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Abstract
Improvement in some aspect of ecology and financial mathematics is strongly dependent on the analytical solution of 
Bagley-Torvik equations. The aim of this manuscript is to find the analytical solution of Bagley-Torvik equations which 
belongs to a class of fractional differential equation by the use of Sumudu transformation method (STM). Here the frac-
tional derivatives are well-defined in Caputo sense. First, some fundamental properties of STM are given, and then STM 
is applied to the Bagley-Torvik equation which gives an exact solution. The proposed method is an easy, highly efficient 
and robust method for finding the exact solution.
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1 Introduction

In current years, fractional calculus (FC) has found to be 
important in various fields viz fluid dynamics, ecology, 
financial mathematics [1–6]. It is sometimes difficult to 
obtain the analytical solution of the fractional differential 
equations (FDEs). Various important research on FC has 
been deliberated in the past years, and a lot of books have 
been written by various authors namely Miller and Ross [7], 
Oldham and Spanier [8], Podlubny [9]. General ideas about 
FC are introduced in these books which may help the read-
ers to understand the basic concepts of FC. Recently some 
analytical and numerical techniques have been developed 
for the solution of physical problems viz. homotopy per-
turbation method by Wu and He [10], modified homotopy 
perturbation method by Jena and Chakraverty [11], Ado-
mian decomposition method by Momani and Odibat [12] 
and Yavuz and Ozdemir [13], and modified decomposition 
method by Edeki et al. [14].

In the above regard, STM has been found to be a novel 
method to handle FDEs. The STM was first introduced 
by Watugala in 1993. This method was implemented to 

solve various types of engineering control problems by 
Watugala [15, 16] too. Later, this method was extended 
to solve two-dimensional engineering problem by Watu-
gala [17]. The significant applications to partial differen-
tial equations and inversion formulae were established in 
two papers by Weerakoon [18, 19] in 1994 and 1998. The 
Sumudu transform was also first defined by Weerakoon 
against Deakin’s definition who claimed that there is no 
difference between the Sumudu and the Laplace and who 
reminded Weerakoon that the Sumudu transform is really 
the S-multiplied transform disguised in Deakin [20] and 
Weerakoon [21]. The solutions of integral equations and 
discrete dynamical systems of convolution type using 
STM were later achieved by Asiru [22–24]. The Sumudu 
transform was also used to solve many ordinary differen-
tial equations with integer order and although Belgacem’s 
reasonable advantages for implementing to fractional 
differential equations commenced in 2008 with various 
teams of researchers in Katatbeh and Belgacem [25]. It is 
worth mentioning that novel STM has not been used in 
solving the Bagley-Torvik equation. So to the best of the 
present authors’ knowledge, this is the first time that STM 
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has been implemented for solving fractional order Bagley-
Torvik equation.

In this paper, the following type of Bagley-Torvik equa-
tion is considered

where m, c, k, f(x) and u(x) denote the mass, damping, stiff-
ness coefficients, external force, and displacement func-
tion, respectively. d

�u

dx�
 is the FD of order � ∈ (0, 2) . Here �0 

and �1 are real constants.
The rest of the manuscript are arranged as follows: 

some essential definitions related to fractional calculus 
are included in Sect. 2. Some basic features and theorems 
of STM are presented in Sect. 3. In Sect. 4, STM is applied to 
Bagley-Torvik Equation. Finally, a conclusion is illustrated 
in Sect. 6.

2  Basic features of fractional calculus

Definition 2.1 The operator D� of order � in Abel–Riemann 
(A–R) sense is defined by Podlubny [9] as

where m ∈ Z+,� ∈ R+ and

Definition 2.2 The A–R fractional order integration opera-
tor J� is described as

following Podlubny [9] we may have

(1)

{
m

d2u(x)

dx2
+ cD�u(x) + ku(x) = f (x),

u(0) = �0,
du(x)

dx

|||x=0 = �1.
where � =

1

2
or

3

2
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1
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d
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x∫
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u(t)
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1
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x

�
0

(x − t)𝛼−1u(t)dt, 0 < 𝛼 ≤ 1.

(4)J𝛼u(x) =
1
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x

∫
0

(x − t)𝛼−1u(t)dt, t > 0, 𝛼 > 0
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(6)D�tn =
� (n + 1)

� (n − � + 1)
tn−� .

Definition 2.3 The operator D� of order � in the Caputo 
sense is defined in Podlubny [9] and Chakraverty et al. [26] 
as

Definition 2.4 Podlubny [9] 

(a) 

(b) 

3  Basic properties of STM

Definition 3.1 If F(u) is the Sumudu transform (ST) of y(t) , 
then the ST of y(t) for all real number t ≥ 0, is defined in 
Weerakoon [18] as

Theorem 1 If F(u) is the ST of y(t), then the ST of nth order 
derivative is defined in Belgacem et al. [27] as follows

By using Theorem 1, the ST of dy(t)
dt

 and d
2y(t)

dt2
 are given by

Theorem 2 The ST of Caputo fractional derivative is well-
defined in Chaurasia and Singh [28] as
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⎧
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for t > 0 and m − 1 < 𝛼 ≤ m, m ∈ N.
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4  STM implementation to Bagley‑Torvik 
equations

In this section, STM is implemented to Bagley-Torvik equa-
tions of fractional order in the following examples.

Example 1 Let us take following Bagley-Torvik equation 
given by Pedas and Tamme [29] 

First, by taking ST of both sides of Eq. (14), we get

which yields

Using initial condition to Eq. (15), we get

Applying inverse ST to Eq. (16) and the table presented 
by Belgacem and Karaballi in [30], we have

This is the analytical solution of Eq. (14).

Example 2 Let us now solve the following Bagley-Torvik 
equation given in Parisa and Yadollah [31] and (Figs. 1, 2) 
Mohammadi and Mohyud-Din [32] as
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Applying ST on both sides of Eq. (18) with the initial 
condition, we get

Taking inverse ST of Eq. (19) and from the table in Bel-
gacem and Karaballi [30], we get

This is the analytical result of Eq. (18).

Example 3 Further, consider the following Bagley-Torvik 
equation in Ford and Connolly [34] 

First, apply STM on both sides of Eq. (21) and initial con-
dition to get

(19)

u
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2 [F(u)] + u
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1
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2 ,
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(21)
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1
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2.6666666667t1.5

� (0.5)
,

y(0) =
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Fig. 1  An inflexible plate of 
mass m dipped into a Newto-
nian fluid presented by Gülsu 
et al. [33]
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Applying inverse ST to Eq. (22) and using the table in Bel-
gacem and Karaballi [30], we find the analytical solution of 
Eq. (22) as follows

Example 4 Finally, let us take the Bagley-Torvik equation in 
Ford and Connolly [34] 

(22)

F(u)

u2
+ u

−1
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3

4
× 2.6666666667 × u

3

2 ,
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(
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3

2
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)
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3

2 ,

⇒ F(u) = 2u2.

(23)y(t) = t2

Taking ST on both sides of Eq. (24) and initial condition, 
the subsequent equation is obtained as

Applying inverse ST to Eq. (25) and from the table in 
Belgacem and Karaballi [30], we have

which is the exact solution of Eq. (24).
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Fig. 2  Comparison of the present method with the existing methods a Example 1, b Example 2, c Example 3, d Example 4
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5  Conclusion

In this paper, STM is successfully applied to solve Bagley-
Torvik equations. Four examples are solved by STM 
which show that it is a very useful and highly effective 
technique in term of yielding an analytical solution. Due 
to its properties, it is mostly used for solving a different 
kind of linear and nonlinear fractional differential equa-
tion for finding the exact solution.
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