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Abstract
Active vibration control systems involve sensing and actuation systems to be integrated into a structure. The actuator 
generates control forces based on sensed external excitation and system response and applies forces directly to the 
structure in order to reduce its seismic response. One major obstacle with the active vibration control technique is that 
very large actuator power is often required. This paper studies the effects of positioning an actuator in a scissor-jack 
configuration within a structural frame. Based on its geometries, the governing equation of motion is derived. A classi-
cal optimal control algorithm determines control forces. In a numerical example, a three-level multi-degree of freedom 
system frame equipped with scissor-jack actuators is compared to an active-tendon system with the same structural char-
acteristics. The results indicate that peak actuator force reduces by 92%. The results indicate that by using the proposed 
configuration, significant reduction of control forces can be achieved, implying that a much smaller actuator can be used.

Keywords  Active vibration control · Earthquake engineering · Scissor-jack

1  Introduction

Supplemental energy dissipation systems have recently 
attracted much attention both in the academia and the 
construction industry to mitigate seismic hazards in civil 
structures. In the past three decades, passive, semi-active 
and active vibration control systems have flourished as 
many studies have emerged worldwide [1]. In particular, 
active control systems represent remarkable potentials in 
suppressing vibration and reduce damages to the struc-
tures due to earthquake excitation. Active vibration con-
trol systems are smart systems which involve integration 
of sensing and actuation components acting externally in 
a structure. The actuators generate control forces based on 
sensed external excitation and system response and apply 
forces directly to the structure in order to reduce its seis-
mic response. A comprehensive review including develop-
ment of control theories, experimental research and prac-
tical implementation was carried out by Casciati et al. [2]. 
The control forces delivered by actuators are determined 

via control algorithms. Many control algorithms have 
been developed. Notable algorithms include linear quad-
ratic regulator (LQR) [3], acceleration feedback control [4], 
H-infinity control [5]. More recent developments include 
bilinear pole-shifting algorithm [6], fuzzy PID control [7]. 
Practical implementations of these smart structures in 
Japan have been summarized [8]. Due to the very large 
sizes and weights of civil structures, actuators are required 
to deliver very significant forces. In order to reduce control 
forces, this paper investigate a method which position the 
actuator in a scissor-jack configuration. Using the scissor-
jack configuration in the vibration reduction in cable 
systems has been gained the very promising results [9]. 
This configuration modifies the equation of motion via a 
coefficient which depends on the geometry of the scissor-
jack configuration. The effect of this configuration on the 
actuator forces will be demonstrated through a numerical 
example.
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2 � Active scissor‑jack actuator configuration

2.1 � Description of system

A single degree of freedom system with an Active 
scissor-jack is presented in Fig. 1. The actuator is pin-
connected to four axially rigid members. Due to earth-
quake excitation, horizontal displacement of floor causes 
relative displacement between O and O’. To counter the 
effect of this displacement, the actuator extends or con-
tracts and produces a force via members AO, OC, AO’ and 
O’C.

2.2 � Equation of motion

To establish the equation of motion, Fig. 2 is considered. 
In this figure u(t) is active actuator force, while T1, T2, T3 
and T4 are axial member forces in brace members.

The equilibrium of horizontal and vertical forces 
in the hinge joints of O and O’ are written as follows, 
respectively:

Note that θ5 is the angle that diagonal AC makes with 
horizon and has been shown in Figs. 1 and 2.

Simultaneously solving Eqs. (1) and (3) as well as Eqs. (2) 
and (4) gives the following equations:

where, α1 and α2 are as follows:

The equation of motion related to the active control 
system is derived as follows:

where m is mass, cis damping coefficient, k is stiffness, 
u(t) is actuator force in the scissor-jack system and ẍg(t) is 
ground acceleration. Simplifying we have,

where

Equation 11 shows that the actuator force u(t) is ampli-
fied by the factor αs. The value of αs is dependent on geom-
etry of scissor-jack configuration, and it is shown below.

2.3 � Scissor‑jack coefficient αs

From Fig. 2 the distance between O’A is L1, which is the 
length of the lower brace, and the angle it makes with 
horizontal is θ1. For any given building geometries L and 
h, all other geometric properties, θ2, θ3, θ4 and L2 in Fig. 2 
can be determined as follows:
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= −mẍg(t)

(10)mẍ(t) + cẋ(t) + kx(t) = −𝛼su(t) −mẍg(t)
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Fig. 1   Scissor-jack actuator configuration

Fig. 2   Forces in scissor-jack actuator configuration under horizon-
tal excitation
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To demonstrate the effect of θ1 and L1, consider a 
single storey frame with height h = 3 m and bay width 
L = 6 m. The resultant αs is shown in Fig. 3. It is clear 
that a larger θ1 and L1 will result in a larger αs, which 
will effectively reduce the required actuator force. There 
is little effect on αs until θ1 becomes larger than 20 
degrees, at which αs sets off rapidly. It should be noted 
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that in practical implementations the physical actuator 
length would restrict the choice of θ1 and L1. Moreover, 
if the structural designer would like to change the build-
ing geometry h and L, their effect on is demonstrated 
in Fig. 4 and Fig. 5.

2.4 � Formulation of multi‑degree of freedom 
systems

To extend the formulation of active scissor-jack system to 
a multi-degree of freedom structure, consider a three-level 
building system shown in Fig. 6. Assuming the geometrical 
properties of the scissor-jack system is identical on each 
level, the equation of motion is written in matrix form as 
follows.

where,
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Fig. 3   Coefficient αs as a function of θ1 and L1

Fig. 4   Coefficient αs as a function of θ1 and L (L1 = 1.5 m)

Fig. 5   Coefficient αs as a function of θ1 and h (L1 = 1.5 m)
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In Eq. 16, m1 to m3 are masses, c1 to c3 are damping coef-
ficients, k1 to k3 are stiffness, u1(t) to u3(t) are active con-
trol forces, ẍ(t) is the floor acceleration, ẍg(t) is the ground 
acceleration due to earthquakes and �sm is the scissor-jack 
coefficient. It can be shown that αsm is a function of geom-
etry of the scissor-jack configuration:
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2.5 � Control strategy

The objective of control strategy is to minimize the displace-
ment x(t) by changing the forces U(t). To facilitate the appli-
cation of linear optimal control theory, the second-order 
differential equation in (16) is presented in a first-order 
state-space form. A 2n-dimensional state vector is declared:

Such that Eq. (16) can be expressed as follows:

where:

In the above equation, A is system plant matrix, Bu is con-
trol location matrix and Br is earthquake excitation influence 
matrix. The control force is obtained via a feedback law of a 
control algorithm:

where G is matrix of feedback gain matrix. The determi-
nation of the control force can be determined from The 
Ricatti optimal control algorithm. An optimal solution for 
state vector Z(t) and control force vector u(t) is calculated 
based on minimization of a standard performance index 
J, given by

where Q and R and weighting matrices for system 
response and control force. The control gain matrix is 
determined by

In which P is the Ricatti matrix obtained from the Ricatti 
equation.
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Fig. 6   MDOF system with active scissor-jack system
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3 � Numerical Study

To demonstrate the effects of scissor-jack configuration, 
a three-storey MDOF frame is investigated as a numeri-
cal study in order to study the performance. Australian 

sections 200UC59.5 and 250UB37.3 are used for columns 
and beams, respectively. Lumped masses of 12 tons are 
assumed for each level. The damping matrix is constructed 
using Rayleigh proportional damping with 5% damping 
ratio. Structural properties are listed in Table 1. This struc-
ture has natural periods of 0.64 s, 0.23 s and 0.16 s which 
belongs to modes 1–3, respectively. For comparison, an 
active tendon system with identical frame structural char-
acteristics is considered. Active tendon systems consist of 
prestressed tendons located on each floor where active 
control is delivered by actuators which adjust the level of 
tension in the tendons. Active tendon systems have been 
tested in small laboratory scale [10], full scale testing [11], 
as well as studied numerically [12]. Figure 7a shows the 
configuration of the 3-storey active scissor-jack system 
while Fig. 7b shows that of the active-tendon system. All 
brace members are assumed to be linear elastic and axially 

Table 1   Properties of test 
structures

Parameters Value

Mass (all levels) 12 tons
Stiffness (all levels) 6037 kN/m
θ1 20
θ2 61.6
θ3 56.9
θ4 24.7
θ5 26.6
αsm 12.1

Fig. 7   a Scissor-jack system and b active tendon system

Fig. 8   Ground excitation: a 1979 El Centro earthquake accelerations and b 1994 Northridge earthquake accelerations
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Fig. 9   Comparison of displacement response (with and without scissor-jack): imperial Valley–El Centro (left) and Northridge (right)
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Fig. 10   Comparison of actuator forces in active scissor-jack and active tendon systems: imperial Valley–El Centro (left) and Northridge (right)
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rigid. In the active tendon system will have the same equa-
tion of motion (Eq. 16) except actuator force is not modi-
fied by αsm. Actuator forces are derived through formu-
lations presented in previous section and results for the 
both systems are compared.

The first 20  s of the 1979 Imperial Valley–El Centro 
M(6.5) and 1994 Northridge M(6.7) is chosen as the input 
ground excitation. The input acceleration is shown in 
Fig. 8.

Displacements responses of scissor-jack controlled and 
uncontrolled systems are compared in Fig. 9. It is clear that 
Active-Scissor Jack system significantly suppress the dis-
placement responses. Using the control algorithm pre-
sented in Sect. 3, the control forces u(t) is determined for 
both active scissor-jack and the active tendon system.

The control forces are presented in Fig.  10. A 92% 
reduction of actuator force is resulted. It is clear that the 
actuator forces from both systems doing the same job, i.e. 
minimizing the displacements, but actuator in scissor-jack 
configuration produces smaller control force due to the 
linear coefficient αsm.

4 � Conclusion

In this paper, the effects of the scissor-jack configuration 
on mitigation of control forces in active control systems 
have been studied. Equation of motion for a single and 
multiple degree-of-systems are derived. The equation 
of motion is linearly influenced by a coefficient, called 
αs in this article. Analytical equation of αs is presented in 
the paper and its value is determined by geometries of 
brace members. Using Ricatti optimal control algorithm, 
a numerical example has demonstrated that the actua-
tor forces in the scissor-jack actuator configuration may 
reduce the required actuator force by 92%, as compared 
to that of an active tendon system. The result of this study 
demonstrates that control forces of an active vibration 
control system may be reduced via the proposed configu-
ration; consequently increase the feasibility of such system 
in practice.
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