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Abstract
Gd3+-doped ZnO nanoparticles with different  Gd3+ concentrations were synthesized by an eco-friendly microwave hydro-
thermal method. X-ray diffraction measurements confirm that the prepared nanoplates exhibit hexagonal wurtzite 
structure.  Gd3+ doping induces lattice expansion of ZnO due to the larger ionic radius of rare earth  Gd3+ in relation to  Zn2+ 
ions. Rietveld refinement, Raman and Photoluminescence (PL) spectra confirm that  Gd3+ ions were successfully inserted 
into ZnO lattice. The 2.0 mol%  Gd3+ doped sample exhibits an increased photoluminescence intensity in comparison 
to that for the undoped ZnO, which is attributed to the enhance in the defect concentration due to  Gd3+ doping. The 
photocatalytic activities of the samples were also evaluated towards UV-A induced degradation of methylene blue in 
aqueous solution. The highest photocatalytic activity was observed for 1.0 mol%  Gd3+-doped ZnO nanoparticles (73% 
for methylene blue degradation within 150 min under UV–Vis irradiation). The particles size, agglomeration degree and 
the electronic effects due to the  Gd3+ dopping seems to be the main parameters that affect the photocatalytic activity 
of  Gd3+-doped ZnO nanoparticles.
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1 Introduction

Metal oxide semiconducting nanostructures doped with 
trivalent lanthanides ions  (Ln3+) are one of the most 
promising materials having most different applications 
in the field of light-emitting displays, magnetic record-
ing media, photocatalysis and optical storage [1–4]. The 
optical emissions arising from the surface defect states 
of these semiconductors are effectively controlled by 
incorporating rare earth (RE) ions [1]. RE ions are con-
sidered to be the better luminescent centers because of 
their intra-shell transitions which can produce narrow 
and intense emission lines [1, 5]. The RE ions are incorpo-
rated into metal oxide semiconductors for the modifica-
tion of electronic structure to improve optical, magnetic 
and catalytic properties [6–9].

One of the difficulties related with the synthesis of 
semiconductor nanoparticles is the control of growth 
by variation reaction parameters [10–13], such as con-
centration, temperature, pH, surfactant agent and 
synthesis time. These parameters directly influence 
the size and the morphology of nanoparticles. Fur-
thermore, changing a synthetic strategy route can also 
introduce promising results. Microwave-hydrothermal 
(MH) method has attracted great attention as a heat-
ing process for semiconductor materials due to their 
kinetic advantages in comparison with the conventional 
hydrothermal method. As a modification of conventional 
hydrothermal, MH method is rapid volumetric heating 
without the heat conduction process, which can achieve 
uniform heating in a short period of time, and it can 
clearly decrease the reaction temperature of synthesis, 
obtain highly crystalline products with high purity and 
low aggregation morphologies, can also screen a wide 
range of experimental conditions in order to optimize 
the material properties [14–20]. Due to these advantages 
the microwave-hydrothermal method becomes a prom-
ising choice in the synthesis of nanostructured materials.

Among many oxides, zinc oxide (ZnO) is an important 
functional semiconducting material with a direct band 
gap of 3.37 eV, physical and chemical stability, weak 
cytotoxicity, high photosensitivity and piezoelectric 
properties [21, 22]. This has made ZnO a good candidate 
for technological application such as energy conversion, 
photocatalysis, sensors, LED’s and antibacterial prop-
erties [23–28]. Furthermore, ZnO has attracted atten-
tion for environmental remediation such as industrial 
wastewater treatment [29–31]. Under UV–Vis light irra-
diation, pollutant could be decomposed into non-toxic 
substances on the surface of a ZnO based photocata-
lyst [32–34]. However, the fast recombination of pho-
togenerated electron–hole pairs is the main obstacle for 

increasing the photocatalytic efficiency of ZnO [35–37]. 
To enrich the photocatalytic, optical and magnetic 
properties of pure ZnO, many efforts have been made, 
as morphologies tuning, homogenous particles obten-
tion and modification by doping with non-metals, alkali 
metals, transition metals (TM) as well as rare-earth (RE) 
metals [38–42]. Rare-earth metals doped ZnO nanostruc-
tures it’s a good alternative, which produced impurity 
energy levels in band gap and traps for photogenerated 
charges carriers accelerating the interfacial charge trans-
fer and decreasing the recombination of electron–hole 
pairs [43, 44]. Gadolinium with half-filled f orbital has 
a mainly positive effect on the optical, electronic and 
magnetic properties when is used as a dopant for ZnO 
[42, 45]. Some researches for the beneficial effects of Gd 
on photocatalytic and optical properties of ZnO nano-
structures but also, other semiconductors have been 
reported [46–49].

In this work, ZnO doped with 1.0 and 2.0 mol%  Gd3+ 
were prepared by microwave-hydrothermal method. 
Crystalline and morphological homogeneous structures, 
optical and photocatalytic activity of synthesized nanopar-
ticles were studied using different techniques.

2  Materials and methods

2.1  Preparation of  Gd3+‑doped ZnO nanoplates

1.22 × 10−2 mol of Zn(CH3COO)2∙2  H2O was added to 40 mL 
of distilled water. This solution was placed under constant 
stirring until complete dissolution of the salt. To this solu-
tion was added 1.0 mL of polyethylene glycol 400 (PEG 
400). The pH value was raised to approximately 12 with 
the addition of a 2 mol L−1 KOH solution.  Gd3+-doped sam-
ples were obtained with the stoichiometric addition of the 
Gd(NO3)3 0.28 mol L−1 (1.0 and 2.0 mol%) solution under 
constant stirring. The solutions were transferred to a pol-
ytetrafluoroethylene cup which was inserted into the reac-
tor. The reaction system was heated to 90 °C for 16 min, 
with a heating rate of 5 °C min−1. The pressure inside the 
autoclave was stabilized at 1.5 atm. The final products 
were centrifuged, washed repeatedly with distilled water 
and ethanol, and finally dried in an oven at 80 °C.

2.2  Characterization of the as‑prepared samples

The X-ray diffraction (XRD) analyses were used to obtain 
information about the crystalline structure of the ZnO 
samples. The measurements were performed on Shimadzu 
X-ray diffraction (XRD) 6000 (Japan) equipped with CuK 
radiation (λ = 1.5406 Å) in the 2θ range from 10° to 100° 
with 0.02°/min scan increment and steps with a fixed-time 
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of 2 s. The refinement of XRD diffraction results was per-
formed using the Rietveld’s profile analysis method [50, 
51], with the General Structure Analysis System (GSAS) pro-
gram suite [52], with EXPGUI interface [53]. Raman spec-
tra were performed at room temperature with an Ocean 
Optics portable spectrometer equipped with λ = 785 nm 
laser, operating at 499 mW. The morphological characteri-
zation was performed using a scanning electron micro-
scope model EVO MA 10 of Zeiss. X-ray (EDX) spectroscopy 
was performed on an Oxford Instruments, operating at 
200 kV. UV–visible spectra of ZnO and  Gd3+-doped ZnO 
samples were obtained on a Cary5G spectrophotometer in 
the 200–800 nm regions. Photoluminescence (PL) spectra 
were recorded at room temperature by a thermal Jarrel-
Ash Monospec27 monochromator and a Hamamatsu R446 
photomultiplier (λexc = 350.7 nm). The adsorption of  N2 and 
the desorption isotherms at 77.35 K were measured on 
a Quantachrome TouchWin automatic surface analyzer 
version 1.1. Before analysis, the samples were degassed 
under vacuum at 90° C for 3 h. The surface area was cal-
culated according to the BET method (Brunauer, Emmett 
and Teller) [54].

2.3  Photocatalytic activity

The photocatalytic performance of the as-prepared 
undoped ZnO and  Gd3+-doped samples was evaluated 
by the degradation of methylene blue (MB) under UV–Vis 
light irradiation. A xenon lamp (300 W) was employed light 
source. The light beam was passed through a KG1 filter to 
remove UVB and UVC photons, thus the photoreactor was 
illuminated with wavelengths between 320 and 800 nm. 
In a typical procedure, 0.16 mg catalyst was dispersed into 
16 mL aqueous solution of MB (0.02 mmol L−1) in a dou-
ble wallet borosilicate reactor. After stirring in the dark for 
60 min, the suspensions were placed under UV–Vis light 
irradiation. The reactor was kept at 25 °C by a water bath, 
the samples were collect at regular intervals, centrifuged 
to remove the excess of powders and then subjected to 
spectrophotometric analysis in the UV–Vis region (SHI-
MADZU 1650PC with 0.1 cm optical path quartz cuvette). 
The discoloration curves were plotted from the absorb-
ance values at the maximum wavelength of 663 nm for 
aqueous solutions of methylene blue at pH close to neu-
trality. The percentage of discoloration was calculated by 
following the formula (Eq. 1):

where  Af is the absorbance of the solution at time t > 0, 
and  Ai is the initial absorbance of the solution. Pho-
tonic efficiency (ξ), which is defined as the ratio of the 

(1)% Decolorization =

[

1 −

(

Af

Ai

)]

× 100

degradation rate of methylene blue (MB), r, and I the inci-
dent photon flux was also calculated as described else-
where by using (Eq. 2) [55, 56]. The UV–Vis incident pho-
ton flux was determined by ferrioxalate actinometry [57] 
(9.20 × 10−8 Einstein s−1).

3  Results and discussion

XRD patterns refined by the Rietveld method are pre-
sented in Fig. 1a–c. Undoped ZnO and  Gd3+-doped sam-
ples present a single phase of wurtzite structure (JCPDS 
36-1451), without the formation of secondary phases. 
Table 1 shows the Rietveld refinement indexes, the lattice 
parameters and volume, obtained by Rietveld refinement 
for undoped ZnO and  Gd3+-doped samples. The results 
were in good agreement with those observed and calcu-
lated XRD patterns. These results suggest that little frac-
tion of  Gd3+ are inserted into lattice or located as clusters 
on the surface of ZnO particles. It is known that the ionic 
radius of the  Gd3+ and  Zn2+ is 0.94 Å and 0.74 Å, respec-
tively [45]. The wurtzite presents an open structure with 
interstices that can accommodate the  Gd3+, suggesting 
that rare-earth 3 + ions are replacing or displacing  Zn2+ 
ions in the crystalline structure. Although differences 
of ionic radius, the replacing by  Gd3+ ions do not cause 
changes in the crystalline wurtzite structure at long-range. 
In addition, the diffraction peak (101) of wurtzite phase 
get shifted towards the lower angle (Fig. 1d) which leads 
to an expansion of the unit cell and is due to the large 
ionic radius of rare earth  Gd3+ than  Zn2+ ions into ZnO sites 
[6, 45, 58]. This behavior is attributed to the substitution 
of  Zn2+ by  Gd3+ ions and therefore confirms the doping 
procedure. It means that ZnO lattice is expanded along 
the c-axis for  Gd3+-doped samples due to the mismatch 
between  Gd3+ and ZnO of lattice in which ionic radii of 
 Gd3+,  Zn2+ and  O2– is 0.94 Å, 0.74 Å and 1.32 Å, respectively 
[4, 59]. A slight expansion along a-axis was also observed. 
The increase for dopant promotes an increase in the num-
ber of defects in the crystalline lattice of the ZnO, thus 
leading to an increase in the lattice parameters.

The cell parameters (Table 1) indicate that doping with 
rare earth ions generates distortions in the crystalline lat-
tice of ZnO and increases the amount of structural defects, 
such as oxygen and interstitial oxygen vacancies [43, 58, 
60], since a slight increase was observed in the values of 
the cell parameters and consequently in an expansion of 
the unit cell when compared with the pure sample. This 
effect is consistent because the ions  Gd3+ coordinate at 

(2)Photonic efficiency (�) =
r × 100

I
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octahedral positions preferentially in the crystalline lattice, 
occupying the interstitial sites [6].

Typical SEM images and EDX spectra of undoped 
ZnO and  Gd3+-doped ZnO nanostructures prepared by 
microwave-hydrothermal method are shown in Fig. 2. 
The SEM images of ZnO  Gd3+-doped ZnO samples 
reflect that have nearly similar particles morphology 
with varying agglomeration degree. Plate like morphol-
ogy was observed for all samples. In addition, the SEM 
image of undoped ZnO sample shows irregular, slightly 

agglomerated plates with an average thickness of 45 nm, 
Fig. 2a. The particles display slightly larger particles size 
than  Gd3+-doped samples. Both  Gd3+-doped samples 
(Fig. 2b, c) showed formation of agglomerated plates 
with a smaller thickness (35 nm). EDX analysis confirmed 
the presence of  Gd3+ in the samples (Fig. 2d). The silicon 
peak (Si) observed in the spectra is due of to substrate 
signal. No other peak related to impurities was detected 
in the spectra which further confirm that  Gd3+-doped 
ZnO samples were successfully synthesized.

Fig. 1  Rietveld refinement plots for ZnO (a), 1.0 mol% of  Gd3+ (b), 2.0 mol% of  Gd3+ (c) and expanded region of the diffraction peak (101) (d)

Table 1  Parameters obtained 
from Rietveld refinement 
for ZnO, 1.0 mol%  Gd3+ and 
2.0 mol% of  Gd3+ samples

Samples Cell parameters Rwp (%) Rp (%) Rbragg (%) χ2

a = b (Å) c (Å) V (Å3)

ZnO 3.25014(5) 5.20715(9) 47.636(2) 4.86 3.68 1.59 1.65
1.0 mol%  Gd3+ 3.25127(8) 5.20801(2) 47.677(3) 5.24 3.97 1.56 1.83
2.0 mol%  Gd3+ 3.25132(9) 5.20871(3) 47.676(2) 4.94 3.74 1.82 1.63
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According to the literature, under conditions of ther-
modynamic equilibrium, the faster growth rate of ZnO is 
along the direction [0001] because of its higher surface 

energy and under certain physical chemical conditions, 
growth along this direction can be partially suppressed 
[61]. The formation of ZnO nanoplates or nanosheets may 

Fig. 2  SEM images of samples obtained by microwave hydrothermal method of ZnO (a), 1.0 mol% of  Gd3+ (b) and 2.0 mol% of  Gd3+ (c). The 
EDX spectra are on the right side of the micrographs
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be associated with excess  OH− in the reaction medium 
allied to a prolongation of synthesis time (16 min). These 
external factors possibly retard the growth in the direction 
[0001], favoring the direction [011̄0] in the formation and 
growth of the nanoplates [23].

The Raman spectra of ZnO and  Gd3+-doped ZnO pow-
ders are shown in Fig. 3. Wurtzite-type ZnO hexagonal 
symmetry belongs to the space group  P63mc, with two 
formula units per primitive cell. Zinc oxide presents eight 
optical Raman mode sets (phonon modes) at the point of 
the Brillouin zone in the ZnO monocrystal, being described 
as follows by the representation: Г = A1 + A2 + B1 + B2 + 2 
 E1 + 2  E2, where modes  B1 are silent,  A1 and  E1 are polar 
modes, active in both the Raman and the infrared, while 
 E2 modes are nonpolar active only in the Raman [62, 63].

The most intense mode in the Raman spectra is the  E2H 
at 438 cm−1, characteristic of the wurtzite phase of ZnO, 
attributed to the zinc-oxygen vibration in the crystalline 
lattice [63, 64]. The slight asymmetries observed between 
samples are attributed to short-range structure disorder as 
well as to non-harmonic phonon–phonon interactions. As 
the concentration of the  Gd3+ ions increases, a decrease in 
the intensity of the  E2H mode is observed, due to the dis-
tortions generated and consequently, a short-range struc-
tural disorder (Fig. 3b). The band located in the 210 cm−1 
region refers to the  2E2L mode of the second-order pho-
nons. The low frequency bands around 334 cm−1 can be 
attributed to the second order Raman spectrum resulting 
from the  E2H–E2L phonons. The polar phonons  A1 and  E1, 
as opposed to the  E2 phonons, are both divided into pho-
nons TO and LO. The vibrational mode  E1 (LO) located in 
the region around 580 cm−1 rises from background, which 
originate from second-order Raman scattering, is associ-
ated with structural defects formed by oxygen vacan-
cies [64, 65]. The low intensity band attributed to the 
order–disorder degree of ZnO  A1 (TO) around 378 cm−1 

was observed to ZnO pure. The band at 409 cm−1 for the 
 E1 (TO) mode is observed as a “shoulder” of the band at 
438 cm−1  (E2H) and with the insertion of the dopant into 
ZnO crystal lattice it is covered by the  E2H mode (Fig. 3b). 
A narrow band referring to the intrinsic TA + LO mode of 
ZnO was observed around of 660 cm−1 [65, 66].

In the literature, a similar behavior was observed, con-
firming that the influence of RE ion on the crystal structure 
arises from the strong dependence on the size and polar-
izability of the dopant ion [67]. The incorporation of  Gd3+ 
ions promotes a tendency to electronic cloud distortion 
due to the increased polarization intensity. The  Gd3+ pre-
sents a higher ionic radius and has the capacity to promote 
a distortion of the electronic cloud.

To investigate the specific area and the poros-
ity of the ZnO and  Gd3+-doped ZnO nanoplates, 
Brunauer–Emmett–Teller (BET) adsorption and desorp-
tion of  N2(g) measurements were performed. The nitrogen 
adsorption and desorption isotherms are shown in Fig. 4. 
All samples presented the type IV curve accompanied by 
a H3 type hysteresis, which is attributed to the predomi-
nance of mesopores according to the IUPAC classifica-
tion [68, 69]. In addition, the BET surface area and pore 
distribution of all the samples are summarized in Table 2. 
The BET tests show that surface areas are 11.89 m2 g−1, 
13.94 m2 g−1 and 7.84 m2 g−1 for undoped ZnO, 1.0 mol% 
of  Gd3+ and 2.0 mol% of  Gd3+, respectively. 1.0 mol% of 
 Gd3+-doped ZnO with a relatively higher specific surface 
possibly provides more active sites and is more beneficial 
for the photocatalytic reaction. Small particle sizes and 
minimized agglomeration increase the specific surface 
area and therefore also increase the number of active sur-
face sites where the photogenerated charge carriers can 
react efficiently with absorbed molecules to form hydroxyl 
radicalar species [70, 71].

Variation in the specific surface area has been observed 
in the literature from insertion of dopants in the ZnO lat-
tice. Liang et al. [32] synthesized Ce-doped ZnO micro-
flowers at different concentrations (0.25–5.0% of Ce) and 
observed a decrease in the specific when the  Ce4+ con-
centration was increased to 3.0%. Li et al. [72] obtained 
Er-doped ZnO samples via sol–gel method at concentra-
tion of 0.2%, 0.5% and 1.0% of Er. The authors reported 
that  Er3+ concentrations were increased of 0 to 0.5%, the 
specific surface area increased, while the specific surface 
area decreased when the concentration increased to 1.0%.

The UV–visible diffuse reflectance spectra of the sam-
ples of pure zinc oxide and doped with the  Gd3+ ions syn-
thesized at 16 min times, are shown in Fig. 5. The  Gd3+ ion 
with  4f7 configuration is very stable, f–f electronic transi-
tions are difficult to detect, commonly is observed in the 
vacuum ultraviolet region (10–200 nm) [73]. To determine 
the gap energy  (Egap) values of the synthesized materials, 

Fig. 3  The Raman spectra of ZnO (a), 1.0  mol% of  Gd3+ and 
2.0  mol% of  Gd3+ (b) samples obtained by microwave hydrother-
mal method
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the Kubelka–Munk method [74] was used. The  Egap values 
obtained were 3.28 eV; 3.25 eV and 3.26 eV, for samples 
of undoped ZnO, doped with 1 mol%  Gd3+ and doped 
2 mol%  Gd3+, respectively. The insertion of a dopant in 
the structure of the zinc oxide did not promote significant 
changes in the  Egap values of the materials, which is pos-
sibly due to the low concentrations of the doped ions  Gd3+ 

Fig. 4  N2 adsorption/desorption isotherms of ZnO (a), 1.0  mol% of  Gd3+ (b) and 2.0  mol% of  Gd3+ (c) samples obtained by microwave 
hydrothermal method

Table 2  BET surface area of plate-like ZnO and  Gd3+-doped sam-
ples with different  Gd3+ concentrations

Samples Surface area 
 (m2  g−1)

Total pore vol-
ume  (m3  g−1)

Pore size (nm)

ZnO 11.89 0.051 17.18
1.0 mol%  Gd3+ 13.94 0.072 16.60
2.0 mol%  Gd3+ 7.84 0.033 2.06

Fig. 5  UV–Vis diffuse reflectance spectra of nanoplates ZnO and 
doped with 1.0 and 2.0 mol% of  Gd3+
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inserted in the crystalline lattice of ZnO. But also, the esti-
mated  Egap experimental values were close to the theoreti-
cal  Egap value of ZnO (3.37 eV) [75, 76].

Photoluminescence spectra obtained at room tempera-
ture for samples of pure ZnO and doped with the  Gd3+ ions 
synthesized at 16 min are shown in Fig. 6a. All samples 
presented a maximum broad band around 613 nm, which 
corresponds to the green and orange emission contribu-
tions. The photoluminescence intensity of 2.0 mol% of 
 Gd3+ sample increased, suggesting that the recombina-
tion of the electrons and holes increases. This increase can 
be attributed to the surface defects of vacancies created 
by an increase in dopant concentration in the crystalline 
lattice, which act as centers of radiative recombination 
[32, 77]. The similar behavior was observed by Sowik et al. 
[78] that reported the modification of ZnO quantum dots 
with rare earth metals. The modification of ZnO with small 
amount of rare earth metal influenced lower PL intensity, 

however modification of ZnO by 0.18 or more mmol of La 
and Er caused increased in PL emission intensity.

It is widely accepted that the deep-level-emission is 
closely related to the structural defects such as oxygen 
vacancies or Zn interstitials in zinc oxide [4]. By using the 
Gaussian analysis, Fig. 6b–d shows the decomposition 
curves for the samples of undoped ZnO and doped with 
 Gd3+ ion. From the results it was possible to attribute how 
much each color contributed to the photoluminescent 
emission. The bands were decomposed into five compo-
nents, two components in the region of green (515 and 
562 nm), one component in the region of orange (613 nm) 
and two components in the red region (665 and 736 nm). 
Table 3 shows the maximum peak values for each emission 
component and its percentage of area.

Doping can generate defects, which result in different 
recombination processes influencing emission in the vis-
ible region. As the dopant concentration increased in the 

Fig. 6  a Photoluminescent emission spectra (λexc = 350.7 nm) for ZnO and  Gd3+-doped ZnO, b decomposition emission bands for the sam-
ples of undoped ZnO, c doped with 1.0 mol% of  Gd3+ and d doped with 2.0 mol% of  Gd3+
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ZnO crystal lattice, a higher percentage of green emission-
related area can be observed by the contributions of the 
two peaks P1 and P2. The greater percentage of area in 
the green region correlate with the increase in the amount 
of dopant in the structure is attributed to the increase in 
the density of structural defects created, such as inter-
stitial oxygen and zinc vacancies, as well as electronic 
defects [79–82]. Red emission bands can be attributed to 
free electron recombination and may be associated with 
excess oxygen occupying interstitial sites Oi [23, 83, 84]. 
The slight increase in emission in the orange-red regions 
from doping can be directly associated with the transitions 
of impurity levels induced by the presence of rare earth ion 
and also for changes in levels of impurities associated with 
native defects in ZnO.

The photocatalytic activity of the samples was evalu-
ated against the degradation of the MB dye under UV–Vis 
irradiation. The degradation curve of MB without any cat-
alyst added is also presented. As shown in Fig. 7a, there 

is a small decrease in the absorbance of MB in the blank 
experiment after 180 min of irradiation, indicating that the 
photolysis of MB solution resulted in degradation of 12%.

The 1.0 mol% of  Gd3+-doped ZnO nanoplates catalyst 
exhibit higher photocatalytic activity than those observed 
for the other samples (Fig. 7b), which corroborates with 
the PL behavior. The photocatalytic activity is affected by 
photo-generated charge transfer and separation, so the PL 
emission spectra can be used to estimate the separation 
capability of the electron–hole pairs. The PL emission is 
the result of the radiative recombination of electrons and 
holes. So, lower PL intensity reflects lower recombination 
yields of electron–hole pairs [7, 48]. Therefore, photocata-
lyst with weaker PL intensity tends to show higher catalytic 
ability.

The 1.0  mol%  Gd3+-doped ZnO shows lower emis-
sion intensity and consequently, its photocatalytic effi-
ciency is higher when compared to the undoped ZnO. 
The introduction of  Gd3+ ions can generates an increase 
in the number of structural defects in the crystalline ZnO 
lattice, as oxygen vacancies. The oxygen vacancies act as 
electron acceptors during photocatalytic process, which 
trap the photogenerated electrons temporally to reduce 
the recombination of electrons and holes, providing an 
alternative path [43, 85]. If the amount of rare earth ions 
exceeds the dopant acts as recombination center for elec-
trons and holes, so the photocatalytic activity decreases, 
also observed in literature [48, 86].

Yi et al. [4] reported that the degradation rate of MB 
on  Gd3+-doped ZnO films with various  Gd3+ contents 
under UV illumination. With increasing  Gd3+ content, 
the photocatalytic activity of the  Gd3+-doped ZnO films 
decreases. This similar tendency is also observed for 

Table 3  Relative percentage of the Gaussian deconvolution of the 
photoluminescence bands for the samples

PL peaks Center (nm) Samples

ZnO 1.0 mol% of 
 Gd3+

2.0 mol% 
of  Gd3+

Area (%)

P1 (green) 515 9.8 14.4 11
P2 (green) 562 19.2 21 23
P3 (orange) 613 27.1 30.1 29
P4 (red) 665 25.7 24 23.2
P5 (red) 736 18.2 10.5 13.8

Fig. 7  a Photolysis of the methylene blue in the absence of the catalyst at a total time of 180 min and b photodegradation curves of MB by 
different catalysts under UV–Vis irradiation
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Divya et al. [87]. They have prepared  Gd3+-doped ZnO 
varying the  Gd3+ concentration between 0.05 and 0.2 
wt%. The sample with 0.05 wt%  Gd3+ has shown better 
photoactivity as compared to the other samples. Yaya-
pao et al. [88] reported the degradation of MB under 
UV–Vis illumination in presence of  Gd3+-doped ZnO 
and also observed increased photoactivities for doped 
samples.

The photocatalytic degradation of methylene blue 
under UV–Vis irradiation is in accordance with the Lang-
muir–Hinschelwood model, which is well established in 
the literature [89–91]. Pseudo-first order rate constants 
(k) could be obtained by linear fittings of ln (A/A0) versus 
the irradiation time, Fig. 8. A is the absorbance of the 
solution at time t > 0, and  A0 is the initial absorbance 
of the solution after the equilibration in the dark. The 
rate constants were calculated along with the percent-
age of methylene blue discoloration and the photonic 
efficiency (ξ), Table 4. The results confirmed the improve-
ment of the photocatalytic activity of ZnO due to the 
doping with 1.0 mol% of  Gd3+.

The possible mechanism for describing the methylene 
blue photodegradation is illustrated in Fig. 9. The oxygen 
vacancies (Vo

+) and  Gd3+ ion will act as electron acceptor, 
interstitial oxygen  (Oi) will capture the holes, retarding 
the recombination of the charge carriers. New intermedi-
ate energy levels located between the valence band and 
the conduction band of ZnO are generated by the  Gd3+ 
doping. The photoinduced holes react with adsorbed 

 H2O generating the oxygen radical species, responsible 
for the degradation of organic contaminants [7, 32, 43].

4  Conclusions

In summary, nanoplates of undoped ZnO an doped with 
 Gd3+ ions were successfully synthetized using micro-
wave hydrothermal method at only 90 °C for 16 min. XRD, 
Raman and photoluminescence confirmed the insertion 
of  Gd3+ ions into ZnO crystal lattice. Are also investigated 
the influence of native defects of ZnO and  Gd3+ ions on 
the photoluminescence and photocatalytic efficiency of 
the samples undoped ZnO an doped with  Gd3+. The BET 
surface measurements showed that 1 mol% of  Gd3+ exhib-
ited the higher surface area. All samples presented photo-
catalytic activity for the degradation of MB. Moreover, the 
sample doped with 1.0 mol% of  Gd3+ presented highest 
photocatalytic activity. The results showed that the inser-
tion of dopant  Gd3+ increased the number of structural 
defects of the ZnO crystal lattice, therefore, the oxygen 
vacancies played a relevant role in the enhanced photo-
catalytic efficiency.
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irradiation time using different catalysts, adjusted according to a 
pseudo-first order kinetics

Table 4  Observed rate constants (k), percentages of MB discolora-
tion and photonic efficiencies (ξ) for different photocatalysts, under 
the irradiation conditions employed in this work (9.20 × 10−8 Ein-
stein s−1)

Samples Kinetic con-
stant k  (min−1)

Discoloration (%) 
after 150 min

Photonic 
efficiency (ξ) 
(%)

ZnO 0.0065 63 0.01
1.0 mol%  Gd3+ 0.0093 73 0.02
2.0 mol%  Gd3+ 0.0021 23 0.006

Fig. 9  Proposed scheme for the photodegradation of methylene 
blue under UV–Vis light irradiation
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