ℒ1,ℒ2 ∶ 𝒮 ×𝒮 → ℝ , 
the regularization framework can be formulated as:

where ℋ is a Hilbert space of vector-valued functions 
f ∶ � → � , and ‖‖ℋ is the inner product induced norm of 
ℋ . � = [f (�1), f (�2),… , f (�N)] is the learned affinity matrix. 
� = [�1, �2,… , �N] is the intermediary affinity matrix. � is 
an operation that generates a new affinity matrix by giving 
the original one. �1 and �2 are two hyper-parameters, which 
are used to balance the influences of corresponding terms. 

(3)

f ∗ = min
f∈ℋ

N�
i=1

ℒ1(�i , f (�i)) + �1

N�
i=1

ℒ2(�i , f (�i)) + �2‖f‖2ℋ
s.t.

� = 𝒢(�),

∀�i ∈ 𝒳, f (�i) ≥ �, ⟨f (�i), �⟩𝒮 = 1,

The first term is used to guarantee that the learned affin-
ity matrix F is not changed too much compared with the 
original affinity matrix. The last term is the inner product 
induced norm ‖f‖ℋ , which is used to stabilize f [29]. � is 
constructed by � , where � is calculated by doing spectral 
clustering on �� . �� is the Laplacian of � . Then, we find � 
by solving the following sub-problem:

where (�)ij indicates the element of � in the i-th row and 
the j-th column, (�∗T )i and (�∗T )j indicate the i-th column 
and j-th column of �∗T , respectively. g ∶ ℝ ×ℝ → ℝ+ is an 
affinity measurement function. If g is the inner product in 
ℝ

C , � = �∗�∗T .
The second term of objective function is to minimize 

the difference between � and � . If � = �∗�∗T  , from the 
analysis in Sect. 3.1, we know that the graph of � always 
has C clusters. The minimization in the second term actu-
ally preserves the information of C clusters structure for 
the graph of � . The rest two constraints about f are used 
to ensure that the learned function is nonnegative and 
normalized.

Note that, our regularization framework can be put 
into an iteratively optimization procedure, in which Eqs. 
(3) and (4) both are solved alternately. We give this opti-
mization procedure in Algorithm 1 to preserve the infor-
mation of C clusters structure for the graph of �.

(4)(�)ij = g((�∗T )i , (�
∗T )j),�

∗ = min
�,�T�=�

tr(�T���),

Fig. 2   An illustration for the 
property of Block Struc-
ture Preserving. a The clear 
diagonal block affinity matrix 
� ; b The constructed affin-
ity matrix � where � = ��T , 
� is obtained by do spectral 
clustering on ��
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3.3 � Hypothesis space of RKHSvv

In general cases, the regularization framework is consid-
ered as a setting of binary classification or regression, of 
which the hypothesis space is defined as a Hilbert space 
of scalar-valued function. By defining a reproducing 
kernel [45] in such a space, a reproducing kernel Hilbert 
space (RKHS) [33] is obtained. Although considering the 
hypothesis space as a general RKHS has gained numerous 
achievements in machine learning [34–36, 46], the func-
tion form of scalar-valued outputs is limited in some tasks 
which need vector-value outputs. To deal with the limita-
tion, the generalization from the scalar-valued RKHS to 
vector-valued , called RKHSvv, has been introduced and 
applied in the literature [37, 38]. We use RKHSvv as the 
hypothesis space ℋ for Eq. (3). To define such RKHSvv in 
this work formally, we first define reproducing kernel in 
a Hilbert spaces for vector-valued function.

Definition 1  (Vector-valued reproducing Kernel) Let 
(ℋ, ⟨, ⟩ℋ) be a Hilbert space of functions from a certain 
input space � to � . A function k ∶ � ×� → ℝ , is called 
a reproducing kernel for ℋ if, for all � ∈ � , � ∈ � , and 
f ∈ ℋ , we have that k(�, ⋅)� ∈ ℋ and the reproducing 
property holds: ⟨f (�), �⟩𝒮 = ⟨f , k(�, ⋅)�⟩ℋ.

We can also generalize the concept of positive definite :

Definition 2  (Vector-valued Positive-Definite Kernel) A kernel 
k ∶ � ×� → ℝ is positive definite (PD) in a vector-valued 
setting if

for any N ∈ ℕ and any choice of �1, �2,⋯ , �n from input 
space � , and �1, �2,⋯ , �n ∈ 𝒮.

N�
i,j=1

⟨�i , �j⟩� k(�i , �j) ≥ 0,

It’s easy to verify that common scalar-valued PD ker-
nels , e.g., linear kernel and RBF kernel, are also vector-
valued PD.

Definition 3  (Reproducing Kernel Hilbert Spaces for vector-
valued function (RKHSvv)) Let (ℋ, ⟨, ⟩ℋ) be a Hilbert space 
of functions from certain input space � to � , ℋ is a repro-
ducing kernel Hilbert space if, for all � ∈ � , there exist 
� ∈ � and �x ∈ ℝ so that,

A function k(�, ⋅)� in a RKHSvv ℋ has the reproducing 
property:

Corollary 1  (Reproducing property of RKHSvv) A RKHSvv ℋ 
has the reproducing property that means, for all f ∈ ℋ , there 
exists a function k(�, ⋅)� ∈ ℋ, � ∈ 𝒳, � ∈ 𝒮 so that,

Proof  From the definition of RKHSvv, for all � ∈ � 
and f ∈ ℋ , there exists a bounded linear functional 
𝜙�[f ] =< f (�), � >� . Then, according to the Riesz rep-
resentation theorem, there also exists such a function 
k(�, ⋅)� ∈ ℋ that �x[f ] = ⟨k(�, ⋅)�, f ⟩ℋ . 	�  □

Next, we clarify some differences between our 
definitions of RKHSvv and the previous works in mul-
tiple task learning [37–40, 47, 48]. In these works, the 
reproducing kernel is defined as a function in a form of 
� ∶ � ×� → �2 . According to the definition of � , the 
output is a M-by-M matrix. The reason for building such 
a formulation is that if �  is separable, a structure matrix 
� ∈ �2 can be separated from �  : �k(�, ⋅) = � (�, ⋅) , where 
k(�, ⋅) is a scalar-valued kernel. � is very useful for mul-
tiple tasks learning, since it encodes the structure infor-
mation for tasks. However, in our affinity reconstruction 

⟨f (�), �⟩𝒮 ≤ �x �
𝒳

⟨f (�), �⟩𝒮d�, ,∀f ∈ ℋ.

⟨f (�), �⟩𝒮 = ⟨k(�, ⋅)�, f ⟩ℋ .
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problem, such information is not needed. Since the func-
tion itself in RKHSvv is used to describe the structure 
of input: affinities, we do not need to define a matrix-
output reproducing kernel any more.

Similar to the scalar setting [35], we can easily obtain 
a representer theorem for RKHSvv.

Theorem  3  (Representer Theorem for RKHSvv) Given 
an input space � , affinity space � , a PD kernel (vector-
value setting) k ∶ � ×� → ℝ , a set of observations 
(�1, �1), (�2, �2),… , (�N , �N) ∈ � × � , and a clustering struc-
ture � , the minimizer over the RKHSvv ℋ in Eq. (3) can be 
represented by the expression:

for some (�1, �2,… , �N) ∈ �N.

By the representer theorem of RKHSvv, the graph refin-
ing iterative regularization framework can be rewritten in 
a reproducing kernel Hilbert space. The significance of the 
theorem is that it shows that a whole range of learning algo-
rithms have solutions that can be expressed as expansions 
in terms of the training examples.

3.4 � Block structure enhanced model

For an implementation of our proposed regularization 
framework, we provide a specific model by giving the defi-
nitions for the loss functions ℒ1,ℒ2 and the affinity meas-
urement function g.

f (�) =

N∑
i=1

k(�i , �)�i ,

We use the Euclidean distance as the loss function in Eq. 
(3). From Theorem 3, we have:

where �,� ∈ ℝ
N×N are the original affinity matrix 

and a pre-defined vector-valued PD kernel matrix, 
� = [�1, �2,… , �N] ∈ ℝ

N×N is the coefficient matrix of f, 
and (��)i indicates the i-th column of ��.

We use Eq. (4) to generate � , where we define 
g(�∗

i
, �∗

j
) = ⟨�∗

i
, �∗

j
⟩ + (�)ij . Then, we have the following 

model:

The reason to set affinity measurement function g in such 
a formulation is based on an observation of block structure 
enhanced effect (see Fig. 3).

We call Eqs.  (5) and (6) as the block structure 
enhanced (BSE) model for graph refining.

In Eq. (5), suppose the optimized function is f ∗ with a coef-
ficient matrix �∗ , the optimized affinity matrix �∗ among the 
input samples (�1, �2,⋯ , �N) is:

It turns out that finding the optimal multiple outputs affin-
ity function is equivalent to construct a affinity matrix, 
which is in a form of ��∗ . This conclusion gives us a point 
of view to consider the construction of affinity matrix: 
given a pre-defined vector-valued PD kernel matrix � , 

(5)

�∗ =min
�

‖� −��‖2
F
+ �1‖� −��‖2

F
+ �2tr(�

T��)

s.t.

∀i ∈ {1, 2,… ,N}, (��)i ≥ �, ⟨(��)i , �⟩ = 1,

(6)
(�)ij = g(�∗

i
, �∗

j
),

[�∗
1
,… , �∗

N
]T = �∗ = min

�,�T�=�
tr(�T���).

(7)�∗ = [f ∗(�1), f
∗(�2),… , f ∗(�N)] = ��∗.

Fig. 3   An illustration for the effect of Block Structure Enhanced. a 
The noisy diagonal block affinity matrix � ; b The constructed affin-
ity matrix � where � = ��T , � is obtained by do spectral clustering 

on �� ; c The matrix of � + � , it is distinct to see that the character-
istic of diagonally block has been enhanced
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such an affinity reconstruction problem can be converted 
into a problem of finding representation coefficient, where 
the dictionary is � and the represented object is the opti-
mal affinity matrix �∗.

3.5 � Optimization for block structure enhanced 
model

The overall optimization procedure for the BSE model is 
same as Algorithm 1, where we alternately solve Eq. (5) and 
Eq. (6). It is simple to solve Eq. (6), since we only need to 
do spectral clustering on �� . To solve Eq. (5), we rewrite the 
expression in Eq. (5) as:

where �i = (�)i , �i is the i-th column of � and,

Then, we have the derived optimization problem:

where

(8)
N�
i=1

‖�i −��i‖22 + �1‖�i −��i‖22 + �2l(�i),

(9)l(�i) =

N�
j≠i

⟨�i , �jk(�i , �j)⟩ + k(�i , �i)⟨�i , �i⟩.

(10)

�∗ = min
�=[�1,�2,…,�N]

N�
i=1

�T
i
��i + ⟨�i , �i⟩,

s.t.

∀i ∈ {1, 2,… ,N},��i ≥ 0, ⟨�, �i⟩ = 1,

(11)

� = (1 + �1)�
T� + �2�,

�i = −2�i − 2�1�i + �2

N∑
j≠i

k(�i , �j)�j ,

� = ��.

For Eq. (10), we can solve � in a column-by-column way, in 
which every �i can be independently solved as a standard 
quadratic programming problem [25].

Connection with constrained Laplacian rank method In 
Eqs. (5) and (6), let � = � , g(�∗

i
, �∗

j
) = −‖�∗

i
− �∗

j
‖2
2
 , and 

�2 = 0 , we have the following model:

That is, if we omit the differences between hyper-parame-
ters, the above model is exactly the L2-constrained Lapla-
cian rank (CLR) [42], as means CLR is one special case of 
our framework.

4 � Experiments

In this section, we evaluate the performance of the BSE 
model on both synthetic and real data. In the case of regu-
larization, a form of capacity control leads to choosing an 
optimal fixed parameter for a given dataset. The key point 
of our work is to define and bound the capacity of the 
regularization framework for block structure enhanced 
model. In the experiments, we use the fixed hyper-param-
eters: �1 = 0.1, �2 = 0.01 . We observe that in practice, our 
affinity matrix converges from random initialization in a 
few iterations, so the number of iterations is also fixed to 
T = 15 . In the experiment on synthetic data, we compare 
the results of BSE with that of CLR [42]. In the experiment 
on real data, we compare the results of BSE with that of 
CLR [42] and LSR [20].

(12)

�∗ = min
�=[�1,�2,⋯,�N]

‖� − �‖2
F
+ 2�1

N�
i,j=1

�ij‖�∗i − �∗
j
‖2
2
+ �1

N�
i=1

�T
i
�i ,

s.t.

∀i ∈ {1, 2,⋯ ,N}, �i ≥ 0, ⟨�, �i⟩ = 1,

Fig. 4   An illustration for the graph refining results under � = 0.9 . a The original affinity matrix; b The refining result of CLR [42]. c The refining 
result of ours
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4.1 � Refining results on block diagonal synthetic 
data

This synthetic data is a 100 × 100 matrix with four diago-
nally arranged 25 × 25 block matrices. These block matrices 
represent four different clusters. The data inside the block 
matrices stand for the affinities of two corresponding points, 
while the data outside are noise. The data in each blocks are 
randomly set in the range from 0 to 1, and noise data are ran-
domly set in the range from 0 and � . We find out that, when 
� ≤ 0.8 , there are almost no differences between the BSE 
model and the compared models. Therefore, we set � from 
0.8 to 0.95 at an interval of 0.1 in the experiment. Since there 
is no data for us to define the kernel matrix, we set � = � . 
We use the default hyper-parameters for CLR provided in its 
code. The experimental results are provided in Fig. 5a, where 
we can clearly see that our BSE model greatly outperforms 
CLR when � ≥ 0.9 . Figure 4 shows that the graph refining 
results when � = 0.9 . It is surprising that the original affinity 
matrix is even hard for human to distinguish the block struc-
ture, our model still have a good performance. The main rea-
son is the graph refining strategy has an ability to strengthen 
the intrinsic diagonal block of original affinity matrix. Such 
an ability has been enhanced by the BSE effect (Fig. 3).

4.2 � Refining results on real data

Datasets We use two popular facial databases: Extended Yale 
Database B (YaleB) [49] and AR database [50]. For YaleB, we 
use the first 10 class data, each class contains 64 images. 
The images are resized into 32 × 32 . We also test a subset 
of AR which consists of 1400 clean faces distributed over 50 
male subjects and 50 female subjects. All the AR images are 
downsized and normalized from 165 × 120 to 55 × 40 . For 
computational efficiency, we also perform principal compo-
nent analysis (PCA) to reduce the dimensionality of the YaleB 
and AR by reserving 98%.

We use LSR [20] to generate the original affinity matrix 
with different hyper-parameters : �o = (�T� + ��)−1�T� 
and � = (�o + �T

o
)∕2 , where � is the generated original affin-

ity matrix and � is the data matrix. The hyper-parameters � 
is set in a range from 0.001 to 0.1 at an interval 0.001. We 
compare BSE (� = � ), BSE (Gaussian kernel) with CLR and 
LSR. The experimental results of YaleB and AR are shown in 
Fig. 5b, c, respectively.

In the experiments, we find out that both of the BSE with 
� = � and the BSE with Gaussian kernel are convergent after 
only 3 iterations averagely, and the maximum iteration is 
less than 6.

BSE with � = � and BSE (Gaussian kernel) both signifi-
cantly outperform the original LSR and CLR. The only differ-
ence between BSE (� = � ) and CLR is the affinity measure-
ment function g:

CLR only considers the affinities obtained by �∗ . How-
ever, such affinities could be heavily disturbed if �� of 
last iteration is not good enough (Fig. 3b). In contrast, BSE 
has an ability to enhance the characteristic of diagonal 
block (Fig. 3c), which in favor of improving the cluster-
ing performance. BSE with Gaussian kernel is more stable 
compared with BSE (� = � ), because the kernel matrix 
provides additional affinities information for the graph 
refining.

5 � Conclusions

In this paper, we provide an iterative regularization frame-
work to refine the graph by giving the number of clus-
ters. We design a new reproducing kernel Hilbert spaces 

(13)
(BSE) g(�∗

i
, �∗

j
) = ⟨�∗

i
, �∗

j
⟩ + (�)ij ,

(CLR) g(�∗
i
, �∗

j
) = −‖�∗

i
− �∗

j
‖2
2
.

Fig. 5   a Accuracy(ACC)-� variation plot for the experiment of block diagonal synthetic data. b Accuracy(ACC)-� variation plot for the experi-
mental results of YaleB dataset. c The experimental results of AR dataset
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of vector-valued functions as the hypothesis space for 
this regularization framework. Moreover, we also pro-
vide a specific graph refining model which based on the 
observation of block structure enhanced the effect. The 
experiment results on synthetic and real data show the 
competitiveness of our method compared with CLR and 
LSR, which are used. The exhaustive analyses on the exper-
iment results with different attributes present the capabili-
ties of our method.
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