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Abstract
In this work, we adopt a semi-analytical model to study a capacitive MEMS accelerometer based in silicon (Si). Such 
model takes into account the thermoelastic stiffness and linear expansion coefficients of anisotropic bulk Si. In addi-
tion, an analytical damping model, derived from the Reynolds equation, is incorporated in the model, in order to study 
dynamical characteristics of a MEMS capacitive accelerometer. Such approach takes into account the inertial effects on 
squeeze film damping in air, argon and helium gases, assumed as being ideal gases. The simulation model was compared 
with experimental measurements. The main figure of merit adopted is the electromechanical sensitivity (SEM), assuming 
frequency response and considering the effect of gas pressure, as well as temperature, on the damping loss mechanisms 
in such devices. The resulted model implementation shows a good agreement with the experimental data. For all gases, 
the sensitivity at 20 Pa presents less variation than at 200 Pa. At 20 Pa, the linear response of the device reaches up to 
300 Hz, approximately, for air and helium, assuming variation of ≈ 0.5 dB, no matter which temperature. For 200 Pa, the 
linear response drops down to about 150 Hz. Also, for the three gases, the variation of SEM as a function of temperature 
is below 0.17 dB in the entire operational range, for both evaluated pressures, depending only on the silicon mechanical 
properties at low frequencies.

Keywords  Microelectromechanical systems · MEMS · Capacitive microaccelerometer · Squeeze film damping model · 
Sensitivity · Thermoelasticity

List of symbols
a = b = Wm	� Length/width of the seismic mass
A0	� Amplitude displacement in frequency 

domain
az	� Applied acceleration in z-axis direction
BГ	� Geometric correction factor
cd	� Viscous gas damping coefficient
Cijkl	� Stiffness component fourth-rank tensor
CT0ij	� Stiffness coefficient at reference 

temperature
Dmn	� Geometrical term
E	� Young’s modulus
fo	� Amplitude of external force

g	� Gravitational acceleration
Gmn	� Geometrical term
h0	� Gap length between fixed electrodes and 

the seismic mass
HEM	� Electromechanical transfer function
I	� Transversal moment of inertia of beams
K0	� Zero-order complex coefficient
K1	� First-order complex coefficient
KB	� Boltzmann constant
kde	� Elastic gas damping coefficient
keff	� Effective stiffness constant
kem	� Electromechanical constant
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keq	� Equivalent clamped–clamped beams spring 
constant

Kn	� Knudsen number
Ks	� Rarefaction coefficient
lb	� Length of the beam
m, n, k	� Summation odd indices
mb	� Mass of the beam
meff	� Effective mass
Meff	� Effective mass
Ms	� Seismic mass
nγ	� Isothermal process coefficient
patm	� Atmospheric pressure
pf	� Fluid pressure
Qrf	� Relative flow rate term
R	� Sutherland constant
s = jω	� Laplace complex number
SE	� Electrical sensitivity
SEM	� Electromechanical sensitivity
Sijkl	� Compliance component fourth-rank tensor
SM	� Mechanical sensitivity
T	� Temperature
T0	� Reference temperature
tb	� Thickness of the beam
TCE	� Thermal coefficient of elasticity
Td	� Total length of transducer
tm	� Thickness of the seismic mass
u	� Number of beams
v	� Poisson’s ratio
Vg	� Volume of the gas
Vs	� Excitation voltage signal
wb	� Width of the beam
wrimp	� Width of rim
z	� Displacement in z-axis direction
Z	� Laplace transform of displacement in z-axis 

direction
αL	� Linear thermal expansion coefficient
αv	� TMAC, Ref. [23]
δz	� Differential displacement in z-direction
ε0	� Electrical permittivity in vacuum
εr	� Relative electrical permittivity
η0	� Dynamic viscosity
ηf	� Fluid viscosity
θd	� Phase in frequency domain
λlc	� Mean free path of gas
ξm	� Damping factor
ρf	� Fluid density
ρsi	� Monocrystalline silicon density
σch	� Effective collision area of gas
σp	� Slip-flow term
Φ	� Force of fluid per unit of speed
ωa	� Angular modified frequency
ωrm	� Angular natural frequency

1  Introduction

The impact of microelectromechanical systems (MEMS) 
technology in the modern society is well known [1, 2]. 
This technology has been allowing the development of 
small, low-cost and robust devices and systems, such as 
microsensors and microactuators. Nowadays, microsen-
sors are widely used in many commercial products, such 
as automotive airbag systems, smartphones, tablets and 
video games. Furthermore, high-performance MEMS sen-
sors are used in key areas, such as defense and aerospace 
industries, to integrate inertial measurement units (IMUs) 
of navigation systems applied in micro- and nanosatellites 
[3–5].

MEMS capacitive accelerometers detect accelerations 
by exploiting the movement of a seismic mass, resulting 
in a capacitance change between parallel plates mechani-
cally suspended by clamped beams. A three-dimensional 
sketch of a MEMS capacitive acceleration transducer 
is shown, in exploded view, in Fig.  1. In this case, the 
microsensor is fabricated using a bulk-micromachined 
process in a silicon monocrystalline substrate (Si). Such 
process involves a selective anisotropic wet etching, usu-
ally deploying potassium hydroxide (KOH) as the etching 
agent [1].

There are several parameters used to completely char-
acterize this kind of device, although the main require-
ments are defined according to their applications. The 
most common figures of merit are sensitivity, dynamic 
bandwidth, nonlinearity, resolution, etc. [6]. Sensitivity 
and dynamic bandwidth are the parameters explored 
in this work. The sensitivity, evaluated in a static point of 
view, depends on material physical properties and on geo-
metrical parameters. The dynamic bandwidth is related 
to a relatively flat amplitude and linear phase bandwidth 
responses up to some maximum specified frequency, 
related to the device’s natural frequency. The evaluation 
of these combined parameters is assumed as a dynamic 
sensitivity. The performance of MEMS devices is associated 

Fig. 1   Exploded view of a MEMS capacitive acceleration transducer
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with losses due to several damping effects, such as: damp-
ing of acoustic vibrations, damping due to cantilevers 
linking the seismic mass to the inertial frame, damping 
due to thermoelastic effects and squeeze film damping 
(SFD) [7, 8]. The last one is the predominant loss effect in 
planar MEMS structures [8]. One of the strategies used to 
improve the device dynamic performance is the adjust-
ment of the atmosphere surrounding the seismic mass, in 
order to control the SFD effect, since it is possible to set 
the internal atmosphere in the capacitive MEMS during 
the packaging process.

Numerical methods, such as the finite element method 
(FEM), the finite volume method (FVM) and the finite dif-
ference method (FDM), are frequently used to evaluate 
the multi-physical behavior of these kinds of devices. Such 
methods demand considerably computational resources. 
The required computational resources increase as the com-
plexity of the geometrical and physical models increases. 
When possible, simplified analytical approaches are the 
best way to validate first concept designs and to take the 
first insights on the nature of the system. Also, it is a tre-
mendous value to establish and predict the behavior of 
such kind of system in real and operational conditions, for 
example, in aeronautical and aerospace situations, where 
the overall system may be exposed to the natural elements, 
as high temperature and pressure gradients, among others.

Also, it is worth to remark here that, most practical 
case to get the first insights, the developers estimate the 
dynamic sensitivity range as approximately 1/5 of the 
first natural frequency of general mechanical transducer 
devices (i.e., resonators, beams, cantilevers, etc.). This first 
“guess” seems very practical, but in some cases, the real 
dynamic sensitivity range can be underestimated, or it can 
show up completely misinterpreted if the developers are 
not be careful. Also, this supposed start point may not cap-
ture the surrounding atmospheric pressure dynamics in 
small enclosed systems, for instance. In such cases, the NIE-
SFD model and similar approaches should be sufficient 
to provide the first insights about the system dynamics, 
for a variety of systems. However, for high-performance 
device applications, as the aforementioned aeronautical 
and aerospace purposes, for example, the IE-SFD model 
seems more appropriate on account of revealing more 
accurately dynamic behavior of this kind of devices in hard 
task scenarios; hence, it is allowing more realistic insights 
about the dynamic of such systems.

Based on analytical approximations, several squeeze film 
damping (SFD) models have been applied in the study of 
MEMS structures, such as the molecular models developed 
and tested by Christian [9], Newell [10], Kádár et al. [11], Li 
et al. [12], Bao et al. [13] and others. An analytical SFD model 
was used by Bourgeois et al. [14, 15] to study a capacitive 
MEMS accelerometer in nitrogen atmosphere, for different 

pressure. Their results show good agreement with experi-
mental data. Recently, a new viscous damping model was 
proposed by Aoust et al. [16] to study MEMS resonators, for 
which additional damping sources have become important. 
Although analytical SFD models for MEMS structures have 
received distinct contributions [12, 17], and the same atten-
tion is true also in studies associated with thermoelastic fea-
tures in silicon MEMS [14], the concomitant, squeeze film 
damping and thermoelastic mechanical effects experienced 
on dynamic sensitivity of MEMS accelerometers, based on 
analytical approach, were not tackled before according to 
the best of our understanding.

In this paper, we adopt a semi-analytical model to study 
a capacitive MEMS accelerometer. Such model takes into 
account the thermoelastic stiffness and linear expansion 
(αL) coefficients of anisotropic bulk silicon. In addition, 
an analytical damping model, derived from the Reynolds 
equations [17, 18], is incorporated in the model in order 
to study dynamical characteristics of a MEMS capacitive 
accelerometer. Such approach takes into account the 
inertial effects on squeeze film damping (IE-SFD) in air, 
argon and helium gases, assumed as being ideal gases. 
The simulation model was compared with experimental 
measurements. The main figure of merit adopted is the 
electromechanical sensitivity (SEM), assuming frequency 
response (dynamic sensitivity) and considering the effect 
of gas pressure, as well as temperature, on the damping 
loss mechanisms in such devices.

2 � Capacitive accelerometer model

The capacitive acceleration transducer illustrated in Fig. 1 
allows the detection of an external force by means of the 
difference of capacitance between the fixed conductor 
plates and the seismic mass, displaced from the equilib-
rium by an inertial force. This difference is converted into 
an electrical voltage signal [19]. The electromechanical 
transducer can be modeled as a mass–spring–damper 
system, as illustrated in Fig. 2.

Although the complete damping system is expressed 
by a nonlinear differential equation with time-dependent 
coefficients [4], for small displacements of the seismic 
mass, the equation can be linearized, for instance, by 
using a Taylor series around the operating point z = 0 [20, 
21]. Making use of linear systems analysis techniques, we 
can write the transfer function of the system as the ratio 
between the z-axis displacement of the seismic mass and 
the applied acceleration az, taking into account the inertial 
effects of squeeze film damping gas, as follows [5]:

(1)HEM =
z

az
=

kem

s2 + K1s + K0
,



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:321 | https://doi.org/10.1007/s42452-019-0327-5

where kem is the electromechanical constant and s = jω is 
the frequency term due to the Laplace transformation. The 
K1 and K0 coefficients are expressed, respectively, as

and

where cd is the viscous gas damping coefficient which rep-
resents the total damping contributions coming from fluid 
and mechanics domains, kde is the elastic gas damping 
coefficient related to the gas inertial mechanisms [17], Meff 
is the effective mass, and keff is the effective electrostatic 
and mechanical elastic coefficient present in the system. 
Equations (2) and (3) carry a considerable amount of infor-
mation in account of different physical aspects of the sys-
tem dynamics. In other words, these equations capture the 
intrinsic nature of mechanical, electrical and fluidic phe-
nomena involved in the dynamical process under study.

In the next sections, we shed light on how some of 
these main dynamical processes were modeled as well as 
present our primary considerations to make the system 
feasible to be solved according to the adopted approach. 
Meanwhile, we highlight that the geometrical details 
aspects of the capacitive accelerometer model used in 
this work can be found, in a deep view point, in these ref-
erenced works [4, 5].

2.1 � Basic equations approach

In order to take into account the damping force due to the 
gas film located between the faces of the seismic mass and 
the fixed plates, a gas film lubrication approach derived 
from the modified Reynolds equation [18, 22] and based 
on the continuous theory of matter is employed [17]:

(2)K1 = 2cdM
−1
eff

(
keqMeff

) −1

2
(
keff + 2kde

) 1

2

(3)K0 = keff + 2kdeM
−1
eff
,

where �f is the fluid density, pf is the fluid pressure, and �f 
is the fluid viscosity. Such approaches are named squeeze 
film damping models (SFD models). Also, SFD models 
allow improvements in the representation of the dynamic 
behavior of the actuator by including gas film inertial 
effects.

The inertial effects alter the natural frequency and the 
peak amplitude of the dynamic response of the system, as 
a function of the applied gas pressure [19]. Further, these 
effects are deeply related to system damping phenomena 
and both are introduced in virtue of the fluidic damping 
mechanisms, which can be quantified by both special 
coefficients, namely the elastic gas damping and the vis-
cous gas damping. The effect of the elastic gas damping 
coefficient is neglected for squeeze number smaller than 
0.2 and, under this condition, the predominant damping 
loss mechanism is the viscous damping [8, 13]. Assum-
ing that the resultant force oscillates harmonically and 
moves the seismic mass, the relation between the damp-
ing coefficients is expressed by the damping force, Fd, on 
the plates due to the squeeze effect and it is given by the 
following equation:

where ω is the angular frequency, ℜ[.] and Im[⋅] denote, 
respectively, the real and imaginary parts of the complex 
number, and Z is the transformed z coordinate represen-
tation. At this point, it is interesting to highlight the ori-
gin of the viscous gas damping coefficient ( cd ) as well as 
the elastic gas damping coefficient (kde) terms. They are 
derived from the force of fluid per unit of speed parameter, 
� , which can be expressed in terms of the infinite series 
summation over odd indices m and n containing the terms 
given by [17, 23]:

where Gmn and Dmn are the geometrical terms of the accel-
erometer seismic mass structure and Qfr is the relative flow 
rate term. Considering that the fixed and mobile plates 
(seismic mass) are rectangular, the geometric terms Gmn 
and Dmn are calculated, respectively, as:

(4)
�

�x

(
�fh

3
0

12�f
Qfr

�p

�x

)

+
�

�y

(
�fh

3
0

12�f
Qfr

�p

�y

)

= pf
�h0�f

�t
,

(5)Fd = ℜ[�]Zs − �Im[�]Z = cdZs + kdeZ ,

(6)� =

M∑

m,odd

N∑

n,odd

1

QfrGmn + j�Dmn

,

(7)Gmn =
(mn)2�6h3

0

768�fab

(
m2

a2
+

n2

b2

)

,

Fig. 2   Schematic illustration of the geometric structure of the 
MEMS capacitive acceleration transducer. a Front view of the seis-
mic mass (mobile plate). b Side view showing the internal parts of 
the transducer. The variables are presented in Tables 4 and 5
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and

where a and b are the widths of the seismic mass geom-
etry, and nγ is the isothermal process coefficient, which 
depends on the heat conduction and the temperature 
assumed as boundary conditions during the linearization 
of the modified Reynolds equation in frequency domain 
[17]. The relative flow rate coefficient model (Qfr), which 
takes into account high squeeze effect number assuming 
inertial gas effects, can be defined as follows [17]:

where k ∊ {1, 3, …, K} and Ks is the rarefaction coefficient, 
which can be expressed as a contribution of the Knudsen 
number ( Kn ) and the slip-flow term ( �p ) as

In addition, the slip-flow coefficient (σp), includes the 
effect of kinetics velocity variation of gas molecules due 
to thermal energy near the surface and is given by [24]:

where αv is the coefficient that expresses the diffusion 
reflected fraction of gas molecules, also known as tan-
gential momentum accommodation coefficient (TMAC) [24]. 
Moreover, the Knudsen number

carries the information of the mean free path of gas (λlc), 
assuming elastic collisions [17] which can be given as

where KB is the Boltzmann constant, T is the temperature, 
and σch is the effective collision area of gas. We highlight 
that the main free path is a temperature-dependent coef-
ficient. This is the first of our considerations related to 

(8)Dmn =
(mn)2�4h0

64�fabpn�
,

(9)QfrK =

K∑

k,odd

1 + 6Ks

k4�4

96
+

j�k2�2�fh
2
0(1+10Ks+30K2

s )
96�f(1+6Ks)

,

(10)Ks = �pKn.

(11)�p =
2 − �v

�v

[
1.016 − 0.1211

(
1 − �v

)]
,

(12)Kn =
�lc

ho

(13)�lc =
KBT

2
√
2�chp

,

fluidic temperature dependence coefficients. The second 
one concerns to the fluid viscosity of the gas, which cir-
cumvents the seismic mass, in the MEMS’s sensing plate 
(Fig. 1). Based on ideal gases law, one interesting approach 
to describe the dynamic viscosity and temperature rela-
tionship was introduced by Sutherland [25], where such 
quantity is very well described thanks to the well-known 
Sutherland formula expressed as [25] 

where R is the Sutherland constant of the gases, which is 
related to the potential energy of molecular gas due to the 
mutual attraction interaction [25], and η0 is the dynamic vis-
cosity at reference temperature (T0) [26]. Table 1 introduces 
some important parameters related to the Sutherland coef-
ficients for argon, helium and air gases media, as well as 
presents the main free path and dynamic coefficients just 
as other important fundamental parameters [27].

The set of equations from (4) to (14) presents the main 
model assumptions related to the fluidic dynamic nature 
of the MEMS transducer accelerometer system. Also, these 
equations enable us to infer about cd and kde coefficients 
quantitatively [Eqs.  (2) and (3)]. Further, equations 
�lc =

KBT
2
√
2�chp

 (13) and (14) allow us to capture some of the 

temperature effects arising from fluid dynamics in the 
MEMS transducer device.

Next, turning now to the electrical and mechanical 
aspects of the elastic coefficient ( keff ), which was intro-
duced according to the equation of the linearized effective 
electromechanical stiffness coefficient given as [21, 28] 

where E is the Young’s modulus, I is the transversal moment 
of inertia of beams, εo is the electrical permitivity in vac-
cum, εr is the relative electrical permitivity, Vs is the excita-
tion voltage signal, Wm is the seismic mass width, and lb is the 
length of the beams. The first term in Eq. (15) is the equiva-
lent clamped–clamped beams spring constant (keq), whereas 
the second term captures the equivalent spring softening 
effect in virtue of the electrostatic behavior, which is coming 
from the intrinsic capacitive nature of the system [28].

(14)�f = �0

(
T

T0

) 3

2
(
T0 + R

T + R

)

,

(15)keff =
48EI

l3
b

−
2�r�oW

2
m
V2
s

h3
0

,

Table 1   Gases’ coefficients Gas Sutherland 
constant (K)

Ref. temp. (K) λlc at 300 K, 
1 atm (nm)

η0 at 300 K 
(µPa s)

ρf at 273 K, 
1 atm (kg/m3)

εr at 293 K 1 atm

Air 120 291.15 68.7 18.27 1.184 1.0005364
Helium 79.4 273 198 19 0.1786 1.0000650
Argon 133 298 72.7 22.6 1.784 1.0005172
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Further, it is profitable to introduce two main assump-
tions for temperature effects in our transducer MEMS mode-
ling design approach, owing to mechanical domain features. 
The first one has direct impact on the Young’s modulus (E), 
as shown in Eq. (15), with implications on changes in the 
material elasticity property. The crystal silicon (Si) used has 
(100) orientation and [110] flat direction. The stiffness Cijkl 
and compliance Sijkl, both anisotropic mechanical properties 
and both based on the Hooke’s law, are usually expressed by 
a fourth-rank tensor [29]. Through the unit cell symmetry of 
Si crystal representation, it is common to show S and C in the 
orthotropic context and consequently present the proper-
ties according to the specific axis of interest using a reduced 
rank tensor notation. The Si crystal coefficient values to [100] 
orientation are shown in Table 2 [30, 31]. Therefore, the elas-
tic properties are expressed by Young’s modulus (E) and the 
Poisson’s ratio (ν) and can be easily found using parallel and 
orthonormal angular projections by the x-, y- and z-axis 
directions of the silicon crystal [31]. In addition, the stiffness 
tensor can then be simply rotated in the orientation of inter-
est [32].

For a crystalline Si material, the linear thermal expansion 
coefficient has the same behavior for all crystallographic 
directions [29, 33]. The contribution of the thermal effect 
on the Si stiffness coefficients can be expressed by [14, 34]:

where T0 is the reference temperature, CT0ij is the stiffness 
coefficient at reference temperature, and TCEcij is the ther-
mal coefficient of elasticity of the considered elastic con-
stant. The first-order temperature coefficients of the elastic 
constants are presented in Table 3 [14, 33].

The second temperature implication in our model 
approach in mechanical domain was taking into account 
the general deformation of the MEMS design, owing to 
the thermal expansion variations acting on the transducer 
geometrical parameters design. We estimated the thermal 
expansion variations for all geometrical parameters based 
on the Si linear thermal expansion coefficient αL (10−6 K−1) for 
temperatures ranging from 120 to 1500 K that is expressed 
according to [35]:

(16)CTij = CT0ij

[

1 +
∑

h≥1

(
TCECij

)

h

(
T − T0

)h
]

,

(17)�L = 3725
(
1 − e−588×10

−3(T−124)
)
+ 5548 × 10−4T .

The last parameter which plays a role in Eqs. (3) and (4) 
is the effective mass ( Meff ) expressed as

and it is obtained using the seismic mass parameter design 
( Ms ) plus the effective mass of the beams, that is obtained 
according to the Rayleigh principle by means of the deflec-
tion of the beam curvature and the kinetic energy of the 
beams relation [36]. The parameter mb is the mass of the 
beam, and u is the number of beams; in this case, u = 2, 
i.e., there are two clamped–clamped beams. Further, the 
accelerometer’s seismic mass with the geometric shape 
previously described can be obtained as a function of the 
mask designed by [21].

where ρSi is the silicon density, tm is the thickness of the 
beams, and Wm is the seismic mass width.

Introducing Eqs. (2) and (3) in Eq. (1) and making some 
manipulations, it is possible to evaluate the amplitude (A0) 
and phase (θd) of the dynamic response of the MEMS capaci-
tive transducer according to [8]:

and

where fo is the amplitude of external force; ωa is the modi-
fied frequency, which is a function of the angular fre-
quency with damping effects, and is given by

(18)Meff = Ms + u
13

35
mb,

(19)Ms = �si

�

W2
m
tm +

2
√
2

2
Wmt

2
m
+

t3
m

6

�

,

(20)A0 =
f0

Meff

√
1

(
�2
a
− �2

)2
+ c2

d
�2∕M2

eff

(21)�d = − arctan

(
cd�

Meff

(
�2
a
− �2

)

)

,

(22)�a =

√
keff + kde

Meff

.

Table 2   Stiffness (C 109 Pa) and compliance (S 10−12 Pa) coefficients 
of silicon at 293 K

S11 S12 S44 C11 C12 C44

7.69 − 2.14 12.6 165.64 63.94 79.51

Table 3   Temperature coefficients of the elastic constants for p-type 
(B) and n-type (P) substrates

TCE B (4 Ω cm) P (0.05 Ω cm)
First order [× 10−6/K]

TCES11 64.73 63.60
TCES12 51.48 45.79
TCES44 60.14 57.96
TCEC11 − 73.25 − 74.87
TCEC12 − 91.59 − 99.46
TCEC44 − 60.14 − 57.96
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The well-known damping factor ξm and the angular natu-
ral frequency ωrm equations are, respectively:

and

Finally, after introducing the main transducer coeffi-
cients taking into account both the SFD and the thermal 
fluidics and thermal mechanics approaches, it is perti-
nent to reveal an alternative form to Eq. (1), expressed 
as the electromechanical sensitivity

where the mechanical static sensitivity of transducer can 
be expressed as [19],

while the electrical sensitivity SE has the form

Thus, according to Eq. (25) the electromechanical dynamic 
sensitivity of the MEMS system is captured by the transfer 
function of the system. In the next section, the general 
assumptions and the input parameters used in the study 
are presented.

2.2 � The general assumptions and input parameters

The calculations were carried out assuming three main 
hypotheses to the thermal domain features:

•	 the system is closed and in thermodynamic equilib-
rium,

•	 the electric permittivity of all gases considered in this 
study is assumed independent of temperature and 
pressure, and

•	 the thermal expansion coefficient of the oxide layers 
is constant for entire temperature range.

The first hypothesis implies that the isothermal pro-
cess coefficient (nγ) in Eq. (8) is assumed to be constant. 
The second hypothesis is found on the fact that all the 
gases considered in this study present very slightly 

(23)�m =
cd

2
(
keqMeff

) 1

2

(24)�rm =

(
keff

Meff

) 1

2

.

(25)SEM = SESM = HEM,

(26)SM =
��z

�az

|
|||�=0

→ SM =
1

�2
rm

,

(27)SE =
2�r�oW

2
m

h3
o

.

variations, at low pressures and low temperature vari-
ations [37, 38]. Finally, the third one is related to the 
doped silicon plates’ material definition that composes 
the capacitive transducer. It is based on silicon diox-
ide layers, which provide electrical isolation as shown 
in Fig.  1. The thermal expansion coefficient of the 
oxide layers was assumed to be constant and equal to 
0.24 × 10−6 K−1 for the entire range of temperature [39].

The study was divided into four topics as presented 
below:

SFD Model validation—the inertial effect squeeze film 
damping (IE-SFD) and the non-inertial squeeze film damp-
ing (NIE-SFD) models [4, 17, 19, 40] were compared with 
the experimental data for the four pressure values, with 
three damping gases presented in Table 1, allowing us to 
check the validity of our model approach. An experimen-
tal setup allowed us the measurement of the frequency 
response of the sample in a vacuum chamber, as shown 
in Fig. 3 [41]. An external pick-off electronic circuit was 
developed to interrogate the MEMS accelerometer. The 
theoretical model (1) was adjusted in amplitude, offset-
ting the gain of the external electronic circuit [38]. The 
experimental data were obtained from tests conducted 
on an accelerometer sample at four different pressures, 
p ∈ {1000, 500, 100, 50} Pa [38]. The general test proce-
dures were based on IEEE Std 1293-1998 [41].

Dynamic of damping gas coefficients with IE-SFD model—
the focus was to present the behavior of the viscous gas 
damping coefficient ( cd ) and the elastic gas damping 
coefficient ( kde ), both presented in Eq. (5), also the damp-
ing factor ( �m ), Eq.  (23), the magnitude displacement 
response (A0), Eq. (20), and the phase frequency response 
( �d ), Eq. (21). All simulation results were obtained using the 
following conditions: air gas atmosphere packaging, from 

Fig. 3   Illustration of the experimental setup for the frequency 
response test
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− 1 g acceleration step input and pressure sweep range 
from 20 to 1000 Pa. The temperature was kept constant 
at 293 K.

Temperature effects in design parameters and gases—in 
this topic, inferences on the effects of the thermoelasticity 
and thermal expansion on the main geometrical param-
eters were made. Also, the considerations about the air 
and helium gases behavior in the dynamics of the sys-
tem were made by us. In all cases, the pressure was fixed 
(p = 50 Pa) and the temperature variations were defined as 
T ∈ {228, 293, 398} K, assuming a step input of − 1 m/s2.

Electromechanical sensitivity—the electromechani-
cal sensitivity (SEM) as a function of the temperature 
and frequency was evaluated, where we assume two 
different pressures defined as 20 and 200  Pa and 
T ∈ {228, 293, 398} K.

The complementary parameters used in the study are 
presented in Table 4. In the section below are presented 
the obtained results.

3 � Results and discussion

This section was arranged according to the topics detailed 
in Sect. 2.2.

3.1 � SFD model validation

The gas squeeze film damping model, taking into account 
inertial effects (IE-SFD), was evaluated by comparing the 
calculated frequency response with experimental data. 
Figure 4 illustrates the obtained results for air. Also, for 
comparison purposes the non-inertial effect SFD model 
(NIE-SFD), for the same conditions, was shown. The fre-
quency behavior was evidenced from Fig. 4a–d for differ-
ent pressure conditions. The spectral compatibility of the 
frequency responses curves between the IE-SFD model 
and experimental data is notable, whereas the NIE-SFD 
model presents losses in the dynamic information, when 
the pressure increases mainly (Fig. 5). 

In fact, the IE-SFD model allows us an improvement 
to capture the dynamic features for all studied pres-
sures compared with the NIE-SFD approach. Although 
the simulated peak frequency response using the IE-SFD 
model approach did not perfectly match the frequency 
peak response of experimental data, the IE-SFD model 
frequency response allows us to make the first insights 
about the real dynamic of the system, without applying 
numerical methods, as finite element method (FEM) and 
others.

The differences in the position of the frequency peak 
responses between the IE-SFD model and experimental 
data have origins mainly due to the MEMS transducer 

model simplifications, which were introduced at the perti-
nent section of this work as well as in virtue of the sources 
of imprecisions in the experimental data and characteriza-
tion procedures.

Further, the fabrication process provides intrinsic 
sources of imprecisions on the geometrical design 
parameters of the chosen MEMS transducer sample used 
during the tests even though the latest possibility had 
been already evaluated by means of simulations of the 
variations of each design parameter independently [5]. 
The author assumed that a maximum fabrication pro-
cess deviation by dry etching had a value equal to 5%, 
related to the nominal values presented at Table 4, for all 
geometrical design parameters. He concluded that vary-
ing each parameter in an independent way has not evi-
denced any expressive deviation in the frequency peak 
spectrum response [5]. He also suggested that combined 
deviations need to be checked, but this quantitative 
analysis was not evaluated.

The similar dynamic behavior was obtained for the 
other two gases. Figure 10 shows the comparison of the 
IE-SFD model with the experimental data for helium and 
argon at 500 Pa. Such results enlighten the important 
role of the inertial effects in the model [17].

Notwithstanding the differences in the peak fre-
quencies observed between the IE-SFD model and 

Table 4   Complementary input parameters of the study (T = 293 K)

Description Values

Length of the seismic mass (Wm = a) 2.000 µm
Width of the seismic mass (Wm = b) 2.000 µm
Width of the beam (wb) 177 µm
Thickness of the beam (tb) 55 µm
Thickness of the seismic mass (tm) 380 µm
Length of the beam (lb) 2797 µm
Width of rim (wrimp) 150 µm
Total length of transducer (Td) 4380 µm
Effective stiffness constant (keff) 1113 Nm
Effective mass (meff) 4.21 × 10−6 kg
Volume of the gas (Vg) 4.301 cm3

Gap between fixed electrodes and the seismic 
mass (h0)

2.0 µm

Geometric correction factor (BГ) 0.4217
Monocrystalline silicon density (ρsi) 2330 kg/m3

TMAC (αv), Ref. [24] 1.0
Boltzmann constant (KB) 1.38 × 10−23 J/K
Excitation voltage signal (Vs) 5 V
Gravitational acceleration (g) 9.806 m/s2

Isothermal process coefficient (nγ) 1.0
Electromechanical constant (kem) 1.0
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experimental spectrum data responses, the aforemen-
tioned model is able to capture the main dynamic fea-
tures of the accelerometer MEMS transducer. In the next 
section, the results for the main damping gas coefficients 
are presented via IE-SFD model.

3.2 � Dynamic of damping gas coefficients 
with IE‑SFD model

The behavior of the damping factor coefficient associated 
with Eq. (23), as a function of the pressure and frequency, 
is shown in Fig.  6, evidencing its importance at low 

frequencies and high values of pressure. As the pressure 
inside the packaging decreases, the damping factor effect 
becomes less significant; the same is observed when the 
frequency increases. The viscous gas damping coefficient 
(Fig. 7) presents the same behavior of the damping factor. 
In practice, the viscous gas damping forces dominate the 
damping mechanism at low frequencies, because the gas 
has enough time to escape through the sides of the bor-
ders of the seismic mass structure [8].

The computed elastic gas damping coefficient is exhib-
ited in Fig. 8. As the frequency increases, the elastic gas 
damping factor increases and becomes the dominant 

Fig. 4   Effect of the inertial effects on SFD model for air at a p = 1000 Pa, b p = 500 Pa, c p = 100 Pa and d p = 50 Pa

Fig. 5   Effect of the inertial 
effects on SFD model for a 
helium and b argon, both at 
p = 500 Pa
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damping loss element in SFD effect. In this condition, the 
fluid film has not enough time to escape and it is trapped 
between the plates. The squeeze effect is associated with 
the compression effects on the trapped gas [8].

The elastic gas damping mechanism affects directly 
the linearity loss in dynamic systems involving gas pres-
sure packaging in planar MEMS devices [19]. Clearly, 
this damping mechanism can be mitigated by using 
low-pressure packaging conditions. When the SFD 
effect is minimized, the linearity of the system response 
is improved. In this context, the dominant damping 
mechanism is the mechanical one, which is limited by 
the loss energy due to the mechanical resonance. It 
is evident that the suitable control of the packaging 
atmosphere pressure promotes the reduction in unde-
sirable effects of SFD in the capacitive MEMS accelera-
tion transducer.

The improvement in the linear dynamic characteris-
tic of the device is well captured by the magnitude and 
phase responses, as shown in Figs. 9 and 10, respec-
tively. In addition, when the pressure is reduced, the 
amplitude peak increases and moves from a region of 

Fig. 6   Damping factor coefficient of the capacitive MEMS accel-
erometer transducer for air gas packaging atmosphere with pres-
sures varying from 20 to 1000 Pa

Fig. 7   Viscous gas damping coefficient simulation of the capacitive 
MEMS accelerometer transducer for air gas packaging atmosphere 
with pressures varying from 20 to 1000 Pa

Fig. 8   Elastic gas damping coefficient simulation of the capacitive 
MEMS accelerometer transducer for air packaging atmosphere with 
pressures varying from 20 to 1000 Pa

Fig. 9   Magnitude displacement step response for − 1 g input in the 
capacitive MEMS accelerometer transducer for air gas packaging 
atmosphere with pressures varying from 20 to 1000 Pa

Fig. 10   Phase step response for − 1 g input in the capacitive MEMS 
accelerometer transducer for air packaging atmosphere with pres-
sures varying from 20 to 1000 Pa
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higher to lower frequencies, approaching the natural 
mechanical resonance of the seismic mass structure. 
Taking into account frequency regimes below the 
amplitude resonance peak, for low pressure an almost 
constant behavior in frequency range is observed in 
Fig. 9. Also, as the pressure rises, the linear behavior in 
frequency is lost. The similar constant behavior in the 
phase frequency response is verified for low pressures, 
as shown in Fig. 10.

3.3 � Temperature effects in design parameters 
and gases

Table 5 summarizes the effect of thermoelasticity and 
thermal expansion on the main geometrical parameters 
(which of them were repeated from Table 3 for better 
presentation of the results), and some of the main physi-
cal variables associated with the mechanical structure of 
the MEMS transducer. The results show the variation of the 
parameters and variables at the limits of the operational 
range in terms of the nominal values at 293 K.

The gas volume, Vg, is virtually constant in the entire 
range of temperatures. Additionally, the ideal gases law 
leads us to consider the molar mass of all gases as being 
constant and, thereby, for simplification purposes, we 
assume Vg as constant and adopt the values of gases den-
sities presented in Table 1.

The effective stiffness constant, keff, presented in 
Eq. (15), is related to electrical and mechanical stiffness 
coefficients of the MEMS transducer [4]. At a temperature 

Table 5   MEMS device parameter results at the limits of operational temperature range

Static condition at 1 atm pressure in air

Description Nominal values at 293 K Variation at 228 K (%) Variation at 398 K (%)

Length of the seismic mass (Wm = a) 2.0E+03 µm < 1.0E−03 < 7.0E−03
Width of the seismic mass (Wm = b) 2.0E+03 µm < 1.0E−03 < 7.0E−03
Width of the beam (wb) 1.77E+02 µm < 1.0E−03 < 1.0E−03
Thickness of the beam (tb) 5.5E+01 µm < 1.0E−03 < 1.0E−03
Thickness of the seismic mass (tm) 3.8E+02 µm < 1.0E−03 < 2.0E−03
Length of the beam (lb) 2.797E+03 µm < 1.0E−03 < 2.0E−03
Width of rim (wrimp) 1.5E+02 µm < 1.0E−03 < 2.0E−03
Total length of transducer (Td) 4.38E+03 µm < 1.0E−03 < 1.0E−03
Effective stiffness constant (keff) 1.113E+03 Nm + 4.1E−01 − 6.7E−01
Effective mass (meff) 4.21585E−06 kg − 5.4E−04 + 9.5E−04
Volume of the gas (Vg) 4.301E+03 cm3 < 1.0E−12 < 1.0E−12
Gap between fixed electrodes and the seismic 

mass (h0)
2.0E+00 µm < 1.0E−03 < 1.0E−03

Table 6   Viscous gas damping coefficient (cd), for static condition at 
1 atm pressure in air

Gas Nominal values 
at 293 K (Ns/m)

Values at 228 K (%) Values at 398 K (%)

Air 2.39E+01 − 1.84E+01 2.63E+01
Argon 3.84E+01 − 1.89E+01 2.71E+01
Helium 2.57E+01 − 1.68E+01 2.36E+01

Fig. 11   Magnitude of the seismic mass displacement as a function of frequency for a air, b argon and c helium gases at p = 50 Pa, for T ϵ 
{228, 293 and 398} K
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of 228  K, the mechanical stiffness increases and keff 
increases 0.41% with respect to 293 K. On the other hand, 
at 398 K the mechanical stiffness is nearly 0.61% below 
the reference value at 293 K. This implies in a structural 
behavior with slightly higher mechanical elasticity. The keff 
is the parameter that presents the higher variation as a 
function of temperature.

Basically, the effect on the geometric parameters vari-
ation is negligible for the entire proposed operational 
range, but these effects were taken into account in the 
following analysis.

However, the viscous gas damping coefficient (cd) pre-
sents a considerable variation for all three gases, as shown 
in Table 6. Argon gas exhibits the greater value of cd for 
all temperatures, and also, it is the gas most affected by 
temperature.

The magnitude of the seismic mass displacement as a 
function of frequency for air, argon and helium gases is 
shown in Fig. 11, assuming a step input of − 1 m/s2. Air 
and helium gases reveal similar behavior when the fre-
quency raises. Complementarily, the dynamic behavior 
of the MEMS transducer with a gas film of argon is more 

sensitive to temperature variations near the frequency of 
500 Hz, as compared with air and helium gases near the 
same frequency.

3.4 � Electromechanical sensitivity

The effect of the gas trapped inside the MEMS device on 
the electromechanical sensitivity (SEM) as a function of 
the temperature and frequency is presented in Figs. 12, 

Fig. 12   Dynamic electromechanical sensitivity for air at 200  Pa 
packaging atmosphere

Fig. 13   Dynamic electromechanical sensitivity for air at 20 Pa pack-
aging atmosphere

Fig. 14   Dynamic electromechanical sensitivity for argon at 200  Pa 
packaging atmosphere

Fig. 15   Dynamic electromechanical sensitivity for argon at 20  Pa 
packaging atmosphere

Fig. 16   Dynamic electromechanical sensitivity for helium at 200 Pa 
packaging atmosphere
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13, 14, 15, 16 and 17, calculated for two different pres-
sures, namely 20 and 200 Pa. The pressure values were 
selected according to our convenience, allowing us to 
make inferences in our study at lower pressures, which 
are supported by comparative results shown in Sect. 3.1. 
In the case of temperature, the lower and upper tempera-
ture limits adopted by us are very close to the common 
temperature range limits used by many electronic device 
manufacturers.

The results obtained from the adopted model with 
inertial effects illustrate the importance of both gas and 
pressure as design parameters. Such influence is better 
observed in Fig. 18.

As expected, the dynamic sensitivity at 20 Pa presents 
less variation than at 200 Pa for all studied gases. In other 
words, at 20 Pa the dynamic sensitivity presents less abrupt 
dynamic behavior than at 200 Pa, independently of the 
chosen gas. In consequence, at 20 Pa, the linear response of 
the device reaches up to 300 Hz, approximately, for air and 
helium, assuming variation of ≈ 0.5 dB related to constant 
sensitivity (i.e., 1 Hz in coordinating axis at Fig. 18a–c), no 
matter which temperature. For 200 Pa, the linear response 
drops down to about 150 Hz. Also in Fig. 18a–c, we are ena-
bled to observe that the overall sensitivity plateau level 
increases when the temperature increases to 228–398 K, 
independently of the pressure. This fact corroborates with 
the reduction in stiffness coefficients [Eq. (16)] as a conse-
quence of reduction in the Young modulus of Si. As a result 
for the three gases, the variation of SEM as a function of tem-
perature is below 0.17 dB in the entire operational range, 
for both evaluated pressures, depending only on the silicon 
mechanical properties at low frequencies. Finally, Fig. 18d 
shows the dynamic of electromechanical sensitivity (SEM) of 

Fig. 17   Dynamic electromechanical sensitivity for helium gas at 
20 Pa packaging atmosphere

Fig. 18   Electromechanical sensitivity of the capacitive microaccelerometer as a function of frequency for a helium, b air and c argon at three 
temperatures and two different pressures, and d a comparison of the effect of the three gases at 20 Pa and ambient temperature
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three gases. It is possible to verify a close behavior between 
helium and air gases. The situation is not the same for argon 
where we verify a considerable loss in the SEM level when 
the frequency increases compared to the other ones. This 
fact suggests that the dynamic of the MEMS accelerometer 
in such conditions, this is, at 20 Pa and 298 K of pressure and 
temperature, respectively, from argon gas was most affected 
by its gaseous coefficients, as the density and the Sutherland 
coefficients as well.

4 � Conclusion

The theoretical dynamic behavior of capacitive MEMS 
acceleration transducer based on silicon bulk-microma-
chined design was presented and evaluated. The 
adopted analytical model is based on basic structural 
mechanics and electric circuits and includes the squeeze 
film damping effects for the molecular regime and the 
mechanical thermoelasticity, in order to represent the 
electromechanical sensitivity in the frequency domain.

The main damping loss mechanism related to the SFD 
effects was presented. The internal atmosphere, com-
posed either by air, argon, or by helium, was simulated, 
using the proposed model approaches. Linear responses 
in low-frequency regimes are obtained only assuming 
low pressure inside the MEMS transducer, no matter the 
chosen gas. The bandwidth depends on the gas trapped 
inside the silicon structure.

The IE-SFD model presented is able to capture the 
main features of accelerometer MEMS transducer, and it 
shows a valuable tool to make the first inferences about 
the transducer dynamics by the sensor designers.
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