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Abstract
Additive manufacturing of aluminum alloys is considered a promising layer-wise manufacturing method which can 
produce lightweight critical automotive/aerospace/military components with enhanced physical and mechanical prop-
erties. This paper aims at assessing the correlation between microstructure and small-scale characteristics of an additive 
manufactured AlSi10Mg alloy in the as-printed and heat treated conditions. Depth-sensing nanoindentation testing, 
as a non-destructive, robust, and convenient testing approach, along with microstructural assessments, using optical 
microscopy and scanning electron microscopy, were employed to compare the nano-hardness of the printed (selective 
laser melting method) and the heat treated (age-hardening) materials. Considering the distance from the build plate, 
a gradation in the cooling rate, and therefore the microstructure, is expected which directly affect the nano-hardness 
gradient along the deposition direction. Results show a transition in the microstructure from cellular grains, with coral-
like silicon fiber colonies, to fragmented/spheroidized eutectic silicon particles upon the heat treatment. Unlike con-
ventionally manufactured AlSi10Mg alloys, upon aging heat treatment in the additive manufactured AlSi10Mg alloy, the 
nano-hardness is decreased which is mainly contributed to stress relief, elimination of solid solution strengthening, and 
silicon spheroidization phenomena. These are considered in detail in the current paper.
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1  Introduction

Additive manufacturing (AM) is considered low waste, 
and economical for small specified production where it 
is a technique that could be comparable with the mold 
casting in the manufacturing of aluminum-made compo-
nent for various applications and industries [1]. Among 
various aluminum alloys, cast AlSi10Mg alloy, a hypoeu-
tectic alloy in the Al–Si–Mg system, is the most commonly 
employed aluminum alloy toward additive manufacturing 
[2–5]; this is presumably due to the ease of processing and 
short solidification range (i.e. ΔT = 40 K, see Fig. 1) [4, 6]. The 
alloy is used in fabrication of machine parts, rocker arms, 
timing gears, compressor cases, fuel pumps, air compres-
sor pistons, aerospace components, high speed rotating 

parts, crankcases, and engine cooling fans. This near-
eutectic alloy comprises aluminum alloyed with silicon of 
mass fraction up to 10%, small quantities of magnesium 
and iron, along with other minor elements. Addition of 
silicon and magnesium elements increases the strength 
of the cast at ambient and elevated temperatures. They 
also make the alloy to be more responsive to the heat 
treatment.

Considering completely different cooling rate in the 
conventionally cast AlSi10Mg and the additive manu-
factured counterpart, the produced microstructure and 
therefore the mechanical properties would alter largely [7]. 
For instance, what happens in the additive manufacturing 
(i.e., selective laser melting, SLM) of the AlSi10Mg alloy is 
localized rapid heating and cooling cycles (i.e. 106–108 °C/s 
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[8]) induced by the SLM process which is not necessarily 
the case in the conventional casting.

Cast AlSi10Mg alloys are usually treated through T6 heat 
treatment. The process includes several hours of solution 
heat treatment which is followed by quenching in water 
and subsequently aging at moderate temperatures. This 
heat treatment produces the strengthening precipitates 
of Mg2Si in the alloy which improves the ductility and 
strengthens the aluminum matrix. Recently some papers 
have been published on T6 heat treatment of the additive 
manufactured AlSi10Mg alloy [3, 9–15].

Li et  al. [3] studied the effect of heat treatment on 
AlSi10Mg alloy fabricated by selective laser melting. 
They reported a tangible decrease (− 61%) in the tensile 
strength in the T6 heat tread material as compared with 
the as-printed alloy. Takata et al. [13] studied the change 
in the microstructure of the additive manufactured 
AlSi10Mg due to heat treatment. They reported the fol-
lowing sequence in the microstructure induced by the 
heat treatment, (i) recovery, (ii) silicon spheroidization 
and coarsening, (iii) formation of a stable intermetallic 
phase (AlFeSi). Aboulkhair et al. [9, 16] studied the micro-
structure and mechanical properties of the SLM AlSi10Mg 
alloy. They reported softening of the SLM AlSi10Mg alloy as 
well. Brandl et al. [17] assessed the fatigue performance of 
the T6 heat treated SLM AlSi10Mg and reported enhanced 
fatigue life in the heat treated material as compared with 
the as-printed alloy.

Zhuo et al. [18] assess the effect of post-process heat 
treatment on microstructure and mechanical properties 
of additive manufactured AlSi10Mg alloy. They studied 
various heat treatments and employed nanoindentation 

to evaluate the effect of heat treatments on the phase 
constituents, microstructure, residual stress and mechan-
ical properties of the laser additive manufactured 
AlSi10Mg alloy. They concluded that 300 °C/2 h + water 
quench is an effective heat treatment which provide 
enhanced mechanical properties and eliminates most 
of the residual stresses of the SLM AlSi10Mg alloy.

Aboulkhair et al. [19], using a nanoindentation test-
ing approach, assessed nano, micro, and macro proper-
ties of selective laser melted AlSi10Mg. They observed 
uniform nano-hardness in the SLM material, compared 
with the cast counterparts. They attributed this to fine 
microstructure and good distribution of Si at the grain 
boundaries due to faster cooling rate.

In a separate study Aboulkhair et  al. [9] studied 
the effect of a conventional T6-like heat treatment on 
microstructure and mechanical properties, assessed by 
a nanoindentation testing technique, of selectively laser 
melted AlSi10Mg alloy. Unlike T6 heat treatment in the 
cast Al–Si parts, they observed a drop in the nano-hard-
ness upon T6 treatment in the as-printed samples. They 
attributed this phenomenon to change in the strength-
ening mechanisms and Si spheroidization. In a follow 
up study, Aboulkhair et al. [16] evaluated microstructure 
and nano-mechanical properties of additive manufac-
tured AlSi10Mg. They employed nanoindentation and 
energy dispersive x-ray (EDX) to create hardness pro-
file and their correlations with the chemical composi-
tion across the melt pool of the printed samples. They 
observed a uniform nano-hardness distribution with no 
spatial variation across the SLM material.

Fig. 1   Al-Si phase diagram 
and the position of AlSi10Mg 
alloy [2]
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Everitt et  al. [20] employed nanoindentation and 
showed uniform local mechanical properties across melt 
pools and layers produced by selective laser melting of 
AlSi10Mg alloy. They attributed the uniform nano-hard-
ness profile to the highly fine microstructure accompanied 
with the enhanced dispersion of the alloying elements.

Despite mentioned papers on the heat treatment of the 
SLM AlSi10Mg alloy, detailed and atomic scale mechanism 
of silicon spheroidization induced by the heat treatment as 
well as the micromechanical response of the alloy have not 
been studied. Considering the fact there exists gradation 
in microstructure (and therefore) mechanical properties of 
the additive manufactured AlSi10Mg alloy [21–23], instru-
mented depth sensing indentation is a reliable, convenient 
and robust method to track the changes in local mechani-
cal properties and extract some fundamental characteris-
tics, i.e. dislocation activities, indentation size effect, etc., 
especially when a small volume of materials is available. 
This paper explores and compares micromechanical prop-
erties (i.e. nanohardness, reduced modulus, indentation 
size effect) of an SLM AlSi10Mg alloy in the as printed and 
the T6 heat treated at the nano/micro-levels.

2 � Experimental procedure

The AlSi10Mg samples (cubes of 1 cm3) were produced 
from atomized powders using an SLM 280 printer with two 
400-watt lasers at CalRAM Inc. The AlSi10Mg test samples 
were built according to the default SLM 280 parameter set. 
To avoid oxidation, the printing operation was performed 
in an inert argon atmosphere. Upon printing, the cubes 
were cut from the aluminum substrate using electron 
discharge machining (EDM). A separate set of as-printed 
samples were employed toward T6 heat treatment. This 
includes solutionizing at 520 °C for 1 h, the water quench-
ing, and the artificial ageing at 170 °C for 4 h.

Upon completion of the heat treatment cycle, both as-
printed and heat treated specimens were mechanically (up 
to 4000# sandpaper to remove the surface oxidations and 
contaminations) and chemically polished to get scratch 
free mirror-like surfaces. At this stage samples were etched 
using Keller’s reagent (2.5% HNO3, 1% HF, 1.5% HCl, 95% 
distilled water) to assess the microstructure of the mate-
rials using optical microscopy (metallurgical light micro-
scope model MM 500T) and scanning electron microscopy 
(SEM model FEI FEG 650).

To establish the correlations between the microstruc-
ture and the mechanical properties (i.e. nano-hardness 
and reduced modulus), an instrumented (depth-sensing) 
nanoindentation system was employed (Hysitron Ubi-1 
Nanoindenter) equipped with a self-similar pyrami-
dal Berkovich indenter. Tests were performed under 

load-controlled mode with the peak load of 9.5 mN with 
the load rate of 1 mN/s and spacing of 400 μm with total 
of 25 indents were performed on both XY and YZ planes 
where XY starts and ends from one side edge to the other 
one and YZ starts near the substrate and ends up neat 
the top of the sample. Upon reaching the pre-set peak 
load, the load is held constant for 2 s then the sample is 
unloaded. Indentation load (P), indentation depth (h), and 
time are three main parameters that are recorded during 
the testing. Using well-known Oliver/Pharr [24] method, 
indentation stress (σind) and reduced modulus are cal-
culated. To confirm the nanoindentation testing results, 
Vickers hardness measurements (load of 500 g, space of 
200 μm with total of 50 indents) was carried out on the 
both as-printed and heat treated samples as well on both 
XY and YZ planes.

3 � Results and discussion

3.1 � Microstructure characterization

Figure 2 presents the optical microscopy images of the 
as-printed sample. The microstructure has resulted from 
the high cooling rate experienced by the material during 
the printing operation. The as-printed sample shows the 
characteristic cellular microstructure, supersaturated α-Al 
matrix (dark phase) and continuous fibrous coral shape 
network of eutectic Si particles (bright phase), of the SLM 
AlSi10Mg consisting of melt pools with a half-cylindrical 
shape which correspond with local melting and rapidly 
solidifying regions. The breakdown of the microstructure 
shows that it is distinguished into layers. There are sec-
tions known as the melt pools that are divided into three 
distinct regions. These are the heat affected zone, the melt 
pool boundary, and the melt pool core (see Fig. 2). Due 
to this layer-based manufacturing approach, the result-
ing microstructures are usually non-homogenous. The Al 
cells usually appear finer towards the melt pool core when 
viewed perpendicular to the build direction. When viewed 
parallel to the build direction, the Al cells at the melt pool 
boundaries appear elongated.

Upon heat treatment, the microstructure changes 
noticeably. Figure  3 shows the microstructure after T6 
heat treatment. The interconnected fibrous coral shape 
network of silicon disappears and spherical-like silicon par-
ticles are uniformly distributed within the α-Al matrix. Fig-
ures 4 and 5 show the SEM micrographs of the as-printed 
and the heat treated material at different magnifications. 
Considering Fig. 5a, b it is clear that Si particles become 
larger and more widely spaced because of coalescence 
and Ostwald ripening (large particles grow at the expense 
of small particles). Ostwald ripening is thermodynamically 
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and energetically a spontaneous process which reduces 
internal energy of a system. Small particles do possess 
large surface-to-volume ratio which results in high inter-
nal energy of the system because of large surface energy. 
However, when particles grow, this internal energy reduces 
as surface-to-volume ratio becomes smaller. Having said 
this, smaller particles on the surface tend to disengage 
themselves and migrate (diffuse) to the surface of coarser 
particles.

In the current study, the average size of the sphe-
roidized Si particles is between 0.7 and 1 μm. However, 

Fig. 2   As-printed cellular microstructure of the AM AlSi10Mg show-
ing melt pool core and the boundaries

Fig. 3   Micrograph of the heat treated material. Upon conducting 
the T6 heat treatment, the Si fibers/needles in the as printed mate-
rial are converted to round (spheroidized) particles distributed 
evenly within the Al matrix

Fig. 4   SEM micrographs of a as printed, b heat treated structures. 
It is possible to observe the different sizes of the cellular-dendritic 
structures. Supersaturated α-Al solid solution are separated by a 
continuous network of intercellular eutectic silicon
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according to Li et al. [3] with increasing the artificial ageing 
time to 12 h, the Si particles can further grow to a size up 
to 5 μm. The increase in the size of Si particles indicates 
that in the as-built SLM sample, the Al matrix is supersatu-
rated and during the heat treatment the excess Si precipi-
tates out.

To better assess the effect of T6 heat treatment on the 
Si morphology evolution, the modification mechanisms 
of these eutectic aggregates need to be well understood. 
During solution heat treatment, eutectic Si particles are 
expelled for the α-Al matrix (which is now in the supersatu-
rated state). This results in the segregation of Si particles 
along the α-Al grain boundaries. Also, coral-like eutectic 
Si fibers are fragmented and disintegrated at the shape 
discontinuities/instabilities such as joint of the Si branches 
and/or necks of the Si crystals [3, 25–27]. Upon the frag-
mentation of the Si branches, Si spheroidization is driven 
through surface self-diffusion (the element changes the 
location by diffusing on the surface) [28] or Al–Si inter-
diffusion at Si/Al interface (the silicon atoms move through 

the aluminum at the Si/Al interface). The second scenario 
(Si/Al interface diffusion) is more energetically promis-
ing. Indeed, the chemical potential gradient between the 
interfacial discontinuities and the adjacent area provides 
the required energy from the solid-state atomic diffusion 
and therefore morphological evolution (spheroidization), 
see Fig. 6. Considering the solid-state atomic diffusion as 
a time and temperature dependent phenomenon, a heat 
treatment cycle at an elevated temperature but below 
eutectic temperature could be an efficient technique to 
change the shape and morphology of the Si.

Fig. 5   a SEM micrographs of SLM built, b SEM micrographs of 
SLM built samples after heat treatment. Majority of the Si parti-
cles appeared to have irregular shape, and their size ranged from 
approximately 200 nm to 4 μm

Fig. 6   The schematic representation of volume and interface diffu-
sion resulting in the Si fragmentation and spheroidization [19, 21]
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Upon providing sufficient time and temperature parti-
cle coarsening occurs to reduce the overall energy of the 
system. That is, the particles become coarse as the aspect 
ratio reduces leading to loss of the interconnection of the 
eutectic phases. Temperature and the duration of expo-
sure determine the rate at which interconnectivity is lost. 
Increase in the percentage of silicon increases the ductility 
of the materiel.

3.2 � Mechanical properties

Figure 7 shows the indentation load/displacement curves 
of the as-printed and heat treated AlSi10Mg samples. As 
observed, at a constant load of 9.5 mN, the indenter dis-
placement within the material is less in the as the printed 
sample as compared with the heat-treated material. This 
confirms that the heat-treated material is softer than the 
as-printed one. This is shown in Fig. 8a, b which includes 
cross-sectional hardness measures (in GPa) for both the as-
built and the heat-treated samples in the YZ and XY planes. 
A clear change in the hardness values of the heat-treated 
alloy is observed; the average Nano hardness value for as-
built materials is 2.71 ± 0.12 GPa whereas the heat treated 
one shows 1.56 ± 0.11 GPa. This confirms 42% decrease 
in the strength upon heat treatment. On other hand, the 
average nano-hardness for the as-printed and the heat 
treated materials is 2.58 ± 0.12 GPa and 1.59 ± 0.11 GPa, 
respectively (38% decrease in strength). These results 
were confirmed upon performing Vickers hardness tests; 
the average Vickers hardness value on the YZ plane for the 
as-built and the heat treated materials is 115.7 ± 3.5 and 
97.3 ± 2.8, respectively. The average Vickers hardness value 
on the XY plane for the as-built and the heat treated mate-
rials is 112.7 ± 2.4 and 94.4 ± 2.84, respectively.

Considering the microstructure of the as-printed 
AlSi10Mg (Figs. 2, 4a, and 5a), the alloy can be considered 

as a “natural” metal matrix composite with α-Al as the 
matrix and interconnected coral-like Si fibers as reinforce-
ment phase. Having said this, the main mechanisms that 
contribute to the strengthening of the as-printed sam-
ple include grain boundary strengthening due to the 
presence of a cellular structure (Hall–Petch effect), solid-
solution strengthening due to the presence of Mg and Si 
elements, dislocation strengthening due to large dissimi-
larities between coefficient of thermal expansion between 
α-Al (13.1 × 10−6 m/m. °C) and Si coral-like fibers (2.8 × 10−6 
m/m. °C), and finally load transfer from matrix to the Si 
fibers [30, 31].

Upon heat treatment, some of the mentioned strength-
ening contributions are weakened or eliminated. The 
decrease in the strength of the heat treated material can 
then be attributed to change in the morphology of the 
eutectic Si from fibrous to spheroidized, grain coarsening 
due to solution heat treatment, and reduction of solid-
solution strengthening. Indeed, the 1-h solution heat 

Fig. 7   Indentation load/displacement curves of as printed and heat 
treated materials

a

b

Fig. 8   Nano-hardness measurement for AlSi10Mg, a YZ plane, b XY 
plane
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treatment at 520 °C provides sufficient time and tempera-
ture (driving force) for the interconnected Si fibers to be 
transformed to the Si particles (spheroids) along with α-Al 
grain growth. These phenomena directly result in reduced 
strength in the heat-treated materials. The artificial ageing 
at 170 °C for 4 h results in Mg2Si precipitation and Orowan 
strengthening, however, it seems that the mentioned sof-
tening mechanisms overcome the strengthening effect of 
the Mg2Si precipitates [13, 23, 32–34]. This could be the 
main difference between conventionally made and addi-
tively manufactured AlSi10Mg alloy with regard to the 
response of the material to the T6 artificial ageing heat 
treatment. In the conventionally manufactured AlSi10Mg 
alloy, artificial ageing results in the formation and homo-
geneous distribution of βʹ (Mg2Si) precipitates which con-
tribute significantly to the strengthening of the material 
[35].

To get some information on the effect of heat treatment 
on the yield strength of the materials, Vickers hardness 
testing was performed. Figure 9 on the samples and the 
following correlation, between yield strength (σyield) and 
Vickers hardness, suggested by Cahoon et al. [36] were 
employed:

where VH is Vickers hardness in MPa ( VHMPa = VHN × 9.807 ). 
n is the strain hardening coefficient selected are 0.2 and 
0.1, for the as-printed and the heat treated AlSi10Mg mate-
rials, respectively [12, 14]. Considering this equation, the 
average yield strength for the as-printed and heat treated 
materials are 245.1 MPa and 188.7 MPa, respectively. This is 
in agreement with the hardness results reported by Zhou 
et al. [12] and σyield from tensile tests for the SLM AlSi10Mg 
alloys [3, 37].

3.3 � Depth‑dependent indentation stress

We are interested in assessing the relationship between 
nanoindentation hardness and the indentation depth to 
see if there is any indentation size effect and if so how 
this varies in the as printed and the heat treated materials. 
To do so, we first need to calculate the indentation stress 
using Eq. 2 [38]:

where R is the Berkovich tip radius (100  nm for the 
indenter used in this study), P is the indentation load, and 
hind is the indentation contact depth. It should be noted 
that indentation stress ( �ind ) is different from the inden-
tation hardness values. This is because indentation stress 

(1)�yield =

(

VH

3

)

(0.1)
n

(2)�ind =
P

24.56 × (hind + 0.06R)2

includes both the elastic and the plastic depth in the calcu-
lated indentation area, while the conventional indentation 
harness is calculated with the residual plastic indentation 
area [39].

Figure 10 shows the indentation stress versus inden-
tation depth in the as-printed and heat treated materi-
als. As observed, indentation stress is dependent upon 
depth ( �ind increases with the decrease in the indenta-
tion depth). That is shallow-depth indentation results 
in higher hardness as compared with large-depth ones 
(Fig. 11). This trend cannot necessarily be justified with 
classical plasticity. This effect cannot either be solely jus-
tified with the indenter and/or sample artificial effects 
like indenter blunting, surface oxidation, surface defor-
mation layers, etc. There are some real physical phe-
nomena behind this trend. The observed increase in the 
indentation stress at shallower indentation depths is 
attributed to dislocation starvation and strain gradient 
plasticity [23, 31–42]. 
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At the earliest stages of the nanoindentation when 
indenter’s tip contacts the surface of the material with a 
depth of indentation only a few nanometers, the material 
can be considered dislocation-free (so-called dislocation 
starved) as there is no physical room for dislocations to be 
generated. Here the strength of the material can be as big 
as the theoretical strength. When indenter further drives 
within the material (but still in the nanometer depths), 
an extra storage of dislocations (geometrically necessary 
dislocations, GNDs) is introduced in the material in order 
to provide the necessary lattice rotation to accommodate 
the shape of the indenter (this is shown schematically in 
Fig. 12). As the indentation is shallow, the plastic deforma-
tion is forced to occur over a very small volume of martial 
containing a limited number of easy slip systems. There-
fore, the GNDs may have different mobility and Burger’s 
vector as compared with ordinary (statistically stored) 
dislocations. They may also be forced to move on non-
easy slip systems. The density of the GNDs is inversely 

related with indentation depth; that is, at shallow depths 
larger population of GNDs is expected which results in 
the enhanced strength near the surface of the sample. 
The density of ρGNDs can be described as follows [43, 44]:

where θ = 70.32° and represents the effective semi-angle 
of the conical indenter equivalent to the Berkovich one, b 
is Burgers vector (2.86 × 10−10 m for aluminum), and h is 
the contact depth. Figure 12 shows the plot of �GNDs versus 
indentation depth. As seen, the density of GNDs increases 
with decreasing in the indentation depth and this directly 
contributes to the strain gradient near the surface of the 
sample. At large depths through a balance between work 
hardening effect (dislocation generation and multiplica-
tion) and dynamic recovery (large volumes experiencing 
high stresses). Therefore, indentation stress (hardness) 
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3
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Fig. 11   Schematic representation of geometrically necessary dislocations (GNDs) created during the indentation process. The dislocation 
structure is idealized as circular dislocation loops [33]
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approaches a constant value as an equilibrium between 
different acting processes is reached. In the present study, 
the size effect is observed in both as-printed and heat-
treated sample, however, the effect is more pronounced 
in the as-printed material. This is because of less strength 
in the heat-treated material.

4 � Conclusion

Employing an instrumented nanoindentation technique, 
micromechanical responses of an additive manufactured 
AlSi10Mg in the as-printed and heat treated conditions 
were elaborated. This was coupled with microstructural 
(OM and SEM) evidence to establish microstructure/micro-
mechanical correlations. Here is a list of main findings of 
the present paper:

1.	 In the studied AM AlSi10Mg, the T6 artificial ageing 
resulted in a 42% decrease in the strength upon heat 
treatment through the results from the nanoinden-
taion tests.

2.	 Drop in the strength upon heat treatment confirms 
that Orowan strengthening effect induced by Mg2Si 
precipitates is dominated by some softening effects 
mainly Si spheroidization, grain growth, and elimina-
tion of solid-solution strengthening. This is not the 
case in the artificial ageing of conventionally cast 
AlSi10Mg.

3.	 Indentation size effect, increase in hardness with the 
decrease in the depth, is observed in both as-printed 
and heat treated materials. Since the heat-treated 
material is softer than the as-printed one, the inden-
tation size effect in the heat treated alloy is less pro-
nounced.
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