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Abstract
In this research paper, the authors derived the non-linear differential equations for certain hybrid special polynomi-
als related to the Bernoulli polynomials. The families of non-linear differential equations arising from the generating 
functions of the Bernoulli–Euler and Bernoulli–Genocchi polynomials are derived. Further, these non-linear differential 
equations are used to derive certain identities and formulas for the Bernoulli–Euler and Bernoulli–Genocchi numbers. 
However, to provided an exception, a linear differential equation is derived from the generating function of the Genoc-
chi–Euler polynomials.
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1 Introduction

There has been considerable progress during the recent 
past on mathematical techniques for studying differential 
equations that arise in science and engineering. The study 
of differential equations is a wide field in pure and applied 
mathematics, physics, and engineering. The problems aris-
ing in different areas of science and engineering are usu-
ally expressed in terms of differential equations, which in 
most of the cases have special functions as their solutions. 
The differential equations and recurrence relations for the 
Appell polynomials are studied by several authors, see for 
example [2, 11]. Recently, the recurrence relations and dif-
ferential equations for certain hybrid special polynomials 
related to the Appell sequences are established, see for 
example [4, 15].

During the past 3 decades, the development of non-
linear analysis, dynamical systems and their applications 
to science and engineering has stimulated renewed 

enthusiasm for the theory of differential equations. Differ-
ential equations play an important role in modeling virtu-
ally every physical, technical or biological process ranging 
from celestial motion to bridge design and to interactions 
between neurons. Many fundamental laws of physics and 
chemistry can be formulated in the form of differential 
equations.

Non-linear differential equations have been extensively 
used to mathematically model many interesting and impor-
tant phenomena that are observed in many areas of science 
and technology. They are inspired by problems which arise 
in diverse fields such as economics, fluid mechanics, physics, 
differential geometry, engineering, control theory, material 
science and quantum mechanics. Recently, the linear and 
non-linear differential equations from the generating func-
tions of special polynomials and numbers, see for exam-
ple [5–10]. Kim in [5] initiated a remarkable idea of using 
non-linear differential equations as a method of obtaining 
new identities for special polynomials and numbers. This 
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method turned out to be very useful and it can be applied 
to many interesting special polynomials and numbers. The 
recurrence relations and associated differential equations 
are of fundamental importance in wide variety of fields of 
pure and applied mathematics, physics and engineering.

A non-linear differential equation is generally more diffi-
cult to solve than linear equations. It is common that a non-
linear equation is approximated as linear equation for many 
practical problems, either in analytical or numerical form. 
The non-linear nature of the problem is then approximated 
as series of linear differential equations by simple increment 
or with correction deviation from the non-linear behaviour. 
This approach is adopted for the solution of many non-linear 
engineering problems. Without such procedure most of the 
non-linear differential equations can not be solved. There are 
very few methods of solving non-linear differential equa-
tions exactly, those that are known typically depend on the 
equations having particular symmetries.

Sequences of polynomials are a topic of interest in 
enumerative combinatorics, algebraic combinatorics and 
applied mathematics. They play an important role in numer-
ous branches of sciences. One of the important classes of 
polynomial sequences is the class of Appell polynomial 
sequences [1]. The Appell polynomial sequences appear 
in different applications in pure and applied mathematics. 
In 1880, Appell [1] introduced and studied sequences of 
n-degree polynomials An(x), n = 0, 1, 2,… , satisfying the 
recurrence relation:

The Appell polynomials are defined by the following gen-
erating function:

(1.1)
d

dx
An(x) = n An−1(x), n = 1, 2,… .

(1.2)A(x, t) ∶= A(t)ext =

∞
∑

n=0

An(x)
tn

n!
.

The power series of the analytic function A(t) is given by 
the following expansion:

with Ai (i = 0, 1, 2,…) real coefficients.
Based on appropriate selection for the function A(t), 

different members belonging to the Appell family can be 
obtained. These members along with their names, gener-
ating functions, series definitions and related numbers are 
given in Table 1.

The Bernoulli, Euler and Genocchi numbers have deep 
connections with number theory and occur in combina-
torics. The Bernoulli numbers enter in many mathematical 
formulas, such as the Taylor expansion in a neighborhood 
of the origin of the trigonometric and hyperbolic tangent 
and cotangent functions and the sums of powers of nat-
ural numbers. The Euler numbers are strictly connected 
with the Bernoulli ones and enter in the Taylor expansion 
in a neighborhood of the origin of the trigonometric and 
hyperbolic secant functions. The Genocchi numbers are 
employed in wide range of applications in number the-
ory, combinatorics, numerical analysis and other fields of 
applied mathematics. The Genocchi numbers are known 
to count a large variety of combinatorial objects such as 
sets of permutations.

In 2013, Subuhi Khan and Raza [3] introduced and stud-
ied the 2-iterated Appell polynomials by combining two 
different sets of Appell polynomials. The 2-iterated Appell 
polynomials (2IAP) A[2]

n (x) are defined by means of the fol-
lowing generating function [3, p. 9471(2.5)]:

where

(1.3)

A(t) = A0 +
t

1!
A1 +

t2

2!
A2 +⋯ +

tn

n!
An +⋯ =

∞
∑

n=0

An

tn

n!
, A0 ≠ 0,

(1.4)A(t)(t) ext =

∞
∑

n=0

A[2]
n
(x)

tn

n!
,

Table 1  Certain members belonging to the Appell family

S. no. Name of the polynomials and related numbers A(t) Generating function Series definition

I. Bernoulli polynomials and numbers [14]
(

t

et−1

) �

t

et−1

�

ext =
∑∞

n=0
Bn(x)

tn

n!
�

t

et−1

�

=
∑∞

n=0
Bn

tn

n!

Bn ∶= Bn(0)

Bn(x) =
∑n

k=0

�

n

k

�

Bkx
n−k

II. Euler polynomials and numbers [14]
(

2

et+1

) �

2

et+1

�

ext =
∑∞

n=0
En(x)

tn

n!
2

et+1
=
∑∞

n=0
En

tn

n!

En ∶= En(0)

En(x) =
∑n

k=0

�

n

k

�

Ek x
n−k

III. Genocchi polynomials and numbers [13]
(

2t

et+1

) �

2t

et+1

�

ext =
∑∞

n=0
Gn(x)

tn

n!
2t

et+1
=
∑∞

n=0
Gn

tn

n!

Gn ∶= Gn(0)

Gn(x) =
∑n

k=0

�

n

k

�

Gkx
n−k
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this fact, the Bernoulli–Euler polynomials are equiva-
lent to the Euler–Bernoulli polynomials EBn(x) , i.e., 
BEn(x) ≡ EBn(x) . Similarly, the Bernoulli–Genocchi poly-
nomials are equivalent to the Genocchi–Bernoulli poly-
nomials GBn(x) , i.e., BGn(x) ≡ GBn(x) and Genocchi–Euler 
polynomials are equivalent to the Euler–Genocchi poly-
nomials EGn(x) , i.e., GEn(x) ≡ EGn(x).

The content of this article are motivated by the work 
under progress in the direction of obtaining linear and 
non-linear differential equations involving special poly-
nomials. In this article, the families of non-linear differ-
ential equations related to the generating functions of 
the Bernoulli–Euler and Bernoulli–Genocchi polynomials 
are constructed. Certain identities for the hybrid special 
polynomials are established using these non-linear dif-
ferential equations. To provide an exception, a family 
of linear differential equations is also derived from the 
generating function of the Genocchi–Euler polynomials.

2  Methodologies

We derive the families of non-linear differential 
equations from the generating functions of the Ber-
noulli–Euler polynomials BEn(x) and Bernoulli–Genocchi 
polynomials BGn(x).

Theorem 2.1 For each N ∈ ℕ and 1 ≤ i ≤ N − 1 , the non-
linear differential equation

has a solution H = H(t) =
2

e2t−1
 , where H(j)(t) =

djH(t)

dtj
,

HN(t) = H(t) × H(t) ×⋯ × H(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N−times

 and

(2.1)(N − 1)!HN(t) = (−1)N−1
N−1
∑

j=0

�j(N)H
(j)(t),

There exist sequences of numbers {An}n≥0 and {n}n≥0 , 
such that the sequence A[2]

n (x) satisfies the following 
relation:

Based on appropriate selection for the functions A(t) and 
(t) , different members belonging to the family of 2-iter-
ated Appell polynomials are obtained. These members 
along with their names, generating functions, series defi-
nitions and related numbers are given in Table 2.

It is given that, if pn(x) and qn(x) =
∑n

k=0
qn,kx

k are 
sequences of polynomials, then the umbral composition 
of qn(x) with pn(x) is defined to be the sequence [12]

which is equivalent to condition (1.7).
The set of Appell sequences is closed under the opera-

tion of umbral composition of polynomial sequences. 
Under this operation the set of Appell sequences is an 
abelian group. Since the generating function of the 
2IAP is of the form A⋆(t)ext , with A⋆(t) as the product 
of two different functions of t. Therefore, the set of all 
2IAP sequences also forms an abelian group under the 
operation of umbral composition. As a consequence of 

(1.5)A(t) =

∞
∑

n=0

An

tn

n!
, A(0) ≠ 0,

(1.6)(t) =

∞
∑

n=0

n

tn

n!
, (0) ≠ 0.

(1.7)

A
[2]
n
(x) = A0 n(x) +

(

n

1

)

A1 n−1(x) +

(

n

2

)

A2 n−2(x)

+⋯ + An 0(x), n = 0, 1, 2,… .

(1.8)qn(p(x)) =

n
∑

k=0

qn,k pk(x),

Table 2  Certain members belonging to the 2-iterated Appell family

S. no. Name of the hybrid polynomials and related numbers A(t);(t) Generating function Series definition

I. Bernoulli–Euler polynomials and numbers
(

t

et−1

)

;

(

2

et+1

) �

2t

e2t−1

�

ext =
∑∞

n=0 BEn(x)
tn

n!
�

2t

e2t−1

�

=
∑∞

n=0 BEn
tn

n!

BEn ∶= BEn(0)

BEn(x) =
∑n

k=0

�

n

k

�

BkEn−k(x)

BEn =
∑n

k=0

�

n

k

�

BkEn−k

II. Bernoulli–Genocchi polynomials and numbers
(

t

et−1

)

;

(

2t

et+1

) �

2t2

e2t−1

�

ext =
∑∞

n=0 BGn(x)
tn

n!
�

2t2

e2t−1

�

=
∑∞

n=0 BGn

tn

n!

BGn ∶= BGn(0)

BGn(x) =
∑n

k=0

�

n

k

�

BkGn−k(x)

BGn =
∑n

k=0

�

n

k

�

BkGn−k

III. Genocchi–Euler polynomials and numbers
(

2t

et+1

)

;

(

2

et+1

) �

4t

(et+1)2

�

ext =
∑∞

n=0 GEn(x)
tn

n!
�

4t

(et+1)2

�

=
∑∞

n=0 GEn
tn

n!

GEn ∶= GEn(0)

GEn(x) =
∑n

k=0

�

n

k

�

GkEn−k(x)

GEn =
∑n

k=0

�

n

k

�

GkEn−k
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In view of Eqs. (2.1), (2.4) and (2.5), it follows that

From Eq. (2.10), we have

that is

which proves assertion (2.2).
Now, we proceed to find the explicit expressions for the 

coefficients �j(N) . From Eq. (2.11), it follows that

Consequently

which on again using relation (2.14) in the r.h.s. for �j−1(p1) 
takes the form

Continuing this process up to j times and using Eq. (2.13), 
we get assertion (2.3).   □

The following corollary is an immediate consequence 
of Theorem 2.1.

(2.12)�0(1) = 1, �0(2) = 2 and �1(2) = 1.

�0(N + 1) = 2N�0(N) = 22N(N − 1)�0(N − 1)

= ⋯ ,

(2.13)�0(N + 1) = 2N−1 N(N − 1)(N − 2)⋯ 2�0(2) = 2N N!,

𝛽j(N + 1) = 22N(N − 1) 𝛽j(N − 1) + 2N 𝛽j−1(N − 1) + 𝛽j−1(N),

= 23N(N − 1)(N − 2)𝛽j(N − 2) + 22N(N − 1) 𝛽j−1(N − 2)

+ 2N 𝛽j−1(N − 1) + 𝛽j−1(N),

= ⋯

= 2N−j+1 (N)<N−j+1> 𝛽j−1(j − 1) +

N
∑

p1=j

2N−p1 (N)<N−p1> 𝛽j−1(p1).

(2.14)
𝛽j(N + 1) =

N
∑

p1=j−1

2N−p1 (N)<N−p1> 𝛽j−1(p1),

(2.15)

𝛽j(N + 1) =

N
∑

p1=j−1

2N−p1 (N)<N−p1>
p1−1
∑

P2=j−2

2p1−1−p2 (p1 − 1)<p1−1−p2> 𝛽j−2(p2)

=

N
∑

p1=j−1

2N−p1 (N)<N−p1>
p1−1
∑

P2=j−2

2p1−1−p2 (p1 − 1)<p1−1−p2>

×

p2−1
∑

p3=j−3

2p2−1−p3 (p2 − 1)<p2−1−p3> 𝛽j−3(p3)

= ⋯

𝛽j(N + 1) =

N
∑

p1=j−1

p1−1
∑

P2=j−2

⋯

pn−1−1
∑

pn=j−n

2N−1−pn (N)<N−p1> (p1 − 1)<p1−1−p2> ⋯

× (pn−1 − 1)<pn−1−1−pn> 𝛽j−n(pn).

where p0 = N + 1;(N)<n> = N(N − 1)⋯ (N − n + 1).

Proof Performing differentiation with respect to t on the 
claimed solution

it follows that

or equivalently

Again, by taking the derivative with respect to t in the 
above equation, we find

and consequently

Continuing the process up to N times, we get 
assertion (2.1).

To find the coefficients �j(N) , let us take the derivatives 
with respect to t in Eq. (2.1), so that we have

Replacing N by N + 1 in Eq. (2.1), we have

Equating the coefficients of H(j) in Eqs. (2.8) and (2.9), we 
get the following recursive formulas:

(2.2)�0(N + 1) = 2N N!,

(2.3)

𝛽i(N + 1) =

(

i
∏

n=1

pn−1−1
∑

pn=i−n

2pn−1−pn−1 (pn−1 − 1)<pn−1−pn−1>

)

× 2pi−1 (pi − 1)!,

(2.4)H = H(t) =
2

e2t − 1
,

H(1) = H(1)(t) = (−1) (2H + H2),

(2.5)H2 = (−1)(2H + H(1)).

(2.6)2!H3 = (−1)2 (8H + 6H(1) + H(2))

(2.7)3!H4 = (−1)3 (48H + 44H(1) + 12H(2) + H(3)).

(2.8)

N!HN+1 = (−1)N2N

N−1
∑

j=0

�j(N)H
(j) + (−1)N

N−1
∑

j=0

�j(N)H
(j+1).

(2.9)N!HN+1 = (−1)N
N
∑

j=0

�j(N + 1)H(j).

(2.10)�0(N + 1) = 2N�0(N), �N(N + 1) = �N−1(N),

(2.11)�j(N + 1) = 2N �j(N) + �j−1(N) 1 ≤ j ≤ N − 1.
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To find the coefficients �i−1(N) , let us take the deriva-
tives with respect to t in Eq. (2.17), so that we have

Again, considering Eq. (2.17) with N replaced by N + 1 , we 
have

Equating the coefficients of Gi in Eqs. (2.24) and (2.25), we 
find the following recursive formulas:

In view of Eqs. (2.17), (2.20) and (2.21), it follows that

From Eq. (2.26), we have

and

Equation (2.29) along with Eq. (2.30), yields assertion (2.18).
Taking i = 2 in Eq. (2.27), we find

so that

(2.24)

G
(N+1) = (−1)N+1 2N+1

N+1
∑

i=1

i �i−1(N)G
i

+ (−1)N+1 2N+1
N+1
∑

i=1

i �i−1(N)G
i+1.

(2.25)G(N+1) = (−1)N+1 2N+1
N+2
∑

i=1

�i−1(N + 1)Gi .

(2.26)�0(N + 1) = �0(N), �N+1(N + 1) = (N + 1) �N(N),

(2.27)
�i−1(N + 1) = (i − 1) �i−2(N) + i �i−1(N), 2 ≤ i ≤ N + 1.

(2.28)�0(0) = 1, �0(1) = 1 and �1(1) = 1.

(2.29)�0(N + 1) = �0(N) = �0(N − 1) = ⋯ = �0(1) = 1

(2.30)�N+1(N + 1) = (N + 1)!.

�1(N + 1) = �0(N) + 2�1(N)

= �0(N) + 2 �0(N − 1) + 22�1(N − 1)

= ⋯

=

N−1
∑

i=0

2i �0(N − i) + 2N �1(1),

(2.31)�1(N + 1) =

N
∑

i=0

2i �0(N − i).

Corollary 2.1 For each N ∈ ℕ , the non-linear differential 
equation

has a solution H = H(t, x) =
2ext

e2t−1
 , where �i(N), 0 ≤ i ≤ N − 1 

are same as in Eqs. (2.2) and (2.3).

P r o o f  S e t t i n g  H(j)(t, x) = H(j)(t)ext  a n d 
HN(t, x) = H(t) × H(t) ×⋯ × H(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N−times

ext and multiplying both 

sides of Eq. (2.1) by ext , we get assertion (2.16).   □

Theorem 2.2 For each N ∈ ℕ and 1 ≤ j ≤ N − 1 , the non-
linear differential equation

where G(N)(t) =
dNG(t)

dtN
,Gi(t) = G(t) × G(t) ×⋯ × G(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i−times

 and

has a solution G = G(t) =
1

e2t−1
.

Proof Performing differentiation with respect to t on the 
claimed solution

it follows that

Again, by taking the derivative with respect to t in the 
above equation, we find

and consequently

Continuing the process up to N times, assertion (2.17) 
follows.

(2.16)(N − 1)!HN(t, x) = (−1)N−1
N−1
∑

j=0

�j(N)H
(j)(t, x),

(2.17)G(N)(t) = (−1)N2N
N+1
∑

i=1

�i−1(N)G
i(t),

(2.18)�0(N) = 1, �N(N) = N!,

(2.19)

�j(N) = j!

N−j
∑

ij=0

N−j−ij
∑

ij−1=0

⋯

N−j+1−ij−⋯−i2
∑

i1=0

(j + 1)ij (j − 1)ij−2 ×⋯ × (j − (j − 2))i1 ,

(2.20)G = G(t) =
1

e2t − 1
,

(2.21)G(1) = G(1)(t) = (−1)2 (G + G2),

(2.22)G(2) = (−1)222 (G + 3G2 + 2G3)

(2.23)G(3) = (−1)323 (G + 7G2 + 12G3 + 6G4).
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has a solution G = G(t, x) =
ext

e2t−1
 , where �j(N), 0 ≤ j ≤ N are 

same as in Eqs. (2.18) and (2.19).

P r o o f  S e t t i n g  G(N)(t, x) = G(N)(t)ext  a n d 
Gi(t, x) = G(t) × G(t) ×⋯ × G(t)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i−times

ext and multiplying both 

sides of Eq. (2.17) by ext , we get assertion (2.39).   □

In the next section, we establish certain identities aris-
ing from the non-linear differential equations obtained 
above.

3  Results and summary

In view of Theorem 2.1, we derive the identities related to 
the Bernoulli–Euler numbers BEn by proving the following 
result:

Theorem 3.1 For n, N ∈ ℕ , the following identities involv-
ing Bernoulli–Euler numbers BEn hold true:

and

where �j(N), 0 ≤ j ≤ N − 1 are same as in Eqs. (2.2) and (2.3).

Proof In view of Eq.  (2.4) and generating equation 
(Table 2(I)), we have

which gives

Multiplying both sides of Eq. (3.3) by tN
∑N−1

j=0
�j(N) , we find

(3.1)

BE
N
n
= (−1)2N−n−2 �N−n−1(N)

(N − n − 1)! n!

(N − 1)!
, 0 ≤ n ≤ N − 1

(3.2)

BE
N
n
=

N−1
∑

j=0

(−1)N−1 N �j(N)

(

n

N

)

BEn−N+j+1

(n − N + j + 1)
, n ≥ N

H(j) =

(

djH(t)

dtj

)

=

(

dj

dtj

)

(

1

t

∞
∑

n=0

BEn
tn

n!

)

,

(3.3)H(j) = (−1)j j! t−(j+1) +

∞
∑

n=0

BEn+j+1

(n + j + 1)

tn

n!
.

Similarly, for i = 3 Eq. (2.27) gives

consequently for i = 4 , it follows that

Proceeding in this way, we deduce that

Now, we proceed to find the explicit expressions for �j(N) . 
In view of Eqs. (2.29), (2.31)–(2.34), we have

Proceeding in the similar manner, we deduce that

which yields assertion (2.19).   □

The following corollary is an immediate consequence 
of Theorem 2.2.

Corollary 2.2 For each N ∈ ℕ , the non-linear differential 
equation

(2.32)�2(N + 1) = 2

N−1
∑

i=0

3i �1(N − i),

(2.33)�3(N + 1) = 3

N−2
∑

i=0

4i �2(N − i).

(2.34)

�k(N + 1) = k

N−k+1
∑

i1=0

(k + 1)i1 �k−1(N − i1), 1 ≤ k ≤ N.

(2.35)�1(N + 1) =

N
∑

i1=0

2i1 �0(N − i1) =

N
∑

i1=0

2i1 ,

(2.36)�2(N + 1) = 2

N−1
∑

i2=0

3i2 �1(N − i2) = 2!

N−1
∑

i2=0

3i2

N−i2−1
∑

i1=0

2i1 ,

(2.37)�3(N + 1) = 3!

N−2
∑

i3=0

N−i3−2
∑

i2=0

N−i3−i2−2
∑

i1=0

4i3 3i2 2i1 .

(2.38)

�j(N + 1) = j!

N−j+1
∑

ij=0

N−j+1−ij
∑

ij−1=0

×⋯ ×

N−j+1−ij−⋯−i2
∑

i1=0

(j + 1)ij (j)ij−1

×⋯ × (j − (j − 2))i1 , 1 ≤ j ≤ N,

(2.39)G(N)(t, x) = (−1)N 2N
N+1
∑

i=1

�i−1(N)G
i(t, x),



Vol.:(0123456789)

SN Applied Sciences (2019) 1:217 | https://doi.org/10.1007/s42452-019-0222-0 Research Article

which on replacing j by N − n − 1 in the first term on the 
r.h.s. becomes

Again, from Eq. (2.4) and generating function (Table 2(I)), 
we have

In view of Eqs. (2.1), (3.4) and (3.5), we get assertions (3.1) 
and (3.2).   □

Corollary 3.1 For r, n ∈ ℕ , the following explicit formula for 
the Bernoulli–Euler polynomials BEn(x) of order r holds true:

Proof From generating function (Table 2(I)), the nth Ber-
noulli–Euler polynomials BEn(x) of order r are defined as:

which can be written as

Applying series rearrangement technique in the l.h.s. of 
Eq. (3.7), it follows that

tN
N−1
∑

j=0

�j(N)H
(j) =

N−1
∑

j=0

�j(N)(−1)
j j! tN−(j+1)

+

N−1
∑

j=0

∞
∑

n=0

�j(N)
BEn+j+1

(n + j + 1)

tn+N

n!
,

(3.4)

tN
N−1
∑

j=0

�j(N)H
(j) =

N−1
∑

n=0

(

�N−n−1(N) (−1)
N−n−1 (N − n − 1)! n!

) tn

n!

+

∞
∑

n=N

(

N−1
∑

j=0

�j(N)
BEn−N+j+1

(n − N + j + 1)

n!

(n − N)!

)

tn

n!
.

(3.5)(−1)1−N tN (N − 1)!HN = (−1)1−N (N − 1)!

∞
∑

n=0

BE
N
n

tn

n!
.

(3.6)

BE
(r)
n
(x) =

∑

m1+⋯+mr+p=n

(

n

m1,m2,⋯mr , p

)

BEm1 BEm2
⋯ BEmr

xp.

(

2t

e2t − 1

)

×

(

2t

e2t − 1

)

×⋯ ×

(

2t

e2t − 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

r−times

ext =

∞
∑

n=0

BE
(r)
n
(x)

tn

n!
,

(3.7)

(

∞
∑

m1=0

BEm1

tm1

m1!

)(

∞
∑

m2=0

BEm2

tm2

m2!

)

⋯

(

∞
∑

mr=0

BEmr

tmr

mr!

)

∞
∑

p=0

xp
tp

p!
=

∞
∑

n=0

BE
(r)
n
(x)

tn

n!
.

On equating the coefficients of same powers of t in both 
sides of Eq. (3.8), assertion (3.6) follows.   □

Next, in view of Theorem 2.2, we derive the identities 
related to the Bernoulli–Genocchi numbers BGn by prov-
ing the following result:

Theorem 3.2 For each N ∈ ℕ and 1 ≤ j ≤ N − 1 , the fol-
lowing identity involving Bernoulli–Genocchi numbers BGn 
hold true:

where �i(N), 0 ≤ i ≤ N are same as in Eqs. (2.18) and (2.19).

Proof From generating function Table 2(II), we have

and

In view of Eq. (2.20), we find

which on using Eq. (3.10) becomes

Again from Eq. (2.20), we have

(3.8)

∞
∑

n=0

(

∑

m1+⋯+mr+p=n

BEm1 BEm2
⋯ BEmr

m1!m2!⋯mr! p!
xp n!

)

tn

n!
=

∞
∑

n=0

BE
(r)
n
(x)

tn

n!
.

(3.9)

BGn+N+2 = (−1)N(n + N + 2)(n + N + 1)

N+1
∑

i=1

�i−1(N)2
N−i+1

BG
i

n+2i

n!

(n + 2i)!
,

2t2

e2t − 1
=

∞
∑

n=0

BGn

tn

n!

(3.10)

(

2t2

e2t − 1

)

×

(

2t2

e2t − 1

)

×⋯ ×

(

2t2

e2t − 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i−times

=

∞
∑

n=0

BG
i
n

tn

n!
.

Gi(t) =
(

1

e2t − 1

)

×

(

1

e2t − 1

)

×⋯ ×

(

1

e2t − 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i−times

=
1

(2t2)i

(

2t2

e2t − 1

)

×

(

2t2

e2t − 1

)

×⋯ ×

(

2t2

e2t − 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i−times

,

(3.11)Gi(t) =
1

2i

∞
∑

n=0

BG
i
n+2i

n!

(n + 2i)!

tn

n!
.
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which gives

In view of Eqs. (2.17), (3.11) and (3.12), assertion (3.9) fol-
lows.   □

Corollary 3.2 For r, n ∈ ℕ , the following explicit formula for 
the Bernoulli–Genocchi polynomials BGn(x) of order r holds 
true:

Proof Following the same lines of proof as in Corollary 3.1, 
assertion (3.13) is proved.   □

In the next section, a family of linear differential equation 
from the generating function of the Genocchi–Euler polyno-
mials GEn(x) is derived.

4  Conclusions

In the previous section, the non-linear differential equa-
tions from the generating functions of the hybrid poly-
nomials related to the Bernoulli, Euler and Genocchi poly-
nomials are considered. However, it is not necessary that 
every hybrid family yields a non-linear differential equa-
tion. To give an example, we consider the Genocchi–Euler 
polynomials GEn(x).

Let us consider

Performing differentiation with respect to t in Eq. (4.1), it 
follows that

or equivalently

Again, by taking the derivatives with respect to t in the 
above equation, we find

G(t) =
(

1

2t2

)

(

2t2

e2t − 1

)

=
1

2t2

∞
∑

n=0

BGn

tn

n!
,

(3.12)G(N)(t) =
dNG(t)

dtN
=

1

2

∞
∑

n=0

BGn+N+2

(n + N + 2)(n + N + 1)

tn

n!
.

(3.13)

BG
(r)
n
(x) =

∑

m1+⋯+mr+p=n

(

n

m1,m2,⋯mr , p

)

BGm1 BGm2
⋯ BGmr

xp.

(4.1)F = F(t) =
1

(et + 1)2
.

F(1) =
−2et

(et + 1)
F ,

(4.2)(et + 1)F(1) + 2et F = 0.

(4.3)(et + 1)F(2) + 3et F(1) + 2et F = 0

and consequently

Continuing the process up to N times, we get

Next, to find the coefficients �k(N) , let us take the deriva-
tives with respect to t in Eq. (4.5), so that we have

Again, from Eq. (4.5), we have

Equating the coefficients of F(k) in Eq. (4.6) and (4.7), we 
find the following recursive formulas:

In view of Eqs. (4.2), (4.3) and (4.5), it follows that

From Eq. (4.8), we have

that is

Taking i = 2 in Eq. (4.9), we get

that is

Similarly, for i = 3 Eq. (4.9) gives

Proceeding in this way, we deduce that

(4.4)(et + 1)F(3) + 4et F(2) + 5et F(1) + 2et F = 0.

(4.5)(et + 1) F(N) +

N
∑

k=1

�k(N) e
t F(k−1) = 0.

(4.6)

(et + 1)F(N+1) + et F(N) +

N
∑

k=1

�k(N) e
t F(k−1) +

N
∑

k=1

�k(N) e
t F(k) = 0.

(4.7)(et + 1)F(N+1) +

N+1
∑

k=1

�k(N + 1) et F(k−1) = 0.

(4.8)�1(N + 1) = �1(N), �N+1(N + 1) = 1 + �N(N),

(4.9)�k(N + 1) = �k(N) + �k−1(N), 2 ≤ k ≤ N.

(4.10)�1(1) = 2, �1(2) = 2 and �2(2) = 3.

�1(N + 1) = �1(N) = �1(N − 1) = ⋯ = �1(1) = 2,

(4.11)�1(N + 1) = 2.

�2(N + 1) = �2(N) + �1(N)

= �2(N − 1) + �1(N − 1) + �1(N)

= ⋯

=

N−2
∑

i=0

�1(N − i) + �2(2),

(4.12)�2(N + 1) = 1 +

N−1
∑

i=0

�1(N − i).

(4.13)�3(N + 1) = 1 +

N−2
∑

i=0

�2(N − i).
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Therefore, in view of Eqs. (4.5), (4.11) and (4.14), we have 
the following theorem:

Theorem 4.1 For each N ∈ ℕ and 2 ≤ k ≤ N , the homoge-
neous linear differential equation

where F(N)(t) = dNF(t)

dtN
 and

has a solution F = F(t) =
1

(et+1)2
.

• The Bernoulli–Euler and Bernoulli–Genocchi polynomi-
als belong to the extended Appell class and form an 
abelian group under the operation of umbral composi-
tion.

• In this paper, the non-linear differential equations for 
the hybrid members belonging to this extended class 
are derived.

• The differential equations related to the generating 
functions of the hybrid special polynomials derived in 
this article are important from the point of view of their 
applications in various fields of science.

• It has been demonstrated that it is a captivating idea to 
use differential equations arising from the generating 
functions of the hybrid special polynomials to derive 
enthralling identities related to special polynomials 
and numbers.

• The approach presented in this article is general and 
can be extended to other families of hybrid special 
polynomials.
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(4.14)
�k(N + 1) = 1 +

N−k+1
∑

i=0

�k−1(N − i), 2 ≤ k ≤ N.

(4.15)(et + 1)F(N)(t) +

N
∑

k=1

�k(N)e
t F(k−1)(t) = 0,

(4.16)

�1(N + 1) = 2,
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∑

i=0

�k−1(N − i),
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