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Abstract
Agglomerate and reuse limit the promising application of silver nanoparticles (AgNPs) as catalyst. To eliminate those 
disadvantages, herein, Fe-containing silica nanowires (SiO2NWs) and reduced graphene oxide (RGO) are used as suitable 
substrates to prepare AgNPs/SiO2NWs/RGO nanocomposite via self-assembly approach. The nanocomposite mostly 
assembled with each other via intermolecular hydrogen bond and electrostatic adsorption to form a three-dimensional 
network structure. The AgNPs/SiO2NWs/RGO nanocomposite exhibit excellent photocatalytic activity for 4-nitrophenol 
reduction by NaBH4, originating from that the nearly mono-dispersed AgNPs are adhered on the surface of the SiO2NWs 
and RGO, allowing the effective contact of reactants with catalyst and facilitating the electron transfer between them 
in the reaction. The obtained nanocomposites exhibit the superior stability and can be easily recovered with their fully 
catalytic activities due to the hydrophobic and magnetic properties of the nanocomposites. It shows the great prospect 
for the 4-NP reduction in practice and is promising for wide applications in visible light catalytic reaction.

Keywords  Reduced graphene oxide · SiO2 nanowires · Silver nanoparticles · 4-Nitrophnol reduction · Photo-catalytic 
activity

1  Introduction

Due to the outstanding catalytic properties of silver nano-
particles (AgNPs), it was considered as one of the most 
promising functional materials in the field of electronics, 
chemicals, biologics and catalyst for a long time [1–3]. 
However, agglomerate and reuse were the main draw-
backs for limiting its application. To solve the disadvan-
tage of AgNPs, traditional strategies of dispersed AgNPs 
on a suitable substrate were used to form hybrid catalysts 
by chemical synthesis methods (such as polymers, metal 
oxides, silica nanotubes, carbon nanofibers, etc.) [4–8]. 

Silica nanomaterial was one of the suitable substrates 
because of material availability and environmental friendly 
[3, 7, 9–12]. In recent years, many silicon oxide nanostruc-
tures have been studied to assemble AgNPs via different 
methods include chemical plating [13–15], ultrasonication 
[16], in situ assembly and in situ reduction [12, 17, 18], 
electro static interaction [19] etc. Conventional methods, 
using silane and other organic reagent to prepare nano 
silicon dioxide, had a harmful effect on the environment 
in many previous studies, and also lack of sustainabil-
ity. Therefore, it is necessary to develop a new synthesis 
method of nanometer silicon dioxide.
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Silica nanowires prepared from Chrysotile (Mg6[Si4O10]
(OH)6) was an excellent natural catalyst support candidate 
because of its outstanding physicochemical properties 
[12, 20, 21] and simple synthesis method [22]. As material 
sources are abundant and the reuse of Chrysotile asbes-
tos tailings, the natural Chrysotile-based silica nanowires 
were comparatively cheap and became the better choice 
of catalyst support [12, 22]. In addition, the presence of 
associated mineral of Chrysotile made the prepared silica 
nanowires containing iron, which introduced the new 
property: magnetic property. Although various Ag/SiO2 
composites had effectively prevented the agglomerates of 
Ag NPs, the problem of the catalyst reuse still hadn’t been 
solved very well due to the size of nanometer materials. 
It seems that the use of graphene could effectively solve 
this problem. As nanoscale silicon dioxide could be coated 
by graphene to form a hydrophobic composite [21], and 
graphene was another suitable holder which was studied 
due to its large surface area and unique optical, electronic, 
mechanical, catalytic properties in recent years [23–39]. To 
improve the catalytic property, these two suitable holders 
also were used together to combined with AgNPs [40, 41]. 
At the same time, it had great help for recyclable property.

Herein, we report a novel preparation process of syn-
thesizing uniform three-dimensional network structure 
silver nanoparticles-silica nanowires-reduced graphene 
oxide (AgNPs/SiO2NWs/RGO) nanocomposites (Scheme 1). 
Electrostatic adsorption between the three materials made 

it easy for AgNPs to adsorb on the surface of SiO2NWs and 
RGO. Intermolecular hydrogen bond made the intense 
combination between SiO2NWs and RGO. The motivations 
of this work are the developing of a facile solution strategy 
to prepare the large quantity and easily separable AgNPs/
SiO2NWs/RGO nanocomposites, as well as to investigate 
their physical and chemical properties, nanostructures, 
and photocatalytic performance using the catalytic hydro-
genation reduction of 4-nitrophenol to 4-aminophenol 
by sodium borohydride (NaBH4) under visible light. This 
model reaction is commonly used to evaluate the cata-
lytic performance of metal or metal oxide nanoparticles 
[26]. Particularly, 4-nitrophnol (4-NP) is the most toxic 
among the nitroaromatic compounds, one of priority pol-
lutants listed by the United State Environmental Protection 
Agency (USEPA) due to its toxicity and durability [26, 31, 
32, 39].

2 � Experimental

2.1 � Materials

Silicon dioxide nanowires (SiO2NWs) [22], 3-aminopro-
pyltriethoxysilane (γ-APS, 98%),acetic acid (CH3COOH, 
98%), silver nitrate (AgNO3, 99.8%), sodium citrate 
(C6H5Na3O7·2H2O, 99%), and ethanol (EtOH, 99.7%) were 
supplied by Kelong Chemical Factory (Chengdu, China). 

Scheme 1   Schematic diagram 
for preparation of AgNPs/
SiO2NWs/RGO nanocomposites
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Sodium borohydride (NaBH4, 97%) and 4-nitrophenol 
(C6H5NO3, 99.7%) were purchased from Aladin Ltd. (Shang-
hai, China). All chemicals were used without further purifi-
cation. GO nanosheets were obtained from flake graphite 
(< 30 μm, Qingdao, China) by using the modified Hummers 
method [42]. The water used was purified through a Youpu 
system.

2.2 � Preparation of AgNPs/SiO2NWs/RGO 
nanocomposites

SiO2NWs prepared from Chrysotile were aminated firstly 
by electron-rich 3-aminopropyltriethoxysilane. Procedure 
for amination was according to the method in Ref. [20]. 
0.1 mg mL−1 of GO solution was prepared. GO nanosheets 
were obtained from flake graphite. The AgNPs were 
restored by sodium borohydride while electron-deficient 
sodium citrate acted as stabilizer. Typically, 25 mL of AgNO3 
(2 mmol L−1) and 25 mL of sodium citrate (4 mmol L−1) 
solution were mixed and stirred at 333 K for about 20 min. 
After addition of 0.6 mL of NaBH4 (10 mmol L−1), the mixed 
solution changed from colorless to yellow. Then, 0.01 g 
of modified SiO2NWs was dissolved into 60  mL water. 
After ultrasonication at 323 K for 1 h, the suspensions 
were mixed with different volumes of AgNPs and 18 mL 
0.1 mg mL−1 of GO (the maximum amount of GO com-
bined with SiO2NWs which was found by the experiment). 
After that, it was stirred for 2 h. Subsequently, the mixture 
was centrifuged at 4000 r min−1 for 5 min, washed with 
water for 5 times. The precipitates were re-dispersed in 
100 mL of water and reduced by excess NaBH4. Finally, 
the composites were dried at 333 K. The added amount of 
AgNPs by different volumes (1, 2, 3, 5, 8, 10 mL) were 0.89, 
1.77, 2.64, 4.32, 6.74, 8.28 wt%, respectively. The number 
of added AgNPs volumes was used to name the different 
AgNPs/SiO2NWs/RGO-X Nanocomposites as the X.

2.3 � Characterization

The crystalline phases of composites were examined by 
X-ray diffraction (XRD, Panalytical X’Pert Pro) using Cu Kα 
radiation (λ = 0.03343).The composites morphologies were 
analyzed by scanning electron microscope (SEM, Zeiss 
Libra, Germany). AgNP size was tested and the microstruc-
ture of composite was analyzed by transmission electron 
microscope (TEM: 200FE, Zeiss Libra, Germany). Identifica-
tion of the different chemical states of elements was car-
ried out by X-ray photoelectron spectroscopy (XPS, SSX-
100). Magnetic hysteresis loops was measured by vibrating 
sample magnetometer (VSM: BKT-4500Z, China). The 
nitrogen adsorption–desorption isotherm was measured 
at 77 Kusing Micromeritics ASAP 2020 adsorption appa-
ratus. The Brunauer–Emmett–Teller (BET) surface area of 

the sample was evaluated using the nitrogen adsorption 
isotherms.

2.4 � Catalysis

The photocatalytic activity of the AgNPs/SiO2NWs/RGO 
nanocomposites were evaluated for 4-nitrophenol reduc-
tion by using NaBH4 in the photo reaction apparatus (BL-
GHX-V, Bilang Biological Science and Technology Co., Ltd., 
Xi’an) using a 300 W Xe lamp with an ultraviolet cutoff filter 
(providing visible light ≥ 400 nm) as the light source to trig-
ger the photocatalytic reaction.

A 10  mL portion of 4-nitrophenol solution (4-NP, 
100 mg L−1) and 10 mL of sodium borohydride (NaBH4, 
2.7 g L−1) were dropped into quartz test tubes. Next, 10 mg 
AgNPs/SiO2NWs/RGO nanocomposite was dropped into 
the mixture solution, and the reaction was maintained at 
an appropriate time. The reaction was measured by using 
an UV–vis spectrophotometer (UV2600A UV–vis spectro-
photometer). The composite was recovered by vacuum 
suction filtration quickly after the photocatalytic reaction.

3 � Results and discussion

3.1 � Characterization of AgNPs/SiO2NWs/RGO 
nanocomposites

In order to study the morphology of RGO and AgNPs on 
SiO2NWs surface, the microstructure transformations of 
SiO2NWs and the AgNPs/SiO2NWs/RGO nanocompos-
ites were analyzed by SEM. As shown in Figure S2(a, b), 
the SEM images of the SiO2NWs and AgNPs/SiO2NWs/
RGO nanocomposites indicate that RGO nanosheets and 
AgNPs on SiO2 NWs surfaces are well-assembled and the 
integrated material possesses a three-dimensional net-
work structure consisting of mutual cross-linked RGO 
nanosheets and SiO2NWs adhered AgNPs. And there is 
no obvious preferred orientation between RGO sheets 
and SiO2NWs, which is in agreement with the existence 
of strong intermolecular hydrogen bonds. The diameter 
of SiO2NWs is almost 50 nm. The three-dimensional net-
work structure indicates that the amino groups modified 
silica surface is helpful for bonding with graphene oxide 
and well-distribution of silver nanoparticles. The aminated 
SiO2 NWs are negatively charged. Intermolecular hydrogen 
bonds between amino groups and functional groups (−OH 
and −COOH groups carboxyl) of GO also exist. The results 
of FT-IR spectra also proved the presence of hydrogen 
bonds (see the supporting Information, Figure S3). The 
electron-deficient AgNPs adhered on the surface of RGO 
nanosheets and electron-rich amino groups functionalized 
SiO2NWs are interacted through electrostatic attraction.
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To further investigate the microstructure of RGO and 
AgNPs on SiO2NWs surface and the adhesion morphol-
ogy of AgNPs, the microstructure of AgNPs/SiO2NWs/
RGO nanocomposites with different volumes of AgNPs 
are determined using transmission electron microscope 
(Fig. 1). It shows that RGO is coated and cross-linked with 
SiO2NWs to form a three-dimensional network structure, 
and AgNPs are well dispersed and adhered on the surface 
of RGO and SiO2NWs. There is no obvious density increase 
of AgNPs with the increasing of AgNPs content from 5 to 
10 mL (Fig. 1a, b). The nanostructure of SiO2NWsis main-
tained after chemical treatment. The size distribution of 
AgNPs is about 10–20 nm (Fig. 1c) and the typical HRTEM 
image of AgNPs/SiO2NWs/RGO nanocomposites show the 
obvious three-dimensional network structure (Fig. 1d). The 
insets in Fig. 1a, b show the electron diffraction patterns of 
the samples. It indicated that there are three main growth 
orientations of the face-centered cubic (fcc) crystalline 

silver, confirmed by the XRD analysis. Figure 1e, f shows 
high-resolution TEM (HRTEM) images of Ag nanoparticles. 
The lattice fringe spacing is calculated as 2.36 Å, corre-
sponding to the (111) crystal plane of Ag (d = 0.236 nm) 
[23].

XRD patterns of the AgNPs/SiO2NWs/RGO nanocom-
posites with different volumes of AgNPs are shown in 
the Fig. 2. The diffraction peaks with 2θ values of 10.9°, 
24.5° and 26.9°, the weak and broad diffraction peak in the 
region of 2θ = 15°–30° and the diffraction peaks at 38.7°, 
65.1° and 77.9° correspond to GO, RGO and G (graphite) 
[35, 43, 44], SiO2NWs and the (111), (220), and (311) crystal 
planes of the face-centered cubic (fcc) crystalline silver, 
respectively. The diffraction peaks of AgNPs are consistent 
with the values in standard card (JCPD04-0783). With the 
increasing of AgNPs, the peak intensity is also increased. 
The diffraction pattern of SiO2NWs indicates the amor-
phous structural feature of SiO2NWs which are derived 
from low-order chrysotile. The silica nanowires are not 
damaged after chemical synthesis. No obvious diffraction 
peaks of GO and G (graphite) are observed, suggesting the 
reduction of GO to RGO. Because of the peaks overlap, the 
diffraction peak of RGO at 25.4° is covered by the peak of 
SiO2NWs.

XPS was used for investigating the different valent 
states of elements of AgNPs/SiO2NWs/RGO nanocompos-
ite (Fig. 3). Figure 3a shows the representative XPS spectra 
of the AgNPs/SiO2NWs/RGO-10 nanocomposite, indicating 
main chemical compositions are Ag, C, Si, O, N, Fe and Mg 
elements. With the added amount of AgNPs by different 
volumes (1, 2, 3, 5, 8, 10 mL), the concentration of Ag in 
the AgNPs/SiO2NWs/RGO-X are 0.81, 1.63, 2.03, 3.08, 3.16, 
3.29 at.%, respectively. The high-resolution XPS spectra of 
Ag3d show that the peaks at about 368.4 and 374.4 eV 
(that transferred to high binding energy with 0.2 eV) are 
attributed to Ag3d5/2 and Ag3d3/2, respectively (Fig. 3b). 
The high-resolution XPS spectra of O1s shows that the 
peaks at about 530.8, 533.3 (that transferred to high bind-
ing energy with 0.3, 0.4 eV, respectively) and 532.5 eV 
are attributed to O1s in –O–H, –O and SiO2, respectively 
(Fig. 3c). As the stronger ionic character of the counter-
cation is, the lower the binding energies of the framework 
elements are [45]. In the case of the AgNPs/SiO2NWs/RGO 
nanocomposite the valence electron of O in RGO would 
be shifted toward the H in –O–H and the C in RGO. In addi-
tion, the nonpolar nature of RGO made it more difficult to 
eject a core electron from O in RGO. Therefore, the binding 
energy of O1s in RGO is observed at higher binding energy. 
The main peak for RGO at 284.6 eV (C=C) in the C1s region 
suggested the formation of grapheme (Fig. 3d). Further-
more, the main peak for SiO2 at 102.7 eV (Si–O–Si) in the 
Si2p region suggested that the chemical bond of SiO2 is 
retained after chemical treatment, and the peak for −NH2 

Fig. 1   Typical TEM images (a–c) and the HRTEM image (d) of 
AgNPs/SiO2NWs/RGO nanocomposites, a, b the insets illustrate the 
electron diffraction patterns of the samples, c the inset depicts the 
size distribution of AgNPs, typical HRTEM images e, f of Ag nano-
particles, and insets show the growth orientations, ring axis of [111]
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at 400.2, 402.1 eV in the N1s region suggested the exist-
ence of intermolecular hydrogen bonds (Fig. 3e, f ). Since 
silicon dioxide nanowires were prepared using Chrysotile 
(Mg6[Si4O10](OH)6), the Mg1s signal is also presented in the 
XPS spectra. Finally, the existence of Fe2p signal might be 
caused by the associated mineral of Chrysotile.

Owing to the presence of Fe, magnetic hysteresis loops 
of the SiO2NWs and AgNPs/SiO2NWs/RGO nanocomposites 
with different volumes of AgNPs (0, 1, 5, 10 mL) are shown 
in Fig. 4. The SiO2NWs, SiO2–NH2NWs and AgNPs/SiO2NWs/
RGO nanocomposites are the soft magnetic materials. 
The change of magnetization intensity could be due to 
the loss of Fe during chemical treatment (the amination 
with γ-APS). The loss of Fe during the amination mainly 
comes from the removal of impurities in silica nanowires 
prepared from natural materials. Because the area sur-
rounded by hysteresis loop is proportional to the energy 
loss of a complete cycle of magnetization. The addition of 
RGO and AgNPs did not change the energy loss obviously 
compared with the SiO2NWs (Fig. 4a). The concentration of 
AgNPs had no effect on coercive force (Fig. 4b).

3.2 � Catalytic reduction of 4‑nitrophenol

Figure 5 shows the UV–vis diffuse reflectance spectra of 
the five different AgNPs/SiO2NWs/RGO composites and 
the pristine SiO2 nanowires. All the samples exhibit good 
light absorption in the visible and ultraviolet regions. 
However, after decoration with AgNPs, each spectrum of 
AgNPs/SiO2NWs/RGO shows a localized surface plasm on 
resonance (LSPR) band with a maximum centered at ca. 
400 nm. The presence of a minimum at ca. 320 nm can be 

also observed, characterizing the inter-band transition of 
metals that damps the plasm on oscillation in this spectral 
region. With the increase of silver volume, the intensity of 
the absorption peak is increased indicating the enhanced 
LSPR. This behavior is due to two different factors: firstly, 
the AgNPs immobilized on the SiO2NWs and RGO mutually 
enhanced each other’s polarizability; secondly, the increas-
ing of charge transfer from the Ag nanoparticles to the 
RGO sheet. Therefore, the surface plasm on resonance is 
also enhanced greatly. The AgNPs/SiO2NWs/RGO-10 exhib-
its the maximum intensity of the absorption peak.

The reduction of 4-nitrophenol (4-NP) is one of the 
model reactions for appraising the catalytic activity of 
noble metal nanoparticle [6, 26]. So the photo-catalytic 
reduction of nitroaromatic compounds is chosen as a test 
reaction to investigate the photo-catalytic activity of as-
prepared AgNPs/SiO2NWs/RGO nanocomposite. In fact, 
the absorption peak of 4-NP solutions is at 317 nm under 
non-alkaline conditions. The peak is red-shifted to 400 nm 
because of the formation of 4-nitrophenolate ion after 
being treated by NaBH4 (see the supporting Information, 
Figure S5). The color of the 4-NP solutions changes from 
light-yellow to yellow-grown at the same time.

Figure 6 shows the results of the catalytic reduction 
of 4-NP. Figure 6a displays the UV–Vis absorption spectra 
during the catalytic reduction of 4-NP by AgNPs/SiO2NWs/
RGO-10 nanocomposites. After the addition of the AgNPs/
SiO2NWs/RGO-10 nanocomposites, a new peak at 295 nm 
appears, and which is attributed to the formation of 4-ami-
nophenol. As the reaction time goes by, the successive 
decreasing of adsorption intensity at 400 nm and that 
of increasing at 295 nm indicate the nitro compound is 

Fig. 2   XRD patterns of AgNPs/SiO2NWs/RGO nanocomposites with different volumes of AgNPs (1–10 mL). Marked cyan peaks are attributed 
to standard card (JCPDF 04-0783)



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:130 | https://doi.org/10.1007/s42452-018-0124-6

gradually transformed into aminophenol, and the nitra-
tion could be successfully reduced. Among the differ-
ent AgNPs/SiO2NWs/RGO nanocomposites, the catalytic 

efficiency of AgNPs/SiO2NWs/RGO-10 is the best (see the 
supporting Information, Figure S6a–e). By increasing the 
exposure time, the absorption peak of 4-NP at 400 nm 

Fig. 3   The XPS spectra of AgNPs/SiO2NWs/RGO nanocomposites. a Survey spectrum; b Ag 3d; c O 1s; d C 1s; e Si 2p; f N 1s 
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diminishes quickly, and which is completely disappeared 
after about 10  min, suggesting the complete photo-
catalytic reduction of 4-NP. The AgNPs/SiO2NWs/RGO 
nanocomposites exhibit the excellent catalytic efficiency 
under visible light. Due to the electron-deficient AgNPs 
played as electron acceptor during the formation of 4-AP, 
the catalytic activity is increased with the increasing of 
AgNPs concentration. For comparison, four contrast tests 
are conducted with the mixture of 4-NP, reducing agent 
NaBH4, the pristine SiO2NWs, the RGO modified SiO2NWs 
(SiO2NWs/RGO) under visible light and AgNPs/SiO2NWs/
RGO-10 in dark. The result is shown in the supporting 
Information Figure S6f. It also shows that the 4-NP con-
centration decrease of contrast tests should be rather to 

the adsorption process than the catalytic activity. The SiO2 
NWs and RGO have almost 35% 4-NP absorption in total. 
The results of nitrogen adsorption–desorption isotherm of 
SiO2NWs and AgNPs/SiO2NWs/RGO nanocomposites sup-
port the multilayer adsorption and capillary condensation 
adsorption mechanisms. The calculated BET surface areas 
of SiO2 NWs, AgNPs/SiO2NWs/RGO-5 and AgNPs/SiO2NWs/
RGO-10 are 151, 205, 200 m2 g−1, respectively. Large spe-
cific surface are confirms of their excellent catalytic activi-
ties (see the supporting Information, Figure S7).

The repeatability test was used to investigate the sta-
bility of the photochemical catalytic properties of AgNPs/
SiO2NWs/RGO nanocomposites, and the results show that 
the photocatalytic activity of AgNPs/SiO2NWs/RGO-10 is 
outstanding among all kinds of AgNPs/SiO2NWs/RGO 
nanocomposites prepared in the current reaction system 
(Fig. 6c). The high activity after undergoing four catalysis 
cycles suggesting the composite’s good recyclability. After 
recycling, the structure and morphology of the AgNPs/
SiO2NWs/RGO catalyst is stable, and the three-dimensional 
network structure is remain exist (see the supporting Infor-
mation, Figure S8). The catalytic reduction is accompanied 
by the rapid color change (see the supporting Information, 
Figure S4). As the hydrophilic surface of the SiO2 nanowires 
became hydrophobic after wrapped with RGO [21], the 
hydrophobic AgNPs/SiO2NWs/RGO nanocomposites make 
it easily to be recycled, forming film via filtration process. 
The kinetics of decomposition can be understood accord-
ing to physical chemistry principles. The results shown in 
Fig. 6 imply that the previous catalytic reduction reactions 
are consistent with the Langmuir–Hinshelwood apparent 
first order kinetics model because of superfluous NaBH4 
used to protect the 4-AP from aerial oxidation compared 
with 4-NP and catalyst [46].

Fig. 4   Magnetic hysteresis loops of the SiO2NWs and AgNPs/SiO2NWs/RGO nanocomposites with different volumes of AgNPs (0, 1, 5, 10 mL)

Fig. 5   UV–Vis diffuse reflectance spectra of the SiO2NWs and 
AgNPs/SiO2NWs/RGO nanocomposites with different volumes of 
AgNPs (0, 1, 2, 3, 5, 8, 10 mL)
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Figure 6d shows the linear relationship of lnC/C0 versus 
t, and which indicates that the reaction of 4-NP in the pres-
ence of AgNPs/SiO2NWs/RGO nanocomposites followed 
pseudo-first-order kinetics. It can be observed that AgNPs/
SiO2NWs/RGO exhibits high catalytic activity. While, the 
samples of AgNPs/SiO2NWs/RGO-1, 2, 3, 5, 8, 10 result in 
the reaction rate constants of 1.628, 1.717, 1.820, 1.942, 
3.254, and 3.711 × 10−3 s−1, which are some higher than 
Ag-SiO2NWs and AgNPs (34.8 mg L−1 4-NP, 2.52 × 10−3 s−1, 
2.38 × 10−3 s−1) [12]. This indicates that the catalytic effi-
ciency is significantly enhanced with the increasing silver 
nanoparticles on the SiO2NWs and RGO. In addition, our 
results also imply that AgNPs/SiO2NWs/RGO nanocom-
posites would greatly promote the industrial potential 

application of pristine SiO2NWs, AgNPs and RGO-SiO2NWs. 
Nevertheless, the reaction rate constants are lower than 
Ag-RGO (10 mg L−1 4-NP, 6.49 × 10−3 s−1) [43]. Although 
the constant of Ag-RGO is much higher, there is no actual 
comparability because of the lacked Ag concentration in 
the paper.

All above analyze show that the insulator SiO2NWs pro-
vide the framework and form the stable three-dimensional 
network structure with RGO. The adhered AgNPs have the 
photocatalytic activity, the graphene facilities make the 
charge separation of the photocatalyst, and the maximum 
load of GO combined with SiO2NWs is found to be 18 wt%. 
Moderate graphene and Ag NPs load lead to the increased 

Fig. 6   a UV–Vis absorption spectra during the catalytic reduction 
of 4-NP by AgNPs/SiO2NWs/RGO-10 nanocomposites, b catalytic 
reduction of 4-NP under visible light irradiation, c catalytic reduc-

tion of 4-NP with recycled AgNPs/SiO2NWs/RGO catalysts under vis-
ible light irradiation and d linearized kinetic curves of 4-NP reduc-
tion
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photocatalytic activity because of the increase of the avail-
able surface area for 4-NP adsorption.

3.3 � Catalytic mechanism

It has been shown the reduction of 4-NP to 4-AP by NaBH4 
is carried out on the surface of AgNPs [18]. According to 
current theory about the catalytic reduction of 4-NP by 
AgNPs, electron transfer occurs from BH4

− to 4-NP. The 
atomic hydrogen formed from the hydride attacks the 
4-NP to produce 4-AP through the adsorption of the reac-
tant onto the Ag catalyst surface. The catalytic efficiency 
is highly dependent on the large surface area of AgNPs 
[1, 6, 47]. Previous studies showed that the hydrophilic 
supports were superior to hydrophobic supports for 
the catalytic reaction [3, 7]. Therefore, we conclude that 
the excellent catalytic activity of hydrophobic AgNPs/
SiO2NWs/RGO nanocomposites may be originated from: 
(1) Its large specific surface area and the easy availability of 
Ag/SiO2NWs/RGO interface, which are beneficial to make 
effective contact between the reactants and relative uni-
form adhesion and distribution of AgNPs, provide a large 
amount of active sites, resulting the high catalytic activ-
ity. (2) It is served exceptionally as electron acceptor and 
mediator due to its high carrier mobility [48]. Ag nanopar-
ticles adhered on the surface of RGO and SiO2NWs could 
absorb the visible light irradiation by the LSPR effect in 
which electrons transported from Ag to RGO increase the 
photocatalytic activity under visible light. RGO efficiently 
suppresses the charge recombination and improves 
the charge separation efficiency to enhance the photo-
catalytic activity. (3) The abundant −OH groups on silica 
nanowires surface, the oxygen-containing groups of RGO 
and the π-electron conjugated structure between RGO 
and SiO2NWs also play important roles in enhancing the 
capturing and adsorption of BH4

− and 4-NP molecules in 

the reaction region. (4) RGO sheets have high adsorption 
capacity for 4-NP via π–π stacking interactions [26]. As a 
result, high concentration of 4-NP is present near the Ag 
nanoparticles on RGO and SiO2NWs, leading to better con-
tact between them; the electron transfer from RGO to Ag 
nanoparticles increases the local electron density, improv-
ing the electrons uptake by 4-NP molecules (Scheme 2).

4 � Conclusion

In summary, we reported a novel and scalable prepara-
tion procedures of AgNPs/SiO2NWs/RGO nanocompos-
ites with three-dimensional network structure. It was 
synthesized by using SiO2NWs prepared from Chryso-
tile and homemade GO as the suitable holder to com-
bine with AgNPs under the strong hydrogen-bonding 
and electrostatic adsorption between SiO2NWs, GO 
nanosheets and AgNPs. The SiO2NWs provide the frame-
work and form the stable three-dimensional network 
structure with RGO. The photocatalytic activity of the 
AgNPs/SiO2NWs/RGO was evaluated for 4-nitrophenol 
reduction by using NaBH4. The composites exhibited 
high catalytic activity because the nearly mono-dis-
persed AgNPs were adhered on the surface of SiO2NWs 
and RGO, allowing effective active contact and electron 
transfer between the reactants and catalysis of the reac-
tion. In particular, the as-prepared AgNPs/SiO2NWs/RGO 
nanocomposites with 10 mL AgNPs (AgNPs/SiO2NWs/
RGO-10) exhibited excellent catalytic activity. Signifi-
cantly, these AgNPs/SiO2NWs/RGO nanocomposites 
exhibit the superior stability and can be easily reused 
with a little decline of the catalytic activity due to 
SiO2 nanowires natural mineral frameworks with large 
amounts of active sites and the hydrophobic surface 
and soft magnetic property of AgNPs/SiO2NWs/RGO 

Scheme 2   Possible mechanism of the 4-NP catalytic reduction by the AgNPs/SiO2NWs/RGO nanocomposites
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materials. These nanocomposites show the great pros-
pect for the 4-NP reduction in practice and are promising 
for wide applications in visible light catalytic reaction.
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