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Abstract
Four small dyes with triphenylamine (TPA) as a donor and various acceptor groups connected with π-linker having 
chloro group are synthesized and studied for solvatochromism and DFT. Good solvatochromism is observed in com-
pounds 2 and 4 having TPA attached to rhodamine-3-acetic acid and 4-aminosalicylic acid. The multilinear regression 
analysis supports the solvatochromic behaviour of the chromophores. The compound 4 shows viscosity sensing with 
0.57 viscosity sensitivity (x) value as which is more as compared with the other compounds, and 14.14-fold increased 
emission intensity in viscous solution from 0 to 99% of PEG-400 in ethanol. These TPA based compounds 1, 2, 3, and 4 
show two-photon absorption cross section in the range 702–1265 GM. The natural bond analysis shows charge transfer 
in compound having strong withdrawing groups, that is compound 1 and 2. The bond length alteration is correlated 
with the computationally obtained NLO properties and show linear correlation. The compound 1 is a better NLOphoric 
material than the other compound 2, 3, and 4 as revealed by solvatochromic and computational methods.
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1  Introduction

Triphenylamine (TPA) is a planar aromatic compound and 
widely used as an electron donating unit in donor–π–accep-
tor (D–π–A) framework [1–4]. TPA helps good charge trans-
fer (CT) in several D–π–A dyes which are designed for vari-
ous applications and it is widely used for the design of two 
photon absorption (2PA) chromophores [5–11]. TPA based 
D–π–A framework have attract much more attention as the 
best electron transporting organic materials in dye sensi-
tized solar cell (DSSC) due to their in expensive synthesis, 
outstanding stabilities, and high molar extinction coeffi-
cient [12–18]. A large number of TPA based chromophores 
are used for their applications in red to deep red organic 
light emitting diodes (OLEDs) [19–26]. The TPA has excellent 
intramolecular charge transfer (ICT) characteristics and it is 

attached to different electron withdrawing units for various 
applications [27–34]. TPA based dyes are also widely inves-
tigated for their good AIE properties [35–43].

Recently fluorescent molecular rotors (FMRs), a class of 
fluorescent dyes which undergo twisted intramolecular 
charge transfer (TICT) upon photo excitation increased 
much attention [44–46]. 9-(Dicyanovinyl)-julolidine (DCVJ) 
is the best example exhibiting viscosity sensitivity. Differ-
ent TPA derivatives exhibit FMR properties due to the freely 
rotating phenyl ring which is hindered in the viscous media 
causing fluorescence enhancement [47]. The TICT states 
are responsible for quenching of fluorescence in polar sol-
vents and show more emission in a highly viscous solu-
tion. The electron withdrawing groups also play a major 
role in D–π–A systems used in DSSC and OLED, biological 
and FMR studies [48–52]. The functionalized carboxylic 
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acid having electron withdrawing group in conjugation 
is used as a standard accepting group in DSSC [53–58]. 
Recently fluorescent quantum dots have attracted much 
attention owing to their colorful fluorescence properties 
which can be widely used in the diagnosis of disease or cell 
detection (-COOH) [59]. Considerable effort is focused on 
fabricating fluorescent sensors for nucleic acid detection 
[59]. Herein, we developed a simple strategy having TPA as 
a donor and group containing -COOH as acceptor (except 
compound 3). Scheme 1 represents the structure of four 
chromophores studied.

For the first time 4-aminosalicylic acid as an acceptor 
group is employed in a Schiff base to explore superi-
ority of Schiff base over conventional electron accept-
ing groups. To understand the structural correlations 
and viscosity sensitivity of these dyes carrying different 
acceptor groups, we have synthesized four compounds 
having TPA based donor with chloro-group suitably 
placed on π-linker and cyanoacetic acid, rhodanine-
3-acetic acid, dicyanovinylene or 4-amino salicylic acid 
as acceptor as shown in Scheme 1. The photo physical 
properties of the all compounds are well studied. The 
HOMO and LUMO energy level diagrams were obtained 
by theoretical DFT calculation. Density functional theory 
(DFT) computations were used to study the geometri-
cal and electronic properties of the synthesized D–π–A 
dyes. The experimentally and theoretically calculated 
NLO properties of these chromophores showed that 
these chromophores are NLOphoric and have consid-
erable two-photon absorption (2PA) cross section. The 
compound 4 behaves as good FMR with high viscosity 
sensitivity as compared to the known FMR, DCVJ.

2 � Experimental

2.1 � Chemicals and instruments

All the commercial reagents and the solvents were procured 
from S. D. Fine Chemicals Pvt Ltd. Mumbai and were used 
without purification. Triphenylamine was procured from Alfa 
Aeser. The reaction was monitored by TLC using 0.25 mm sil-
ica gel 60 F254 percolated plates, which were visualized with 
UV light. 1H NMR and 13C NMR spectra were recorded on Agi-
lent 500 MHz instrument (USA using TMS as an internal stand-
ard). The UV visible absorption spectra of the compounds 1, 
2, 3, and 4 were recorded on a Perkins-Elmer Lambda 25 
spectrometer; fluorescence emission spectra were recorded 
on Varian Cary Eclipse fluorescence spectrophotometer.

2.2 � Computational details

Ground state geometries of the molecules were optimized 
using the DFT hybrid functional, B3LYP [62]. Pople’s basis set 
with both diffuse and polarization functions, 6-311++G(d,p) 
was used for all the atoms. The B3LYP is a combination of 
Becke’s three parameter exchange functional (B3) [63] with 
the nonlocal correlation functional by Lee, Yang, and Parr 
(LYP) [64]. The first excited singlet states were optimized 
using TD-DFT B3LYP and CAM-B3LYP/6-311++G(d,p). Fre-
quency computations were carried out on the optimized 
geometry of the low-lying vibronically relaxed first excited 
state of molecules [65]. The TD-DFT calculations with 
B3LYP functional (the global hybrid) were performed and 
compared with the experimental data. The polarizable 

Scheme 1   Chemical structure 
of the TPA based chromo-
phores
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continuum model (PCM) [66, 67] as implemented in Gauss-
ian 09 was used for optimization in solvents. The Gauss-
ian 09 [68] program was used for all the DFT and TD-DFT 
computation.

3 � Results and discussion

3.1 � Synthesis and characterization

Synthesis of intermediates and final dyes with purity was 
reported in our earlier paper [60] and also given in sup-
porting information.

3.2 � Photophysical properties

Absorption and emission properties of 1, 2, 3, and 4 are 
studied in various solvents with different polarities. Table 1 
shows absorption and emission maxima, molar extinction 
coefficient, and Stokes shift of all the four chromophores in 
various solvents. Figure 1 represents normalized absorp-
tion and emission spectra for all the four chromophores in 
seven different solvents. The first absorption smaller peak 
at around 372 nm is due to the π–π* transition of com-
pound 2 [61] and the second peak near 500 nm is due to 
the intramolecular charge transfer transition (ICT). The red 
shifted absorption spectra were observed when the rho-
damine-3-acetic acid group is attached to triphenylamine 

Table 1   Photophysical 
properties of the compounds 
in seven solvents

a absorption maxima, bmolar extension coefficient, cfull width half maxima, demission maxima, eStokes 
shift, fquantum yield, goscillator strength, hdipole moment and iethyl acetate

Solvent λa
abs εb 

max× 104 fwhmc λd
ems Stokes shifte ΦF

f fg µeg(Abs)h

(nm) (M−1 cm−1) (nm) (nm) (nm) (cm−1) (debye)

1
 CHCl3 482 23.2 149 631 149 4899 0.039 4.68 22.17
 EAi 462 23.6 91 620 158 5515 0.033 4.95 22.09
 Acetone 479 21.4 102 588 109 3870 0.029 4.91 21.83
 ACN 474 14.0 177 567 93 3460 0.015 3.68 18.77
 MeOH 462 23.5 91 621 159 5541 0.009 4.95 22.08
 DMF 415 21.3 76 562 147 6302 0.019 4.64 20.40
 DMSO 473 22.4 89 628 155 5218 0.023 4.29 20.80

2
 CHCl3 497 12.0 96 638 141 4446 0.042 3.03 17.91
 EAi 483 12.9 92 626 143 4729 0.056 3.25 18.29
 Acetone 482 10.5 96 630 148 4873 0.039 2.50 16.04
 ACN 486 13.2 94 662 176 5470 0.024 3.24 18.32
 MeOH 488 11.8 99 673 185 5632 0.035 3.10 17.95
 DMF 485 13.4 97 653 168 5304 0.015 3.54 19.13
 DMSO 501 13.7 102 668 167 4990 0.038 3.61 19.63

3
 CHCl3 509 11.9 86 643 134 4094 0.034 2.07 14.99
 EAi 485 12.1 88 645 160 5114 0.031 2.51 16.11
 Acetone 488 11.4 95 617 129 4284 0.040 2.52 16.19
 ACN 486 10.2 93 595 109 3769 0.015 2.19 15.08
 MeOH 485 10.8 94 563 78 2856 0.029 2.46 15.95
 DMF 494 13.2 105 591 97 3322 0.032 3.86 20.16
 DMSO 497 12.3 99 633 136 4322 0.028 2.79 17.18

4
 CHCl3 375 6.0 52 456 81 4736 0.087 1.01 8.94
 EAi 370 6.6 46 441 71 4351 0.064 0.95 8.64
 Acetone 371 7.6 53 500 129 6954 0.045 1.34 10.29
 ACN 370 8.1 49 464 94 5475 0.041 1.20 9.72
 MeOH 369 7.0 51 484 115 6439 0.056 1.13 9.45
 DMF 374 6.6 48 474 100 5640 0.024 0.96 8.77
 DMSO 376 6.0 50 482 106 5848 0.028 0.89 8.45
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moiety. Also, with the presence of strong electron accept-
ing group cyanoacrylic acid in compound 1, are markable 
change in the molar extinction coefficient was observed 

(Table 1). The chromophore having strong electron with-
drawing group cyanoacetic acid (1) shows the highest 
molar extinction coefficient, while the chromophore 

Fig. 1   Normalized absorption and emission spectra of all four compounds in seven different solvents
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having electron withdrawing group p-amino-salicylic acid 
(4) shows the least molar extinction coefficient (Table 1).

The molar extinction coefficient increases in the order: 
4 < 3 < 2 < 1 showing that the carboxycyano vinylene 
accepting group increases ICT in compound 1. A shoulder 
peak appearing at around 370 nm in the absorption spectra 
of compound 2 is due to the presence of rhodamine-3-ace-
tic acid acceptor group. The absorption λmax increases in the 
order: 4 < 3 = 1 < 2 in acetonitrile. The compound 2 is the 
reddest shifted which is due to the acceptor, rhodamine-
3-acetic acid which has more π-conjugation as compared 
to the other chromophores. A similar trend was observed 
in the Stokes shifts (Table 1). In the emission spectra, the 
same trend was observed, a red shift in emission λmax was 
observed from compound 4 to 2 (500 to 673 nm). So, it can 
be predicted that there is a better intramolecular charge 
transfer (ICT) after varying withdrawing groups from mod-
erate to strong electron withdrawing groups.

The photophysical properties of the four compound 1, 
2, 3, and 4 in different solvents are evaluated and tabu-
lated in Table 1 and Table S1. They show quenching of fluo-
rescence in polar solvents causing a lowering of quantum 
yield and red shifted emissions. The compound 1 shows 
the highest values of molar extinction coefficient, FWHM, 
Stokes shift, oscillator strength and transition dipole 
moment compared the other three compounds, while 
compound 4 shows the highest values of quantum yield, 
fluorescence lifetime and minimum non-radiative decay 
constant. The compound 1, and 4 show a lower value of 
non-radiative decay constant (Knr) than the other com-
pound 2, and 3. All the compounds 1, 2, 3, and 4 show 
lower values of the non-radiative decay constant (Knr) 
than their corresponding radiative decay constant (Kr) 
in all the solvents (Table S1). In polar solvents, the value 
of Knr increases for compounds 1, 2, and 4 (except com-
pound 3).

3.3 � Solvatochromism

The D–π–A compounds show good solvatochromic behav-
iour. In D–π–A chromophores the solvent polarity affects 
the excited state by stabilizing it through dipole–dipole 
interactions, and hydrogen bonding. Hence, we have 
studied the solvent dependent absorption and emission 
spectrum of these compounds in different solvents. We 
observed that the compound showed a red shift in absorp-
tion (67 nm) and a large red shift in emission (69 nm). 
These results are supported with the positive difference in 
dipole moment of the S0 and S1 state and increased Stokes 
shift in polar solvents as compared to the non-polar sol-
vents (Table 1). The normalized emission spectra of the 
compounds 1, 2, 3, and 4 are shown in Fig. 1 which indi-
cates the highest red shift in emission spectra (69 nm) of 

compound 1. The increase in Stokes shift with an increase 
in the solvent polarity in these compounds can be corre-
lated by using Lippert-Mataga (LM) equation [62].

Figure 2 shows a linear relationship suggesting that sol-
vent parameters such as dielectric constant and refractive 
index are responsible for the red shifted emission in com-
pound 2. These compound 1, 2, 3, and 4 show different 
types of interactions with polar and non-polar solvents. 
Mac Rae (McR) model is the upgraded version of LM model 
where solute polarizability in addition to the solvent polar-
izability was taken into account [63]. We plotted the McR 
function (ΔfMR) vs Stokes shift for the compound 1, 2, 3, 
and 4 as shown in Figure S1 and there exists a linear rela-
tionship suggesting that the polarity originating from the 
dipole created by this compound 1, 2, 3, and 4 and it also 
responsible for the solvatochromic shift in polar solvents. 
A similar molecular microscopic solvent polarity function 
(EN

T
) by Reichardt [64, 65] which correlates much better 

with the solvatochromic shift of dipolar molecules rather 
than the traditionally used LM polarity functions is also 
plotted with the Stokes shift and linear relationship is 
observed as shown in Figure S2.

3.4 � Intramolecular charge transfer (ICT) and dipole 
moment

ICT occurs upon excitation in D–π–A chromophores, and 
this process becomes solvent dependent. Large Stokes 
shift (71 to 185 nm) observed for this compound 1, 2, 3, 
and 4 suggests enough structural reorganization or a polar 
S1 state as compared to S0 state. The difference in dipole 
moment (μ) between the S0 and S1 state was calculated 
to understand the polarity of the excited state using LM, 
and McR functions. Table 2 gives the transition dipole 
moment (μeg), difference in dipole moments (Δμeg) by 
experimental and DFT method and the ratio μe/μg using 
Bilot-Kawaski (BK), Bakhshiev and Liptay correlations. Tran-
sition dipole moment (μeg) is a measure of the probability 
of radiative transitions from S0 to S1 state and corelates 
with the oscillator strength. The positive values obtained 
for the difference in dipole moment (µe > µg), and ratio of 
dipole moment (μe/μg) by experimental as well as DFT, 
confirmed that the S1 state is polar than S0. The compound 
4 shows the highest values of Δμeg obtained by three dif-
ferent correlations (i.e. LM, McR, and BK), while compound 
1 shows the higher values of μe/μg obtained by the other 
three different correlations (i.e. Bilot-Kawaski, Bakhshiev 
and Liptay).

3.5 � Viscosity study

We studied the viscosity sensitivity (x) of the TPA based 
chromophores in ethanol: PEG-400 mixture. The presence 
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of extra phenyl ring in TPA rotates around a single bond. 
TPA based compounds are known to show enhance-
ment of fluorescence after hindering the rotation in vis-
cous media [47]. A decrease in fluorescence intensity 
was observed in compound 1, 2, 3, and 4 as the polarity 
of solvent increases and these emissions are due to the 
TICT state formed in polar solvents. We used PEG-400 as 
a viscous solvent for viscosity studies. In 5 µM solutions 
of the chromophores in ethanol, when the percentage of 
PEG was increased from 0 to 99% enhancement of fluo-
rescence was observed with the increased percentage of 
PEG-400. Figure 3 represents viscosity induced emission 
of the chromophores with increasing percentage of PEG 
400 in ethanol.

As seen from Fig. 3, a minimum 2.67 times and a maxi-
mum 14.14 times enhancement of fluorescence intensity 
respectively for compound 3 and 4 is observed. It is almost 
three to four times for compound 2 and 1 (8.64 and 9.81 

respectively). The compound 4 shows 14.14 times fluores-
cence enhancement. The very high fluorescence enhance-
ment observed for compound 4 is due to the formation of 
TICT state in the excited state which gets blocked in vis-
cous media and show increased fluorescence with slightly 
blue shifted emission spectra. Between compound 1 and 
2, comparatively better enhancement in fluorescence 
was observed for compound 1, which is coplanar with 
the π-bridge. Due to the good sensitivity of compound 4 
to viscosity, it can be considered as a fluorescent molec-
ular rotor (FMR) as it has emission wavelength, 465 nm. 
The compound 1 and 2 are also good candidates for the 
FMRs as they show longer emission wavelengths (631 and 
673 nm) as compared to well-known FMR DCVJ. All the 
compound 1, 2, and 3 except compound 4 emitted above 
600 nm which is due to the presence of strong withdraw-
ing group, and they can be considered as good FMRs in 
the red to the deep red region for biological applications. 

Fig. 2   Lippert-Mataga plots for compounds (a) 1, (b) 2, (c) 3, (d) 4 in different solvents

Table 2   Difference and ratio 
of dipole moment between 
ground and excited state of 
compound 1, 2, 3, and 4 by 
experimental as well as DFT 
method

Dye µeg
(Debye)

Δμeg (Debye) µ (DFT)
(Debye)

μe/μg (Debye)

LM McR BK BK Bakhshiev Liptay

1 22.17 9.41 5.36 14.98 1.41 14.58 14.30 15.81
2 17.91 13.10 7.52 11.50 1.52 10.97 15.21 18.01
3 14.99 12.72 7.50 4.37 2.47 9.88 14.26 18.75
4 8.94 15.71 9.44 16.49 1.39 8.65 10.67 11.24
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Similarly, compound 4, 2 and 3 show high Stokes shifts, 
129, 159 and 185 nm respectively compared to DCVJ. The 
compound 4 show high value of viscosity sensitivity (x) 
0.58 as compared to another compound 1, 2, and 3 (Fig-
ure S3).

3.6 � Multiple linear regression analysis

Multiple linear regression analysis provides the informa-
tion on different types of interactions between solute 
and solvent. It is also used to explain the mechanism 
of electronic transition. From the existing literature, it 
is well known that the intensity, position and shape of 
the excitation spectrum can explain the spectral shifts 
with the nature of solvent and solute. The spectral shifts 
induced by solvents were calculated using Kamlet–Taft 
parameters α, β, and π*. In order to get more information 
on the solvatochromic properties of dyes, the spectral 
properties are correlated with Kamlet–Taft parameters. 
The wave numbers of absorption (νabs), fluorescence (νem) 
and Stokes shift (ΔνSt) are correlated with as α, β, and π* 
using multiple linear regression analysis. This analysis is 
used to explain the mechanism of transitions between 
ground and excited states based on the information of 

solute-solvent interactions. The solvatochromic param-
eters α, β, and π* are summarized in Table 3.

where ν represents the property to be correlated, ν0 
stands for the property related to a standard process, α 
is the hydrogen bond donor acidity, β is the hydrogen 
bond acceptor basicity, π* is the dipolarity-polarizability, 
while a, b and c are coefficients characteristic of a given 
compound.

Moreover, the new four-parameter Catalan solvent 
scale, which considers polarizability, dipolarity, acidity 
and basicity of a solvent, is also applied. It is shown that 
this new four-parameter Catalan solvent scale gives a 
better fit than the three-parameter scales.

SPP, SP, SA and SB characterize the dipolarity, polariz-
ability, acidity, and basicity respectively.

The values of Kamlet–Taft parameters (α, β, and π*) are 
tabulated in Table 3.

The analysis of emission data according to Kamlet–Taft 
Eq. 1 using a solvent scale in which solvent (di)polarity and 
polarizability effects are combined in the single parameter 

(1)� = �
0
+ a� + b� + c�∗

(2)� = �
0
+ aSASA + bSBSB + cSPPSPP + dSPSP

Fig. 3   Viscosity study of all four compounds in 0% PEG to 99% PEG



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:259 | https://doi.org/10.1007/s42452-019-0268-z

shows a poor-fit, as assessed by the value of r (0.66) and 
the large standard errors on the estimated parameters aα, 
bβ, and cπ* as a quality-of-fit criterion. Conversely, use of 
Catalan solvent parameters, where (di) polarity and polar-
izability effects split, gives a perfect multi-linear fit to νemi 
(r = 0.82). Because this multiple linear regression gives rela-
tively small estimates for aSA and bSB with comparatively 
large associated standard errors. We decided to perform 
the multi-linear analysis according to (Eq. 2) with solvent 
dipolarity (SPP) and polarizability (SP) as only solvent 
scales. This analysis gives better results (r = 0.82).

Multi-linear analysis is carried out in different solvents 
using emission data represented in Table 3. In the case of 
emission spectra again Catalan parameters show better 
correlation coefficient (r = 0.82) than Kamlet–Taft param-
eters (0.75). The negative value observed for all three 
solvent parameters (acidity, dipolarity and polarizability) 
both by Kamlet–Taft and Catalan analysis supports the red 
shifted emissions observed in polar solvents. Estimated 
coefficients for dyes by Kamlet–Taft and Catalan method 
are represented in Tables 3 and 4. By seeing the sign of each 
estimated coefficient as well as the extent of standard error 
and correlation coefficient obtained by both the methods, 
solvent dipolarity emerges out as the main factor responsi-
ble for the shift in absorption as well as in emission. Hence 
solvent dipolarity can be considered as the main factor 
responsible for the slightly red shifted absorption as well 
as highly red shifted emission spectra of all the dyes.

3.7 � Theoretical investigation

3.7.1 � Optimized geometries

Geometry optimizations of the compound 1, 2, 3, and 4 
in gas phase as well as in solvents are carried out using 

time-dependent density functional theory (TD-DFT) cal-
culations with the Gaussian 09 program using the popu-
lar global hybrid functional, B3LYP [66–68]. The optimized 
geometries of all chromophore are displayed in Figure 
S4. One phenyl ring in TPA is always twisted. The frontier 
molecular orbital (FMO) of all chromophore are displayed 
in Fig. 4. The electron density is uniformly distributed over 
the dye, D unit, π-linker and A unit. In HOMO, the electron 
density is located on the donor group (TPA) and π-linker, 
and in the LUMO electron density is located on the with-
drawing unit and π-linker. The minimum overlap of elec-
tron density between HOMO and LUMO is observed in the 
case of compound 1 and 3 as compared with compound 
2 and 4 showing that the more effective charge transfer 
is possible in the presence of strong withdrawing groups. 
MEP diagram supports the FMO diagram of all the chromo-
phores (Figure S5).

The energy gap between HOMO and LUMO for the 
compound 1, 2, 3, and 4 are calculated in chloroform 
and are represented in Figure S6. As expected, com-
pound 3 shows the lowest energy difference between 
HOMO and LUMO (2.51 eV) which is due to the strong 
withdrawing unit present in this compound. The com-
pound 4 shows the highest difference between HOMO 
and LUMO (2.91 eV) due to the presence of weak with-
drawing unit, 4-aminosalyclic acid. The computation-
ally obtained lowest energy transitions i.e. vertical 
excitations, oscillator strengths and dipole moments 
in chloroform are compared with the experimentally 
observed absorptions, oscillator strength and dipole 
moment derived from absorption λmax in chloroform 
solvent (Table 5). In general, computationally obtained 
vertical excitation values are well in agreement with the 
experimental value. A similar trend for the experimen-
tally and computationally observed oscillator strengths 

Table 3   Estimated coefficients (y0, a, b, c, d), their standard errors and correlation coefficients (r) for the multi-linear analysis of (ῡemi) of the 
compound 1, 2, 3 and 4 as a function of Kamlet–Taft solvent scales

Kamlet ῡemi Aα bβ cπ* r n

1 18.76 ± 0.74 (− 2.41) ± 0.67 (− 0.64) ± 1.19 (− 2.74) ± 0.51 0.75 10
2 16.29 ± 1.13 (− 0.18) ± 0.12 (− 0.32) ± 1.83 (− 1.28) ± 0.31 0.62 10
3 15.78 ± 1.07 (− 0.16) ± 0.97 (− 0.66) ± 1.74 (− 1.36) ± 0.19 0.66 10
4 17.30 ± 0.89 (− 0.11) ± 0.79 (− 0.75) ± 1.43 (− 1.92) ± 0.81 0.71 10

Table 4   The correlation 
coefficients (r) for the multi-
linear analysis of (ῡemi) of 
compounds 1, 2, 3 and 4 as 
a function of Catalan solvent 
scales

Catalan ῡemi aSA bSB cSPP dSP r n

1 19.39 ± 2.54 (− 2.47) ± 1.34 (− 0.45) ± 1.15 (− 3.27) ± 1.02 (− 2.32) ± 1.27 0.82 10
2 17.08 ± 3.68 (− 1.49) ± 1.14 (− 0.26) ± 1.60 (− 2.64) ± 1.47 (− 2.45) ± 1.75 0.72 10
3 18.61 ± 2.68 (− 1.55) ± 1.41 (− 0.02) ± 1.17 (− 2.85) ± 1.07 (− 2.32) ± 1.46 0.78 10
4 16.52 ± 2.29 (− 1.25) ± 1.21 (− 0.58) ± 1.99 (− 2.45) ± 0.92 (− 2.71) ± 1.95 0.75 10
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is found, and the only exception is of compound 1 which 
shows almost double the value of experimental oscillator 
strength compared to the computational value. Though 
the experimentally calculated dipole moment increases 
in the order 4 < 3 < 2 < 1, computational dipole moment 
increases in the order 2 < 1 < 4 < 3.

3.7.2 � NBO study

The charge distribution and electron transfer in D–π–A 
compound 1, 2, 3, and 4 are understood by the natural 
bond orbital (NBO) analysis. The charges on the atoms in 
the ground state give some idea about the electron delo-
calization inside the chromophore. The natural charges on 
selected atoms inside the chromophores in chloroform 

are tabulated in Table 6. It was observed that the nega-
tive charge on nitrogen atom (N12) increased in the order: 
1 < 3 < 2 < 4 indicating that the lone pair of nitrogen atom 
migrates from D to A. The C41 carbon acts as acceptor 
which has increased positive charge on carbonyl carbon. 
In case of compound 1 and 2 C41 carbon shows more posi-
tive charge than the other two compound 3, and 4 which 
is due to the presence of the strong electron withdraw-
ing group. In case of compound 2 C50 carbon atom shows 
more positive charge than C41 because C50 was the car-
bonyl carbon atom. In case of 1, 2, and 3 negative charge 
increased over N46, N45 and N44 respectively showing that 
the electrons are delocalized towards the positive charge 
density.

Fig. 4   Frontier molecular orbital (FMO) of compounds 1, 2, 3, and 4 from left to right

Table 5   Selected properties of 
the compounds (experimental 
and computational) in 
chloroform

a experimental value, bcomputational value

Chromophores λabs (nm) f µeg (Debye)

a b a b a b

1 482 546 4.68 2.27 22.17 12.64
2 497 583 3.03 2.12 17.91 11.55
3 509 542 2.07 2.28 14.99 14.28
4 375 491 1.01 2.52 8.94 13.46
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3.7.3 � Electronic transitions

The calculated electronic vertical transition energy, oscilla-
tor strengths (f ), maximum absorption wavelength (λmax) 
and nature of the transitions are collected in Table 7. The 
electronic transition could be influenced by the polarity 
of solvents. From Table 7, the strongest absorption value 
for all sensitizers are mainly related to the transition from 
the HOMO to the LUMO. Major contributions of elec-
tronic transitions were observed 98–99% from HOMO to 
LUMO. Moreover, one can find that the TD-DFT calculated 
maximum vertical excitation of compound 2 was remark-
ably red-shifted in all solvents as compared to other TPA 
chromophores and the increasing order is: 4 < 3 < 1 < 2 (as 
obtained from both DFT functional). Similar trends were 
observed in the experimental and computational meth-
ods using the functional CAM-B3LYP and B3LYP. Computa-
tionally compound 2 shows vertical excitation at a longer 

wavelength than the other compound 1, 3, and 4. The 
trend in experimental absorption is similar.

3.7.4 � BLA and BOA study

Bond length alteration (BLA) and bond order alteration 
(BOA) are the geometrical and electronical parameters 
that depend on the π-conjugation length and the strength 
of the D and A units. The BLA and BOA values of ground 
state optimized geometries were calculated using the 
B3LYP optimized geometries. BLA and BOA values are 
shown in Table 8. From Table 8 it is seen that the BLA val-
ues increase in the order 3 < 4 < 2 < 1 whereas BOA value 
shows the reverse trend. The magnitudes of µ, α, and β 
increases with increasing donor to acceptor strength and 
increasing π-conjugation length, especially in case of com-
pound 1.

Table 6   Natural charges of 
theselected atom at ground 
state (GS) at B3LYP with 
6-311++G(d,p) in CHCl3

1 2 3 4

Atom no. N C Atom no. N C Atom no. N C Atom no. N C

N12 − 0.4773 N12 − 0.4891 N12 − 0.4795 N12 − 0.4950
C1 0.2235 C1 0.2080 C1 0.2226 C1 0.2027
C2 − 0.2650 C2 − 0.2615 C2 − 0.2639 C2 − 0.2336
C3 − 0.0779 C3 − 0.0891 C3 − 0.0780 C3 − 0.1526
C4 − 0.2075 C4 − 0.1758 C4 − 0.1867 C4 − 0.1749
C11 0.0882 C11 0.0595 C11 0.0840 C11 0.0486
C13 − 0.3082 C13 − 0.2903 C13 − 0.3062 C13 − 0.2814
Cl37 0.0194 Cl37 − 0.0029 Cl37 0.0187 Cl37 − 0.0035
C38 − 0.0422 C38 − 0.1203 C38 − 0.0453 C38 0.1208
C40 − 0.3339 C40 − 0.2926 C40 − 0.3232 C40 − 0.4709
C41 0.7982 C41 0.6649 C41 0.3093 C41 0.1769
O42 − 0.6810 C43 − 0.1027 N42 − 0.3530 C42 − 0.2763
O44 − 0.6310 S44 − 0.1067 C43 0.3147 C44 0.3513
C45 0.2828 N45 − 0.4985 N44 − 0.3579 C48 − 0.2379
N46 − 0.3770 C49 0.8131 C50 0.7944

O53 − 0.6096 O53 − 0.6966

Table 7   Electronic transition 
data obtained by TD-B3LYP 
and CAM-B3LYP/6-
311++G(d,p) level of each 
molecule in CHCl3 solution

(104, 131, 90 and 122 are HOMOs of compounds 1, 2, 3, and 4 respectively)

Dyes functional λmax (nm) States f Excited 
energy (eV)

Transition character

1 B3LYP 546 S1 1.156 2.27 104 → 105 (99.82%)
CAM-B3LYP 457 S1 1.425 2.71 104 → 105 (89.95%)

2 B3LYP 583 S1 1.208 2.12 131 → 132 (99.71%)
CAM-B3LYP 475 S1 1.575 2.61 131 → 132 (85.76%)

3 B3LYP 542 S1 1.135 2.28 90 → 100 (99.72%)
CAM-B3LYP 456 S1 1.434 2.71 90 → 100 (90.25%)

4 B3LYP 491 S1 1.182 2.52 122 → 123 (98.75%)
CAM-B3LYP 394 S1 1.673 3.14 122 → 123 (80.41%)
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3.8 � NLO study

3.8.1 � Solvatochromic method for determination of NLO 
properties

The values of the linear polarizability αCT of TPA based 
D–π–A chromophores are obtained by using absorption 
and emission spectroscopy. The solvatochromic method 
is utilized for determination of dipole moment of the low-
est lying CT excited state. The chromophores show good 
CT character in one direction is essentially coincident 
with the molecular long axis (X-axis) [69, 70]. The linear 
polarizability is sensitive to solvents and is evident in 
both the experimental and computational studies. The 
compound 2 and 3 show the higher αCT value in polar sol-
vents. There is a substantial increase from18 to 29 × 10−24 
esu to 122–202 × 10−24 esu. The values forthe first hyper-
polarizability obtained using the solvatochromic method 
(Table 9) are based on several assumptions and thus allow 
only an approximate estimate of the dominant tensor of 
total hyperpolarizability along the direction of CT which 
is the major contributor to the total hyperpolarizability. 
The solvatochromic βCT values are given in Table 9. The 
solvatochromic values of β for all compound 1, 2, 3 and 4 
though differ in their values, are in order of (× 10−30) esu. 
The βCT values are higher in polar solvents such as metha-
nol, DMF, and DMSO.

A comparison between B3LYP computed and experi-
mental values shows that compound 2 has the computed 
values of 76 (× 10−30) esu to 88 (× 10−30) esu and experi-
mental values from 163(× 10−30) esu to 271(× 10−30) esu 

across the solvents. The value of β0 or total first order 
hyperpolarizability of the molecule gives an estimate of 
the NLO properties of the organic molecules. This value 
considers all the directional tensor components of hyper-
polarizability. The solvent effect is consistently shown 
higher in polar solvents (methanol, DMSO, and DMF) by 
the solvatochromic method.

The second-order hyperpolarizability at molecular level 
originating from the electronic polarization in the non-
resonant region can be treated by a three-level model 
[71–75].

The second order hyperpolarizability can be 
expressed as the ‘‘solvatochromic descriptor” and the 
values calculated are given in Table 10. The solvent effect 
is also evident in this parameter, higher the polarity of 
the solvent (methanol), higher the second order hyper-
polarizability. The compound 4 has solvatochromic val-
ues of 37(× 10−36) esu to 50(× 10−30) esu. The individual 
components of the second order static hyperpolarizabil-
ity γ are obtained computationally. The values are pro-
portional to the solvatochromic descriptor γ of the sec-
ond order hyperpolarizability. The values have a trend 
where higher polarity solvents show higher values of γ, 
and a similar trend is followed by the solvatochromic 
obtained values.

3.8.2 � NLO properties by using DFT and TD‑DFT method

The first and second order hyperpolarizability (β and γ), 
static polarizability (α0), and related properties dipole 
moment(μ), ∆α, αvδ, β, for all the chromophores are 
calculated using the B3LYP and CAM-B3LYP functionals 
with 6-311+G (d,p) basis set [76]. The values calculated 
of the TPA chromophores in different solvent environ-
ments using Eqs. (13–17) in supporting information are 
enlisted in Table 11 and Table S3. A comparison of the 
calculated hyperpolarizabilities suggests that the results 
obtained by using the B3LYP functional are better than 
those obtained CAM-B3LYP functional. B3LYP functional 

Table 8   BLA and BOA of all compounds obtained by B3LYP/6-
311++G(d,p)

Sensitizer 1 2 3 4

BLA 0.09734 0.07172 0.06561 0.06922
BOA − 0.54078 − 0.32598 − 0.29824 − 0.10201

Table 9   Effect of solvent on 
values of polarizabilities (α) 
(all values in × 10−24 esu), first 
hyperpolarizabilities (β) (all 
values in × 10−30 esu) and static 
second hyperpolarizability (γ) 
(all values in × 10−36 esu) for 
compounds 1, 2, 3, and 4 

Solvents 1 2 3 4

α βCT γ α βCT γ α βCT γ α βCT γ

CHCl3 164 344 − 1010 111 249 − 271 127 185 − 1067 20.8 39.4 45.6
EA 165 345 − 946 118 261 − 339 163 242 − 1841 20.2 37.6 43.1
Acetone 124 262 − 417 120 236 − 380 122 173 − 908 25.9 45.9 41.1
ACN 168 354 − 991 117 260 − 340 124 163 − 906 24.7 46.1 48.2
MeOH 173 371 − 1091 93.9 195 − 173 154 221 − 1581 29.7 55.2 49.6
DMF 121 220 − 415 124 278 − 400 202 271 − 2716 20.2 38.3 45.2
DMSO 139 292 − 607 131 289 − 520 162 234 − 1789 18.3 32.9 36.9
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predicts higher β values as compared to the CAM-B3LYP 
functional.

3.8.3 � Vibrational contribution to the linear and NLO 
response

The connection between an electronic polarization and 
the vibrational motions leads to a considerable vibra-
tional input to the non-linear optical (NLO) properties. 
DFT is a current technique to calculate the vibrational 
input towards polarizability and hyperpolarizability of 
NLO materials. The vibrational contributions to electronic 
hyperpolarizabilities and polarizabilities were calculated 
by using B3LYP functionals and 6-311++G(d,p) basis set 
in ethanol. The vibrational input to an element of α and β 
tensor has been calculated and compared with the corre-
sponding electronic counterpart and listed in Table S4. The 
results show that the power of an individual component 
indicates a significant delocalization of charges.

3.8.4 � Limits for the hyperpolarizability values

The limits for NLO values are obtained by the limiting the-
ory proposed by Kuzyk [77].The γ values have two fun-
damental limits are negative limit a centrosymmetric and 
positive limit for an asymmetric NLO molecule. The limiting 
values for β and γ are compared with the corresponding 
obtained values by solvatochromic and theoretical calcu-
lations for compound 1, 2, 3, and 4 in Table S3. Table S3 
shows that βvalues below the βmax limit and γ values are 
within the predictable limiting values for all chromophores 
in all solvents.

4 � Conclusion

A triphenylamine based donor with chloro-group suitably 
placed on π-linker with different electron withdrawing 
groups. Rhodamine-3-acetic acid as an electron withdraw-
ing group offers an increased length of π-conjugation in 
compound 2, and it showed red shifted absorptions as 
well as emissions as compared to other three chromo-
phores. The compound 2 and 4 show good linearity 
with respective the LM and McR polarity functions. The 
observed trends in LM and McR for compounds 1 to 4 are: 
1 < 3 < 4 < 2. The chromophores can be separated into two 
groups as ICT (2) and TICT (1, 2, and 4) depending viscosity 
sensitivity which is moderate (2.12) to very high (14.14) 
respectively. The compound 4 shows high viscosity sensi-
tivity value (x = 0.57) as compared to the very famous FMR 
DCVJ have x value 0.40 in same viscous media. The multi-
linear analysis of absorption and emission spectrais carried 
out by using Kamlet–Taft and Catalan parameters which 
shows that solvent dipolarityand polarizability are main 
factors responsible for the slightly red shifted absorp-
tion and emission. BLA values show a linear correlation 
with the computationally obtained NLO parameters. The 
NLO properties of all the chromophores are investigated 
experimentally and computationally. The compound 1 is 
a better NLO material than the other three compound 2, 

Table 10   Comparison between 
solvatochromic and theoretical 
NLO value of compounds 1, 2, 
3, and 4 in chloroform

Static dipole moment [µ (Debye)], mean polarizability [α0 (10−24 esu)], c polarizability anisotropy [Δα 
(10−24 esu)], first hyperpolarizability [β0 (10−30 esu)], second hyperpolarizability [γ (10−36esu)]

Dyes Experimental Computational

μ α β γ μ 0 ∆ β γ

10−24 10−30 10−36 10−24 10−24 10−30 10−36

1 22 164 133 − 1010 10 109 26481 845 4108
2 17 111 249 − 271 11 107 24361 772 3918
3 15 127 185 − 1067 15 84 14292 605 1827
4 9 20.8 39.4 45.6 14 91 15727 517 2995

Table 11   Theoretical NLO value of compounds 1, 2, 3, and 4 in 
chloroform

Static dipole moment [µ (Debye)], mean polarizability [α0 (10−24 
esu)], c polarizability anisotropy [Δα (10−24 esu)], first hyperpolariz-
ability [β0 (10−30 esu)], second hyperpolarizability [γ (10−36 esu)]

 Dyes μ α0 ∆α β γ
10−24 10−24 10−30 10−36

1
 B3LYP 10 109 26481 845 4108
 CAM- B3LYP 13 76 8504 416 1253

2
 B3LYP 11 107 24361 772 3918
 CAM-B3LYP 10 94 14586 414 2008

3
 B3LYP 15 84 14292 605 1827
 CAM-B3LYP 14 76 9122 417 1313

4
 B3LYP 14 91 15727 517 2995
 CAM-B3LYP 13 82 9507 250 1209
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3, and 4. The compound 4 is a good FMR for viscosity sen-
sitivity study.
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