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Abstract
Hybrid orthonormal Bernstein and block-pulse function wavelet method for many phenomena in mathematical physics 
and astrophysics is considered. We use a fundamental administrator and convert Lane–Emden conditions into necessary 
conditions. The upsides of utilizing the proposed strategy are introduced. At that point, an effective error estimation for 
the proposed technique is additionally presented lastly a few examinations and their numerical arrangements are given; 
and looking at between the numerical outcomes acquired from alternate strategies, we demonstrate the high exactness 
and productivity of the proposed strategy. Our method is characterized then the singular equations are transformed to 
Volterra integro-differential equations. We modify this equations to an algebraic system of equations. The solution to this 
application is achieved by solving this system and the constructed solutions are on approximation form. The acquired 
results guarantee the method provides a truncate solution to the Lane–Emden equations.

Keywords  Hybrid orthonormal Bernstein and block-pulse functions · Wavelet method · Convergence analysis · Lane–
Emden equation · Gaussian integration · Collocation method

1  Introduction

Many practical problems arising in numerous branches of 
science and ocean engineering require solving boundary 
value problems. Different Lane–Emden type conditions are  
known to happen in nonlinear beginning quality issues 
which have a peculiarity at the beginning. The logical 
arrangements of these sorts of conditions are constantly 
conceivable in the area of the point x = 0. These conditions 
moreover portray numerous marvels of material science 
and astronomy, for example, those including certain parts 
of an outstanding structure, warm history of an around 
billow of gas; geothermal gas circles and thermionic flows. 
HOBW has been used for obtaining numerical spectral 
solutions for handling some of these kinds of Ocean Engi-
neering problems. The LEE has fundamental importance 
in the field of radioactive cooling, modeling of clusters of 
galaxies, Physics, astrophysics, and nonlinear mechanics 

are used to depict several equations [1–7]. It has also been 
proven to be more versatile in the examination of a vari-
ety of situations which include the analysis of isothermal 
cores, convective stellar interiors and fully degenerate stel-
lar configurations and formulated as:

with initial conditions (IC) as:

where y0, y1 are constants, h(x), f(x, y)are continuous func-
tions.if we take f (x, y) = f (y) = yn then Eq. (1) is given by:

with Dirichlet, Neumann, and Neumann-Robin boundary 
conditions

(1)y��(x) +
k

x
y�(x) + f (x, y) = h(x), x, k ≥ 1

y(0) = y0, y�(0) = y1,

(2)y�(x) +
k

x
y�(x) + f (y) = h(x)
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which models most phenomena in mathematics for the 
values of f(y).

For y0 = 1, this equation is the LEE.
The name of this equation is due to the two astrophysi-

cists Jonathan Lane and Robert Emden [1]. Equation (1) 
has a singularity at x = 0. An effective strategy was estab-
lished in [5] to modify the Lane–Emden to equivalent Vol-
terra integral equations (VIE) off any order. The VIE in [8], 
combined with (ADM), to address the singularity issue. 
This strategy was proven to be reliable and efficient as 
confirmed in [9]. The physical structure introduced in [10] 

(3)

y(0) = y0, y(1) = y1,

y�(0) = c0, y�(1) = c1,

y�(0) = 0, v0 y(1) + v2 y
�(0) = v3,

the mother wavelet. In which parameter of dilation a and 
parameter of a translation b vary continuously.

By letting a and b be discrete values such as a = a0
-k, 

b = nb0a0
-k, a0 > 1, b0 > 0, where n and k are positive integers, 

we attain the family of discrete wavelets:

Then we see that ψk,n(t) forms a wavelet basis for L2(R). 
In particular, when, a0 = 2, b0 = 1, then �k,n(t) forms a basis. 
Here, HOBWi,j(t) = HOBW(k, i, j, t) involves four arguments, 
i = 1, …, 2k−1,k is to be any positive integer, j is the degree 
of the Bernstein polynomials, and t is the normalized time. 
They HOBWi,j(t) are defined on [0, 1) as [11, 12]:

where i = 1,  2,  ….,  2k−1,j = 0,  1,  …,  M  −  1 and k is a 
positive integer. Thus, we attain our new basis as 
{HOBW1,0, HOBW1,1,… , HOBW2k−1,M−1} and any function 
is truncated with them.

The HOBW detect orthonormal basis is:

where (. , .) called the inner product in L2[0, 1) . The HOBW 
has compact support [ i−1

2k−1
,

i

2k−1
], i = 1, …., 2k−1.

2.2 � Function approximation by the HOBW functions

Any function y(t) [10–12], which is integrable in [0, 1), is 
truncated by the HOBW method as follows:

where the HOBW coefficients cij calculated as given below:

We prune y(t) by a series as follows:

(4)�a,b(t) = |a| −1

2 �

(
t − b

a

)
, a, b ∈ R, a ≠ 0

(5)�k,n(t) =
||a0||

k

2�(ak
0
t − nb0), n, k ∈ Z+

(6)HOBWi,j(t) =

⎧⎪⎨⎪⎩

2
k−1

2

�
n

j

�
(2k−1 t − i + 1)j(1 − (2k−1 t − i + 1))n−j

i−1

2k−1
≤ t <

i

2k−1

0 otherwise

(7)(HOBWi j(t),HOBWi� j� (t)) =

{
1 (i, j) = (i�, j�)

0 (i, j) ≠ (i�, j�)

(8)
y(t) =

∞∑
i=1

∞∑
j=0

cijHOBWij(t), i = 1, 2,… ,∞,

j = 0, 1, 2,… ,∞, t ∈ [0, 1),

cij =
(y(t), HOBWij(t))

(HOBWij(t), HOBWij(t))

Many researchers focused to give a truncate solution to 
these equations and many methods were proposed. A 
general study has been given in [10] to construct both 
correct and series solutions to Lane–Emden equations 
through ADM. In [11–18] introduced Bernstein, several 
methods for numerical solutions of VIDE form the unique 
Emden–Fowler initial value problems. In [19] approach 
developed to obtain analytical–numerical solutions to two 
separate Lane–Emden problems. In [20–24] introduced the 
exponential transformation to resolve the difficulty of a 
singular point to solve the LEE.

The paper introduces as. In Sect. 2, we present the prop-
erties of the HOBW and the approximation of the function 
using it. In Sect. 3, We establish that the VIDE is the singular 
Lane–Emden equation. In Sect. 4, we use HOBW method 
and its convergence analysis for getting the solution VIDE 
form of the singular Lane–Emden equation. The efficiency 
of our method is characterized by solving numerical exam-
ples in Sect. 5. Conclusion part is given in Sect. 6.

2 � The HOBW method and the operational 
matrix of the integration

2.1 � Wavelets and the HOBW method

Wavelets constitute a group of functions constructed from 
dilation and translation of a single function ψ(x) called 
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where HOBW(t) and C are (2k−1) (M − 1) × 1 vectors given 
by

and

we have

so that

where

(9)
y(t) =

2k−1∑
i=1

M−1∑
j=0

cijHOBWij(t) = CTHOBW(t)

HOBW(t) = [HOBW10, HOBW11,… , HOBW1 (M−1),

HOBW20, HOBW21,… , HOBW2 (M−1),…… ,

HOBW2k−1 0,… , HOBW2k−1 (M−1)].
T

(10)
C = [c1 0, c1 1,… , c1 (M−1), c2 0, c2 1,… ,

c2 (M−1),… , c2k−1 0,… , c2k−1(M−1)].
T

CT < HOBW(t), HOBW(t) >=< y(t), HOBW(t) >

(11)C = D−1 < y(t), HOBW(t) >,

(12)

D =< HOBW(t), HOBW(t) >,

=

1

∫
0

HOBW(t).HOBWT
(t)dt

=

⎛⎜⎜⎜⎜⎜⎝

D1 0 ⋯ 0

0 D2 ⋯ 0

⋮ ⋱ 0

0 0 ⋯ D
M

⎞⎟⎟⎟⎟⎟⎠

Then, Di(i = 1, 2,… , 2k−1) is defined as follows:

We can also truncate the function k(x, t) ∊ L[0, 1] as 
follows:

where K is a (2k−1) (M − 1) × (2k−1) (M − 1) matrix that we 
attain as:

2.3 � Multiplication of the hybrid functions

We can evaluate HOBW((2k−1) (M−1)×1)(t)HOBW
T
((2k−1) (M−1)×1)

(t) 
for VIE of the second kind via the HOBW functions as 
detailed below.

Let  the produc t  of  HOBW((2k−1) (M−1)×1)(t) and 
HOBW

T
((2k−1) (M−1)×1)

(t) be given by

where

With the recursive formulas,  we calculate 
M((2k−1) (M−1)×(2k−1) (M−1))(t) for any k and M.

The matrix M((2k−1) (M−1)×(2k−1) (M−1))(t) satisfies the 
relation:

(13)

(Dn)i+1,j+1 =

i

2k−1

∫
i−1

2k−1

HOBWi,n(2
k−1 t − i + 1)HOBWj,n(2

k−1 t − i + 1)dt

(Dn)i+1,j+1 =
1

2k−1

1

∫
0

HOBWi,n(t)HOBWj,n(t)dt

(Dn)i+1,j+1 =

(
n

i

)(
n

j

)

2k−1(2n + 1)

(
2n

i + j

)

k(x, t) ≈ HOBW
T
(x) K HOBW(t),

(14)K = D−1 < HOBW(x) < k(x, t), HOBW(t) >> D−1

(15)
HOBW((2k−1) (M−1)×1)(t)HOBW

T

((2k−1) (M−1)×1)
(t)

≅ M((2k−1) (M−1)×(2k−1) (M−1))(t)

M(2k−1M−1×2k−1M−1)(t) =

⎡
⎢⎢⎢⎢⎢⎣

HOBW10(t)HOBW10(t) HOBW10(t)HOBW20(t) ⋯ HOBW10(t)HOBW2k−1,M−1(t)

HOBW20(t)HOBW10(t) HOBW20(t)HOBW20(t) ⋯ HOBW20(t)HOBW2k−1,M−1(t)

HOBW30(t)HOBW10(t) HOBW30(t)HOBW20(t) ⋯ HOBW30(t)HOBW2k−1,M−1(t)

⋮ ⋮ ⋯ ⋮

HOBW2k−1,M−1(t)HOBW10(t) HOBW2k−1,M−1(t)HOBW20(t) ⋯ HOBW2k−1,M−1(t)HOBW2k−1,M−1(t)

⎤⎥⎥⎥⎥⎥⎦
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where C̃(2k−1(M−1)×2k−1(M−1)) is the matrix coefficient. We con-
sider the case when k = 3 and M = 4. Thus, we have

The coefficient matrix C̃(2k−1M−1×2k−1M−1) is determined by

where Ci, i = 0, 1, 2, 3 are 4 × 4 matrices.

Several of the integral 
b(x)∫
a(x)

F(x, t) dt using Leibniz rule as:

Where F(x, t) and dF
dx

 are continuous in the domain D in the 
xt- plane that contains the region R, α ≤ x ≤ β, t0 ≤ t ≤ tn and 
a(x),b(x) are defined functions having continuous deriva-
tives for α ≤ x ≤ β. A global Leibniz rule presented modifies 
VIE to several equations.

3 � VIDE form the Lane–Emden type

In this section, we discuss the LEE of the shape factor of 
the form

where f(y)can take any linear or nonlinear forms.
First, we set

to modify (18) to an integral form then differentiating 
Eq. (19) twice and using the Leibniz rule, we have

M(2k−1(M−1)×2k−1(M−1))(t) c(2k−1(M−1)×1)

= C̃(2k−1(M−1)×2k−1(M−1)) HOBW(2k−1(M−1)×1)(t)

(16)M(16)×16)(t) = M(16)×16)(t) =

⎡
⎢⎢⎢⎢⎢⎣

HOBW10(t)HOBW10(t) HOBW10(t)HOBH20(t) ⋯ HOBW10(t)HOBW43(t)

HOBW20(t)HOBW10(t) HOBW20(t)HOBH20(t) ⋯ HOBW20(t)HOBW43(t)

HOBW30(t)HOBW10(t) HOBW30(t)HOBH20(t) ⋯ HOBW30(t)HOBW43(t)

⋮ ⋮ ⋯ ⋮

HOBW43(t)HOBW10(t) HOBW43(t)OBH20(t) ⋯ HOBW43(t)HOBW43(t)

⎤
⎥⎥⎥⎥⎥⎦

C̃(2k−1M×2k−1M) =

⎡
⎢⎢⎢⎢⎢⎣

C0 0 0 0

0 C1 0 0

0 0 C2 0

0 0 0 C3

⎤
⎥⎥⎥⎥⎥⎦

(17)

d

dx

b(x)

∫
a(x)

F(x, t) dt = F(x, b(x))
db

dx
− F(x, a(x))

da

dx
+

b(x)

∫
a(x)

dF

dx
dt,

(18)

y��(x) +
k

x
y�(x) + f (y) = h(x), y(0) = 𝛼, y�(0) = 0, k > 1

(19)y(x) = � −
1

k − 1

x

∫
0

(t (1 −
tk−1

xk−1
) f (y(t)) − h(t)) dt,

(20)
y�(x) =

x

∫
0

(
tk

xk

)
h(t) dt −

x

∫
0

(
tk

xk
) f (y(t)) dt,

If we multiply y′(x) in (20) by k
x
 and add to y″(x) in (21) we 

get Eq. (18). That is the VIDE is the LEE (18) that given by:

The VIE (10)–(11) were proved to be equivalent to the 
homogenous LEE (18).

For k → 1, the integral form of Eq. (19) is

Based on this, we set t the Lane–Emden equations in 
Volterra integral forms are as:

4 � Application of HOBW method for Lane–
Emden in its integrodifferential form

Consider Eq. (22) acquired from Eq. (18). The unknown 
function y(x) is approximated by HOBW as

(21)

y��(x) = h(x) −

x

∫
0

k (
tk

xk+1
) h((t)) dt − f (y(x))

+

x

∫
0

k (
tk

xk+1
) f (y(t)) dt,

y�(x) =

x

∫
0

(
tk

xk

)
h(t) dt −

x

∫
0

(
tk

xk

)
f (y(t)) dt,

k > 1, y(0) = 𝛼.

(22)y(x) = � +

x

∫
0

t (ln(
t

x
) f (y(t)) − h(t)) dt.

⎧
⎪⎪⎨⎪⎪⎩

y(x) = 𝛼 +

x∫
0

t (ln(
t

x
) f (y(t)) − h(t)) dt, for k = 1,

y(x) = 𝛼 −
1

k−1

x∫
0

(t (1 −
tk−1

xk−1
) f (y(t)) − h(t)) dt, for k > 1.
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to transfer the interval of integration into the interval [− 1, 
1]. Now, Eq. (26) given as:

Using the Gaussian integration formula, we get

where τj1 and τj2 are s1 and s2 zeros of Legendre polynomi-
als ps1+1(.) and ps2+1(.) and wj1

 and wj2
 are weights. The idea 

for the above approximation is the exactness of the Gauss-
ian integration formula for polynomials of degree at most 
2s1 + 1 and 2s2 + 1 Eq. (32) yields (2k−1) (M − 1) nonlinear 
algebraic equations with the unknowns coefficient matrix 
C. By using Newton’s method to solve this system, the val-
ues of C are obtained and hence we get the solution.

4.1 � Convergence analysis

In this section, an analysis of the speed of convergence for 
our numerical method will be obtained.

T h e o r e m   1   T h e  s e r i e s  s o l u t i o n  ym(x) =
k∑
i=1

M∑
j=0

cijHOBWij(x) = CTHOBW(x) , where C and HOBB(x) 

a r e  d e f i n e d  i n  ( 6 )  c o n v e r g e s  t o  y ( x )  t h e n 
lim m→∞‖y(x) − ym(x)‖2 = 0.

Proof  Let L2(ℜ) is the Hilbert space, y(x) ∈ L2[0, 1] is 
approximated by HOBW as Eq. (6):

Let y(x) ≅
∑n

j=0
cij HOBWij(x) for a fixed i be the solution 

of the Eq. (2) where cij = D−1
⟨
y(x), HOBWij(x)

⟩
 ) in which 

⟨., .⟩ denotes the inner product.□

A s s u m e  HOBW(x) = HOBW(xm)  a n d  a s s u m e 
�m = ⟨y(x), HOBW(xm)⟩ , the sequence of partial sum is 

{
�i
}

 
of (�mHOBW(xm)) Let 

{
�i
}

 and 
{
�j
}

 be the partial sums with 
i ≥ j.

We show that {σi} is a Cauchy sequence in Hilbert space.

Let, �i =
i∑

m=1

�mHOBW(xm).

Now,

(30)� =
2

xi
z − 1,

(31)

CTHOBW(xi) = � +
xi

2

1

∫
−1

H1(
xi

2
(� + 1) d� −

xi

2

1

∫
−1

H2(
xi

2
(� + 1) d� ,

(32)

C
THOBW(xi) ≅ � +

xi

2

s1∑
j1=1

wj1
H1(

xi

2
(�j1 + 1))

−
xi

2

s2∑
j2=1

wj2
H2(

xi

2
(�j2 + 1)) .

First, integrating Eq. (22) and from the condition y(0) = α, 
one gets

Then from Eqs. (23) and (24), we have

where,

where D is a (2k−1) (M − 1) × (2k−1) (M − 1) matrix, and is 
said the dual matrix of HOBW(x)

Now we collocate the Eq.  (26) at the points 
xi =

(2 i−1)

2((2k−1) (M))
 yielding

To apply the Gaussian integration to Eq. (26), we first 
use the transformation

(23)
y(x) ≅

M∑
i=1

n∑
j=0

cijHOBWij(x) = CTHOBW(x).

(24)

y(x) = � +

x

�
0

[ z

�
0

(
xk

zk

)
h(x) dx

]
dz

−

x

�
0

[ z

�
0

(
tk

zk

)
f (y(t)) dt

]
dz, k ≥ 1.

(25)

CTHOBW(x) = � +

x

�
0

⎡
⎢⎢⎣

z

�
0

�
xk

zk

�
h(x) dx

⎤
⎥⎥⎦
dz

−

x

�
0

⎡⎢⎢⎣

z

�
0

�
tk

zk

�
f (y(t)) dt

⎤⎥⎥⎦
dz, k ≥ 1.

(26)= � +

x

∫
0

H1(z) dz −

x

∫
0

H2(z) dz,

H1(z) =

z

∫
0

(
xk

zk

)
h(x) dx ,

(27)

D = ⟨HOBW(x),HOBW(x)⟩ =
1

∫
0

HOBW(x)HOBWT (x) dx

(28)H2(z) = z

z

∫
0

(
tk

zk

)
f
(
CTHOBW(t)

)
dt,

(29)CTHOBW(xi) = � +

xi

∫
0

H1(z) dz −

xi

∫
0

H2(z) dz,
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so

Hence,

From Bessel’s inequality as i → 0 we have 
∞∑

m=1

���m��2, con-

vergent and hence

Therefore,

and {σi} is a Cauchy sequence and it converges to for exam-
ple w (say). We assert that

Thus,

Hence,

(33)

⟨y(x), 𝜎i⟩ =
�
y(x),

i�
m=1

𝛿m HOBW(xm)

�

=

i�
m=1

𝛿m⟨y(x), HOBW(xm)⟩,

=

i�
m=1

𝛿m𝛿m,

=

i�
m=1

��𝛿m��2,

(34)

���𝜎i − 𝜎j
���
2

=

������

i�
m=1

𝛿mHOBW(xm)

������

2

=

�
i�

m=j+1

𝛿m HOBW(xm),

i�
m=j+1

𝛿mHOBW(xm)

�

=

i�
m=j+1

i�
m=j+1

𝛿m𝛿m⟨HOBW(xm), HOBW(xm)⟩

=

i�
m=j+1

��𝛿m��2

‖‖‖‖‖‖

i∑
m=j+1

𝛿m HOBW(xm)

‖‖‖‖‖‖

2

=

i∑
m=j+1

||𝛿m||2, i > j

‖‖‖‖‖‖

i∑
m=j+1

�m HOBW(xm)

‖‖‖‖‖‖

2

→ 0 as i → 0.

(35)
‖‖‖‖‖‖

i∑
m=j+1

�m HOBW(xm)

‖‖‖‖‖‖
→ 0,

y(x) = w.

⟨w − y(x), HOBW(xm)⟩ = ⟨w, HOBW(xm)⟩ − ⟨y(x), HOBW(xm)⟩.

The above relation possible only if y(x) = σ. so that y(x) 
and σi converges to the same value. It provides the con-
vergence guarantee of the HOBW method.

5 � Illustrative numerical examples

In this section, we will study the Lane–Emden with the ini-
tial value having a singularity at x = 0, the high exactness of 
the solution acquired by HOBW method are demonstrated 
and then we compare all results with the required solution.

Example 1  Consider the singular differential equation of 
LEE [13].

(36)

=

�
lim
i→∞

�i , HOBW(xm)
�
− �m

= lim
i→∞

⟨�i , HOBW(xm)⟩ − �m

= lim
i→∞

⟨�m HOBW(xm), HOBW(xm)⟩ − �m

= �m − �m = 0.

(37)

⎧⎪⎨⎪⎩

y
��(x) +

2

x
y
�(x) + y(x) = 6 + 12x + x

2 + x
3, 0 ≤ x ≤ 1

y(0) = y
�(0) = 0,

Table 1   Comparison of truncate solutions acquired by HOBW at 
2k−1 = 4 and M = 3 ADM for Example 1

x HOBW ADM Exact AE of HOBW AE of ADM

0.1 0.011 0.011 0.011 0 0
0.2 0.048 0.04800000004 0.048 0 4 × 10−11

0.3 0.117 0.1170000002 0.117 0 2 × 10−10

0.4 0.224 0.2240000003 0.224 0 3 × 10−10

0.5 0.375 0.3750000001 0.375 0 1 × 10−10

0.6 0.576 0.5760000004 0.576 0 4 × 10−10

0.7 0.833 0.83300000003 0.833 0 0
0.8 1.152 1.1520000007 1.152 0 1 × 10−9

0.9 1.539 1.5390000009 1.539 0 9 × 10−9

Table 2   Maximum AE at several values of 2k−1 and M for Example 2 
via HOBW

2k−1 M

7 11 15 19

8 4.59 × 10−8 8.02 × 10−9 4.19 × 10−10 7.38 × 10−11

12 5.47 × 10−10 2.49 × 10−12 3.17 × 10−14 2.12 × 10−15

16 3.39 × 10−11 2.95 × 10−14 1.21 × 10−15 4.24 × 10−16
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with the correct solution y(x) = x2 + x3.

Using the HOBW, the truncate solution y(x) of (37) at 
2k−1 = 4 and M = 3 method, we get 16 number algebraic 
equations with the same number of unknowns and these 
equations are numerically solved by Newton’s method 
with help of maple program, with the initial guess zero, 
we get the HOBW coefficients as:

So, the truncate of y(x) is y(x) = CTHOBW(x) the acquired 
results have been compared with that of my seven order 
(ADM) [13] along with the required solutions and intro-
duced in Table 1. The outcomes reveal that the results by 
HOBW, with using only a small number of bases, are very 
promising and superior to ADM and evaluated absolute 
errors (AE) by HOBW for y(x) will be decreased rapidly in 
comparison with ADM.

Example 2  Consider the non-homogenous LEE [13].

C = [0, 0, 0.02083333333, 0.07812500000, 0.07812500000, 0.1354166667, 0.2291666667, 0.3750000000,

0.3750000000, 0.5208333333, 0.7187500000, 0.9843750000, 0.9843750000, 1.250000000, 1.583333333, 2]

with the correct solution y(x)=x4 − x3.

Table 2 compares the maximum AE of HOBW at several 
values of 2k−1 and M. These results have been included to 

demonstrate the validity and capability of HOBW (Fig. 1).
From Table 2, it is observed that our numerical method 

is more accurate. In order to show the accuracy of the pro-
posed method, we have calculated the absolute error and 
the root means square error (RMS). These errors are given 
by

(38)

{
y��(x) +

8

x
y�(x) + xy(x) = x5 − x4 + 44x2 − 30x, 0 ≤ x ≤ 1

y(0) = y�(0) = 0,

Absolute (y(xi)) =
|||yexact(xi) − yapproximation(xi)

|||,

Fig. 1   Plot of the absolute error (e(x)) at M = 7, 11, 15 and 19 for Example 2
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Example 3  Consider the homogeneous form of the LEE 
[14].

(39)

{
y��(x) +

g

x
y�(x) + xrym(x) = 0, 0 ≤ x ≤ 1, g ≥ 1

y(0) = 1, y�(0) = 0

Table 4   A truncate solutions 
for Example 3 when g = 2, m = 1

x Correct solution HOBW solution
at 2k = 4, M = 3

AE at 2k = 4, M = 3 AE at 2k = 8, M = 7

0.1 0.9983341665 0.9983341428 2.37 × 10−8 4.61 × 10−14

0.2 0.9933466540 0.9933467756 1.260 × 10−7 7.02 × 10−14

0.3 0.9850673556 0.9850674729 1.173 × 10−8 2.35 × 10−14

0.4 0.9735458558 0.9735458342 2.161 × 10−8 5.11 × 10−14

0.5 0.9588510772 0.9588503494 7.278 × 10−8 2.73 × 10−13

0.6 0.9410707892 0.9410707712 1.80 × 10−8 6.35 × 10−13

0.7 0.9203109820 0.9203110906 1.086 × 10−7 1.05 × 10−11

0.8 0.8966951136 0.8966952102 9.66 × 10−8 3.24 × 10−11

0.9 0.8703632328 0.8703632216 1.12 × 10−8 4.01 × 10−11

Table 3   Numerical solutions for Example 3 when g = 2, m = 0

x Correct solution HOBW solution AE

0.1 0.9983333333 0.9983333334 1 × 10−10

0.2 0.9933333333 0.9933333321 1.2 × 10−9

0.3 0.9850000000 0.9850000002 1 × 10−10

0.4 0.9733333333 0.9733333364 3.1 × 10−9

0.5 0.9583333333 0.9583333336 1 × 10−10

0.6 0.9400000000 0.9400000015 1.5 × 10−9

0.7 0.9183333333 0.9183333331 1 × 10−10

0.8 0.8933333333 0.8933333344 1.1 × 10−9

0.9 0.8650000000 0.8650000056 5.6 × 10−9

This equation transformed into VIDE form as follow

We selected our example from [14], in which they 
solved the homogeneous form of LEE by ADM. Tables 3 
and 4, exhibit the Numerical solutions of y(t) by HOBW at 
r = m = 0 g = 2,  and r = 0, m = 1, g = 2.

a.  For r = m = 0,  and g = 2,  the above equation has a 
correct solution

Table 3 shows that, for g = 2, m = 0, the acquired results 
coincides with the required solution and efficiency of the 
method described through the AE.

By applying HOBW method, and taking 2k = 4, M = 3, 
HOBW coefficients C is:

(40)y�(x) = −

x

�
0

(
tg

xg
) trym(t) dt, y(0) = 1, g ≥ 1

(41)y(x) = 1 −
x2

6
,

[1, 1, 0.9965277797, 0.9795833334, 0.9895833334, 0.9826388889, 0.97228222222,

0.9583333334, 0.9587333373, 0.9444475445, 0.9270874333, 0.92625, 0.90625,

0.8854166688, 0.8617111111, 0.8333333333].

b. For r = 0, m = 1,  and k = 2,  Eq. (39) is:

(42)y�(x) = −

x

∫
0

(
t2

x2

)
y(t) dt, y(0) = 1
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For examples 4, we have very less AE by increasing the 
order of HOBW.

6 � Conclusion

In this paper, we introduced VIDE as equivalent to the LEE. 
The acquired VIDE form of LEE to overcome the difficulty 
of the singular behavior at x = 0. The HOBW has been con-
nected for settling the most prominent differential condi-
tions. Despite this reality, such a model gives an imperative 
hypothetical point of view concerning the hypothesis, as 
one may see this as the fringe between polytropic one that 
is physically attainable. It is additionally important to take 
note of that such an outstanding model has, despite the 
unending range, a limited mass. Moreover, other outstand-
ing models, which are made in a “layered” form where each 
layer comprises of a polytope of an alternate record, may 
likewise use this capacity for a bit of the star, in which case 
a limited sweep would be conceivable. Notwithstanding 
these relations, there are likewise a few different deter-
minations that one can make from the polytropic model 
of stars. For relations of this sort, there exists a connec-
tion between the polytropic file, the mass of a star, and 
the span. It is maybe apparent in the talk of the investi-
gative arrangements of the polytropic record that one 
could gather a connection between the polytropic file of 
the star and the range that one would ascertain from that 
star. The class of the equations was released, by chang-
ing the coefficient y′and the method was introduced. 
Using this method, the VIDE forms is reduced to algebraic 
equations. We got these equations involving 2k × (M − 1)
variables which solved using Newton’s iterative method 
through MAPLE program. It was evident that the method 
for a certain value of M as 2k increased, the exactness was 
increased, and also for a certain value of M, as M increased, 
the exactness was increased high as well.

The correct solutions for this problem are given 
by y(x) = sin(x)

x
 applying HOBW method, and taking 

2k = 4, M = 3, we note that HOBW coefficients C as

 applying this method and taking 2k = 8, M = 7, if 2k, M 
increases, the truncate solution gets the required solu-
tion. The truncate solutions acquired by HOBW for shape 
factor g = 2 and 2k = 4, M = 3, at 2k = 8, M = 7 with require 
solutions and AE demonstrated in Table 2. By increasing, 
2k, M the computed results have appropriated the exact-
ness was increased as well. and the truncate solution gets 
an approximate to the correct solution as demonstrated 
in Table 4. The CPU time for running a case may depend 
on the choice of 2k, Mfor solving the system of linear alge-
braic equations resulting from the discretized equations. 
If a different value 2k, M would have been used, the CPU 
time would be different.

Example 4  Consider the LEE type which is of second order 
homogeneous singular several equations given in [14].

with the correct solution y(x) = ex
2

.

In Table 5 a comparison between these results with 
the second derivative multistep method (SDMM) in [14] 
is also given. The results acquired by HOBW, by using 
2k = 16, M = 15 are very promising and superior to those 
of SDMM. It is demonstrated that, for a certain value of M, 
as 2k increases, the exactness increases and for a certain 
value of 2k, as M increases, the exactness increases as well. 
Therefore, HOBW for solving this problem is very effective 
and more accurate as compared with the second deriva-
tive multistep method.

The results acquired by the present method are com-
pared with the correct solution as demonstrated in Table 5. 

[0.9999991692, 1.000102884, 0.9961198453, 0.9896150092, 0.9896150391, 0.9827174717,

0.9723985577, 0.9588502916, 0.9518504492, 0.9453088641, 0.928552389035,

0.9088509723, 0.9085510555, 0.8891691113, 0.8165704733, 0.8414703828]

(43)
{

y��(x) +
2

x
y�(x) − 2(2x2 + 3) y(x) = 0, 0 ≤ x ≤ 1

(0) = 1, y�(0) = 0,

Table 5   A truncate and correct 
solutions for Example 4

x Correct solution HOBW at 2k = 16, M = 15 AE of HOBW at
2k = 16, M = 15

AE of SDMM

0.25 1.06449445891786 1.06449445891789 3 × 10−15 1.77 × 10−13

0.5 1.28402541668774 1.28402541668779 5 × 10−15 2.14 × 10−13

0.75 1.75505465696030 1.75505465696073 4.3 × 10−14 2.93 × 10−13

1 2.71828182845904 2.71828182845916 1.2 × 10−14 4.54 × 10−13
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