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Abstract

Classical reliability models consider the failure modes of a multicomponent system as independent phenomena, even if
these modes concern only one component or neighbouring components. In fact, when a failure mode occurs on a given
system, causes may be related to external events or to the physical degradation of any component in the system. In both
cases, failure modes can partially or totally share some root causes, which may compromise the principle of independence
of failure modes. This paper reviews the failure interaction models that characterise the effect of any failure mode of a
component on the failure modes of its neighbors and on the entire system. Three relevant groups of interaction models
are reviewed: reliability indexes’ interaction, state-based interaction and copula-based interaction. All these models
share the hypothesis of stochastic dependence between failure modes, also referred to as failure interaction. They differ
in their fundamental modeling concepts. Advantages and limits of each of them are emphasized in a comparative study

dealing with dependency concepts, modeling methods and application domains.
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1 Introduction

Risk management of industrial systems involves both an
intelligent optimization of maintenance resources and
an ability to anticipate the potential failures of its com-
ponents [5]. Failure analysis based on reliability engineer-
ing methods is the core of this particular subject matter.
Common methods used in this area, such as Failure Mode
and Effects Analysis (FMEA), reliability block diagrams
and Stress-Strength analysis, assume that the failure
modes occur independently even if they concern only one
component or neighbour components [26, 8, 41]. When
multiple failure modes may be observed on a given sys-
tem within a relative short operation time, they remain
stochastically independent. Although this fundamental
assumption allows some level of simplicity when address-
ing the failure analysis and risk assessment, it may be quite
restrictive and irrelevant due to the mutual influence or

interaction of multiple failure modes within the system.
This is especially true considering that diverse nowadays
systems (Reverse osmosis membranes, semi-conductors,
etc.) have become more and more complex. Their func-
tional decomposition show multiple components that
interact. Understanding the interactivity of failures within
a multicomponent system has become a critical and com-
plex challenge for reliability analysis.

This paper reviews failure interaction modeling in the
context of multiple failure modes and provides a frame-
work allowing to identify and select the proper models
pertaining to relevant technical matters and applications.
The reviewed models share the principle of stochastic
dependence between failure modes also called failure
interaction. While stochastic models are diverse and
numerous, we chose to limit our review to failure inter-
action models. They seek to characterise the effect of
any failure mode of a component on the failure modes
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of its neighbors and the entire system. This is critical in
the understanding and prediction of how and why a
system fails. Practical implications like maintenance
methods and strategies can then be addressed through
these models. They are classified into three approaches:
reliability indexes’ interaction, state-based interaction
and copula-based interaction. Based on their fundamen-
tal modeling hypothesis, advantages and limits of each
approach are emphasized in a comparative study dealing
with dependency concepts, modeling methods and appli-
cation domains.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the concepts of failure interaction as appre-
hended in the literature on failure analysis. Interactive
failure models are discussed according to each proposed
approach. Modeling equations are described in detail to
show the main differences between the models reviewed.
Section 3 presents a comparative study of the reviewed
interactive failure models based on their concepts, meth-
ods and applications related to the subject matter. Sec-
tion 4 contains some concluding remarks.

2 Concepts of interactive failures

Cho and Parlar [10] present the interdependences of
a system’s components in three categories: economic,
structural- and stochastic. Economic dependence exists
whenever the combination of diverse maintenance
actions, if performed simultaneously, can have a signifi-
cant impact on the overall cost of the system’s mainte-
nance. Structural dependence relates to the architecture
of the system. Some components may indissociably
share a specific function. In this case, the maintenance
of a component requires that the other components be
stopped or dismounted. For example, the principle of
cascading failures considers a system within which com-
ponents fail successively in a specific pattern, subject to
the architecture. Concepts of interactive failures or fail-
ure interaction presented in this review are beyond eco-
nomic and structural considerations. They are defined
as stochastic dependences. Stochastic dependence
appears when the failure or the degradation of a com-
ponent influences the state of another component. This
category of failure dependence establishes a relation
between the states of a system’s components, regard-
less of its architecture. The inherent principle suggests
that the propagation of a component’s failure alters the
reliability of other components, and consequently, of the
overall system. In this case, relationships are determined
between the components’ ages, failure rates and failure
times. This stochastic dependence implies that the states
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of components interact, in which case, the terms inter-
active failures and failure interaction become relevant.

Murthy and Nguyen [43, 44] present two types of fail-
ure interaction:

e Type |, induced failures: a component causes the
instantaneous failure of another component with a
probability p or has no effect with a probability 1 — p;

e Type Il, failure rate or shock damage interaction:
a component’s failure changes the failure rate of
another component; in other words, a component’s
failure acts as a shock on another component and the
accumulation of shocks accelerates the failure rate.

The aforementioned types of failure interactions are
largely reused, updated and extended in most models
presented by this review. For example, Nakagawa and
Murthy [45] consider shock damage interactions to
find the optimal replacement number to minimize the
expected cost of maintenance. Failure interaction can
be defined as a gradual, immediate, unidirectional or
bidirectional phenomenon. The most relevant works
pertaining to the subject of interactive failures or fail-
ure interaction can be classified into 3 groups of models:

o Reliability indexes'interaction: Failure rates of diverse
components and/or failure modes are linked by an
analytical function, which in general has an incre-
mental effect on the system’s overall failure rate.
Structural and economic dependencies within the
system influence greatly the choice of the function.
As a consequence, these models address in general
simple architectures (series, parallel, etc.). Such mod-
els are built from failure times in maintenance logs
and don't explicit physical degradation processes;

e State-based interaction: A relationship is established
between the diverse degradation processes within
the system. The monitoring process of state variables
(Temperatures, wear, etc.) is rather important in this
case since the interaction will be defined considering
the variations in the degradation rates of a system’s
components;

e Copula-based interaction: These models are created
regardless of any assumptions one might have on
the evolution of the degradation processes and/or
the failure times. A function (copula) that links com-
ponents' reliabilities is selected based solely on the
likelihood of the data.

Table 1 summarizes the general criteria that led to the
classification of the failure interaction models.
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Table 1 Classification criteria of the failure interaction models

Models Reliability indexes’interaction

State-based interaction

Copula-based interaction

Input data Failure times

Starting hypothesis
of interaction

Incidental variations in the probability
of failure

Application field Scheduled Maintenance

Focus of the models Indexes such as survival probability,
failure rate or distribution param-

eters

Failure times and state variables

Modeling of degradation processes

Failure times and state variables

Incidental variations in the degrada- None
tion process

Conditional Maintenance

Scheduled and Conditional Mainte-
nance

Application of mathematical functions

2.1 Reliability indexes’ interaction

Reliability indexes’ interaction models are the most com-
mon in the literature. They establish an analytical rela-
tionship of dependence between the reliability indexes
or parameters of a system’s components. Practically, they
establish a mathematical dependence between failure
rates or failure times regardless of any physical degrada-
tion parameter. They rely solely on the accuracy of the
maintenance logs. They combine the concepts proposed
by Murthy and Nguyen [43, 44] for systems with two com-
ponents or more.

2.1.1 Failure interaction of two components

Satow and Osaki [50] base their study on the hypothesis
defined by Murthy and Nguyen [43, 44]. In their works,
component 1 causes the instant failure of component 2
(type |l interaction) or causes the failure of component 2
due to the accumulation of multiple shocks (type Il interac-
tion). The idea is that within physical systems components’
failures can be precipitated by the failure of neighbour
components through random phenomena like vibrations,
frictions, etc. The failures of component 1 are assumed to
follow a non-homogeneous Poisson process of intensity
h(t). The system has to be replaced at the N-th failure of
component 1 and whenever component 2 fails. In the case
of induced failures (type | interaction), p; denotes the prob-
ability that component 2 fails instantaneously at the j-th
failure of component 1. The mean time to replacement is:

N-1

MTTR = 2 (1=p))...(1—p)

[HY
J!

e HOdt 1)

©°~ 3

t
where H(t) = /[ h(u)du. In the case of shock damage inter-
0

action (type Il interaction), component 1 causes damage
with a distribution G(x) to component 2 that fails when the
total damages reach a threshold level Z.

N—1 [h(t)]j

MTTR = Gj(Z)7 — e "0t )

where G®(x) is the k-fold convolution function of H(t) with
itself, GO(x) = 0and k = 1,2, ...These models are used to
determine a replacement policy that minimizes the cost in
regard to the system age (t) and a threshold (Z) of shocks
accumulated by component 2. The main difficulty of that
method is the definition of the threshold and the damage
distribution. Since the primarily available data are failure
times from maintenance logs, one might need to rely on
experimental data or a physical model in addition.

Wang and Zhang [58] associate a maintenance tech-
nician to a system with 2 dissimilar components. Con-
sidering the case of a type Il interaction, a component 1
causes random shocks on a component 2. These internal
shocks are accumulated until the system fails. The failure
of component 2 causes the instant failure of component
1. Component 1 is replaced upon failure and component
2 can be repaired. Like the previous model, a component
is assumed to be critical to the system’s primary function.
Moreover, it requires extensive repairs upon its failure
while some other part can be easily replaced but, still, can
unbalance the stability of the system as a whole through
chain reactions or random phenomenon in the shared
environment. Diverse quantities are then studied for a
renewal process: X; the time between failures of the i-th
component 1, Y; the damage caused to component 2 by
shocks due to the failure of the i-th component 1, Z, the
repair time of component 2 in the n-th cycle of a replace-
ment policy. A geometric model is chosen to characterize
the threshold of shocks accumulated by component 2.
Another geometric model represents the evolution of the
repair time A, in the n-th cycle of a replacement policy. The
distribution functions of X;, Y, and Z, are denoted respec-
tively by F(t), H(t) et G, (t) so that:

G,(t) = G(b"'t)
n—1 (3)
A,=aA,_=a A
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whereaand b(0 < b <1,0<a<1).are the geometric
ratios. Wang and Zhang [58] define T; and v; as respectively
the time between failures and the number of component
1 failures in the i-th operation cycle. Z(i) denotes the total
amplitude of accumulated shocks due to component 2
failures. Equation (4) illustrates the model.

(Vi k) = P(Z1 +Zy 4+ <dTTA<Z + 2, +
(Vi - k) — H(k—1)(ai—1A) _ H(k)<ai—1A)

P
P

+Z 1+ 2Z)),

related to secondary functions. A component’s hard failure
can be the root cause of another component’s soft failure
if this component serves a secondary function (e.g. protec-
tive apparel) for a more critical component. The model (6) is
based on the assumption that a hard failure by component
2 increases the failure rate of component 1. The latter has

(4)

where H®(A)is the k-fold convolution function of H(t) and
k =1,2,...In reality, the length of repair time cannot be
described as strictly geometric. There is in fact high ran-
domness due to the human factor in the repair process.
But, the model (4) succeeds in determining a relation
between the age of a system and the repair time while
including shock damage interaction.

Lai and Yan [33] base their work on type Il interactions
that are also extensively studied in related early articles by
Lai and Chen [31, 32] and Lai [30]. The model (5) consid-
ers a repairable component 2 and a non-repairable com-
ponent 1. The main point of this model is to introduce a
certain proportionality in failure rate interaction that is
intuitively assumed. The potential for chain reactions and
the shared environment contribute to an acceleration of
the failure rate. The failure rate of component 2 follows
a non-homogeneous Poisson process of intensity h,(t).
Every failure of component 2 increases the failure rate of
component 1. Inversely, if component 1 fails, component
2 instantly fails. This hypothesis can be restrictive since
no retroactive effect is accounted for. The failure rate of
component 1 is:

hi(®) =D by (LN, () = j) x P(N(1) = j) )

j=0

where N, (t) is the number of failures of component 2. Lai
and Yan [33] apply the concept of minimal repairs to com-
ponent 2. They take into account the economic depend-
ences within a system and determine a replacement policy
with an optimal number of minimal repairs for a mainte-
nance cycle of optimal duration T.

Golmakani and Moakedi [16] use the same model (5)
but consider 2 types of failures. A component 1 is subject
to soft failures following a non-homogeneous Poisson pro-
cess. A component 2 is subject to hard failures following a
homogeneous Poisson process. Hard failures have an instant
detectable effect and require immediate intervention when
they occur. Soft failures can only be detected by a scheduled
inspection because they don't stop the system but decrease
its performance. Generally, hard failures pertain to the ina-
bility to perform a primary function while soft failures are
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inversely no effect on component 2 if it stops working. A
coefficient p represents the percentage of increase of the
failure rate of component 1 due to hard failures.

o p j . .
ht)y=3 (1+ LY x P(N,(t) =] 6

where h?(t) is the initial failure rate of component 1. The
estimation of the coefficient p would rely on experimental
data or the availability of a physical model. Yet, consider-
ing a constant incremental effect (p), suggests that the
interaction have little to no variability. Though, defining
the failures in consideration of the time of detection and
inspection allows the authors to characterize the effects of
interaction in a maintenance strategy based on the opti-
mal number of inspections in a cycle.

Sung et al. [56] combine the concepts of failure rate inter-
action (type Il) and external shocks. The effect of external
shocks is particularly important for mechanical systems
that often have a protective external component subject
to the state of the surrounding environment. Whether a
system is well-designed or not, it is merely impossible to
perfectly prevent an interaction with external factors. This
interaction has an internal consequence as well. The exter-
nal shocks occur following a non-homogeneous Poisson
process of intensity r(t) which suggests randomness. They
cause minor failures with a probability p and catastrophic
with a probability 1 — p, exclusively to a component 2. The
failures of component 2 act as internal shocks as well and
increase the failure rate of component 1. The entire system
fails if component 1 fails. The number of component 2 fail-
ures N, (t) follows a non-homogeneous Poisson process of
intensity 6(t) = h,(t) + p.r(t) where h,(t) is the failure rate
independently of the external shocks. Thus the failure rate
of the system depends on the failure rate of the dominant
component 1 and the number of external shocks endured
by the other component. Equation (7) gives the failure rate
of the dominant component:

hy(@) = )\ by (tIN,(8) =) X P(Ny(t) = j) )

j=0
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The survival function of the system is given by:
_ t
F(t) = exp {— [ [hi00+ (1 = prr0)] dx} (8)

This method allows the inclusion in an analytical model
of the effect of the environment on the system but the
starting hypothesis remains restrictive since only systems
with a single dominant component are addressed by this
model. A long-term replacement policy is derived by the
authors in function of an optimal number of minimal
repairs, which minimizes the overall cost of maintenance.

2.1.2 Failure interaction in a multicomponent system

The models are relatively abundant in the case of systems
with two components. They become less representative
for multicomponent systems. In fact, models for multi-
component systems are less abundant in the literature
since the understanding of the interaction becomes
more difficult when the studied system is more complex.
Jhang and Sheu [22] compare maintenance strategies
for a system with N components. Each component i can
be subject to a minor failure with a probability 1 — p; or
cause a major failure to all other components stopping
the system with a probability p; (type | interaction). This
is similar to the reasoning behind hard/soft failures but,
here, a retroactive effect considering the set of compo-
nents affected is accounted for. Minimal repairs are used
in the case of minor failures. All failures are assumed to
follow a non-homogeneous process of intensity h,(t).
The failure times are simulated by random draws by the
authors. Y = min{Y,,1 <i < N} is defined as the time
until the first system replacement; where Y, ; is the time
until a failure from component i stops the system. The reli-
ability function of Y, ; is:

t
F,i(t) = exp {—g [pi ;0] dx} 9)

The survival function of Y is:

N t
Fm=@m{—Z{MMMMWW} (10)

i=1

The interactive model (10) is considered with both—but
separately—age and block replacement policies that are
common maintenance strategies. This shows the flexibility
of the approach. Yet, building this model from failure times
in maintenance logs would require substantive data on all
components; while in reality, only critical components are
properly observed for a limited period. The main results
show that accounting for the interactivity of failures in the

developed models helps to better anticipate the mainte-
nance costs.

Lai [29] broadens the scope of earlier work on type Il
interactions in systems with two components and stud-
ies type Il interactions for multicomponent systems. He
considers a system consisting of N components. One of
them is assumed to be dominant and non-repairable,
while the others are secondary components and can
be repaired. They are mutually independent and follow
non-homogeneous Poisson processes. The hypothesis
of dominance is plausible if the primary function in a
system is guaranteed by a single component. Though,
as aforementioned, industrial systems tend to be more
and more complex and multiple components can share
a critical function or have more than one critical func-
tions. The failure of a secondary component increases
the failure rate of the primary component. Lai [29] pro-
poses a replacement policy following the system'’s age,
considering that secondary failures are corrected by
minimal repairs. Li et al. [35] use the same model with
n + 1components. One of them is dominant and non-
repairable and the others are secondary and repair-
able. The secondary components are mutually inde-
pendent and follow exponential laws of parameters
h,(t) < h,_;(t) < --- < hy(t) < hy(t). A voting system of
m components out of the secondary n causes the failure
of the system. Such an approach adds more randomness
to the model since unlike the model of Lai [29] the set of
components interacting and failing can vary. The failures
of secondary components increase the failure rate of the
primary component denoted by hy(t):

hy(t) = h(t; ky, kg, ... ki, .. k) (11)

where k; is the number of failures N;(t) of component i.
Sk =0,1,2,...)is defined as the random failure time of
component i. The probability that k or more secondary
components fail is:

© R(t)] -R(® ©

2 = Y P0) (12)
j=k

Jj=

whereR;(t) = fot h;(x)dx is the survival function of a single
component. hy(t) depends on the conditional probability
i (1) = P(tIN; () = ky, ..., Ny (1) = k,,) and:

hN<t>—ZZ ZhNkank () ... Py () (13)

Estimating the probability of failure of the dominant
component is complex and the authors propose the use
of Markov processes. A transition matrix helps to deter-
mine the performance and reliability parameters of the
system. However, the use of Markov processes adds a
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certain complexity to the model because the number of
states of the dominant component will be directly cor-
related to the number of secondary components.

As above-mentioned, there are cases that respect the
ideas of the dominance of a single component and the
unilaterality of interactions. Yet, these hypotheses are
restrictive for systems with a more complex structure.

Zhang et al.[69, 70] also use Markov processes to character-
ize the states of a system with n components. They integrate
the concept of interactivity in a more general manner. There
is no predetermined dominant component since in most
systems the primary function is performed by a set of com-
ponents with the same level of criticality. This shared level of
criticality influences the maintenance actions. This is why the
authors include opportunistic maintenance concepts to their
study. This adds to the model dynamics between failure effects
and maintenance actions. A component is assumed to have a
finite set of states: ¥ = {0, ..., m} where state 0 is the initial
state, and states 1, ..., m — Treflect the deteriorating condi-
tions. The component is subject to corrective maintenance
when it reaches m. Markov chains are used to model the state
transition of a component with a transition rate h. The deterio-
ration process of a component speeds up when other compo-
nents fail. Maintenance opportunity from other components is
assumed to follow a Poisson process of intensity u = hy + u,,
where h; is the failure rate of other components and i, is the
rate of preventive maintenance on other components. A vari-
able aidentifies the maintenance actions by:

e a= 0:no maintenance

e a = T.conducting maintenance.

e S={(i,w)|0 <i <m0 < w< 2}.is defined as a space
where i is the state of a component and w is the occur-
rence of maintenance opportunity given by:

e ® = 0: no maintenance opportunity;

e o = T:maintenance opportunity due to failures of other
components;

e o = 2: maintenance opportunity due to other compo-
nents’ preventive maintenance.

The transition probability from state s € S to another
s’ € Sis defined by P, (a) in the following manner:

h(u+hy"'p; if a=0 .
P. : = U] , <ij<
i (@) { h(u + h)_1p0j if a=1 O<ij=m
he(u+hy"'q; if a=0 -
P. . = f ij C0<ij<
GG (@) { heu+h gy i a=1 <i,j<m

wu+h~ if a=0,0<i=j<m
Piawin(@ =4 uy(u+m~" if a=1,0<i<mj=0
0 else

(14)
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where p;; is a transition probability that a component dete-
riorates from state / to state jand g;; is defined as another
transition probability induced by other components’ fail-
ures. The authors propose the method of Hidden Markov
Chains to determine the transition matrix according to
observed data. This suggests a certain abundance of reli-
able observational data on each component’s failure.
By applying the concept of opportunistic maintenance
to their model, they take into account the economic
dependences.

Liu et al. [39] represent the interactivity by a probability
matrix P = (p,]) considering type | interactions as defined
by Murthy and Nguyen [43]. Thus, a component i causes
an instant failure to a component j with a probability p;
and has no effect with a probability 1 — p;. Failure interac-
tion undoubtedly decreases the reliability of a system. By
accounting for the interactivity, Liu et al. [39] identify some
issues in the early stages of a system’s design that could
affect the constructor’s warranty. This shows that the con-
cept of failure interaction has on the long run, in addition to
the physical implications of a failure, an extensive and accel-
erating effect on the decrease of a system’s economic value.
They define w as a system’s period of warranty, p;(w) the
probability of failure for a component i during w, &;(w) the
probability that a component i failure will cause the system
failure, and F5(w) the distribution function of the system:

Fs(w) =1 —Rs(w)

a;(w) = p;(w)/Fg(w) (15)
piw)=Pr [T, <Y, T, <w|

where Y, = min(Tj,Vj € Q,j# i),.Q ={1,2,...,n}. The
number of failures N; of a component j caused by a com-
ponent i:

pj - bi(w)
EIN;] = ’RST (16)

The authors apply their model to series and parallel archi-
tectures to adjust the warranty cost considering the number
of failures due to type | interactions. This approach could be
improved by including type Il interactions. Zhang et al. [66]
tackle the issue of product warranty as well by considering
type lll interactions that we classified in this paper as type
[l interactions. They base their model on Satow and Osaki
[50] with two components in series. Moreover, the methods
aforementioned, perform limitedly when it comes to com-
plex architectures. Their core concepts revolve around key
assumptions on some dependencies.
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2.1.3 Interaction of failure modes from a system
point-of-view

A system can be subject to diverse failure modes. These
modes can influence each other, mutually or not. The
models considered thus far are based on assumptions of
failure interaction between the components of a system.
They do not explicitly identify the dependences between
diverse failure modes of the system as a whole. They could
be applied in such cases by considering the modes as com-
ponents in series, but the interactivity of failure modes can
have a more complex form. Some recent papers intend to
model this dependence.

Zequeira and Bérenguer [65] distinguish two types of
failure modes: maintainable and non-maintainable. The
modes are distinguished considering the reparability in
the occurrence of a failure. Preventive maintenance cor-
rects the deterioration due to maintainable modes. Non-
maintainable modes can only be corrected by a complete
overhaul of the system. Moreover, minimal repairs are con-
sidered in the case of failures. The model is applied to com-
ponents in series. It puts the stochastic dependence on
display by considering that the failure rate of maintainable
modes h,,,(t) depends on the failure rate of non-maintain-
able modes h,,,(t). There is a certain similarity to the hard/
soft failures reasoning but, here, only maintainability dis-
tinguishes the two types of failures. A term p(t) is defined
as the probability that a non-maintainable mode will
automatically cause a maintainable mode. This probabil-
ity is estimated by considering the physical and structural
characteristics of the system. In other words, there needs
to be a supportive physical model or conclusive experi-
mental model to determine how the modes are linked.
Preventive maintenance is performed at periods kT where
k=0,1,2,...and T > 0. During a period [kT, (k + 1)T | the
maintainable failure rate is h,, [t — (k = 1)t] + p(t)h,, (D).
Then, the system’s failure rate during period [kT, (k + DT |
is given by (17):

hyr(t) = hom() + [t = (k = D] + p()h,,(0) (17)
The authors use a mechanical coupling as an illustrative
example, which shows applicability of the model on real-
life systems. However, not all maintainable failure modes
have the same impact or repair-time. Considering them as
a single category alters the comprehension of a system’s
deterioration process. They also propose an imperfect pre-
ventive maintenance policy to estimate an optimal com-
plete revision period T and an optimal number of preven-
tive replacements N that minimize the overall cost.
Castro [7] proposes an improvement on the model by
Zequeira and Bérenguer [65]. He suggests that the occur-
rence of maintainable failures is correlated with the number
of non-maintainable failures denoted by N,(t) aggregated

following the installation of a system. This choice is moti-
vated by the fact that the number of non-maintainable
failures in a specific period is easier to comprehend than
a failure rate to estimate. The failure rate of maintainable
modes h, ,(t) during period [kT, (k + 1)T [ is then defined
as a doubly stochastic Poisson process or a Cox process.
An adjustment factor a > 1quantifies the effect of cumula-
tive degradation due to non-maintainable failures in such
a model:

hy i (0) = hyo(t —kT)a% D, kT <t<(k+ DT, a>1

(18)
where h; o(t) is the failure rate of maintainable modes
before the first operation of preventive maintenance. The
number of failures considering the distinctive modes is
integrated with a periodic preventive maintenance strat-
egy. With minimal repairs used as troubleshooting actions,
the strategy estimates the optimal number of minimal
repairs N before a complete revision at period T that mini-
mizes the overall cost. Both (17) and (18) models share the
same principle of a unidirectional interactivity. It is not
taken into account that two maintainable modes could
be significantly distinctive and interact in a bidirectional
manner.

Fan et al. [13] have, interestingly, proposed a model with
two failure modes that have bidirectional stochastic depend-
ence. Their model is based on the works of Murthy and
Nguyen [43, 44], Zequeira and Bérenguer [65] and Castro
[7]. This is important since the assumption of failure interac-
tion regardless of architecture suggests the possibility of a
retroactive effect. Most of the previous models consider this
effect as immediate, instant or total (on the whole system)
while it could be gradual. The failure rates are defined as
doubly stochastic Poisson processes or Cox processes. The
authors consider that the failure rate of mode i depends
on the number of the failure in the other mode 7 and vice
versa. A performance variable is associated with each failure
mode. In this model, t is defined in function of the number
of passed preventive maintenance cycles. Infactt = t, + ¢,
where t, is the time from the system’s installation to the k-th
maintenance operation andt, is the operating time since the
last preventive action. hy ;(t) is the failure rate before the first
preventive maintenance. At the /-th preventive maintenance
cycle, the failure rate for the mode i is:

N?
h0,,<yij+1>ai v si 1<k
N (@) (19)

hi(t;+7) =
(f+) h0',<y,."7(t)+r>ai ,si 1>k

NZ NZ(t) .
where a.” and a,” " are adjustment factors represent-
ing the effect of mode 1. N_Z, is the number of failures by

mode 7 before t,. Nf/(t) is thlé number of failures by mode
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7 estimated at t. y is the effective age of the mode i right
after the /-th preventlve maintenance. y+(t) is the pre-
dicted effective age of the mode i right after the (I — k)
-th preventive maintenance at t. This approach is suitable
for repairable systems. As an application, Fan et al. [13]
develop a Cooperative Predictive Maintenance Model that
relies on minimal repairs and imperfect maintenance with
restricted resources. A subsequent cooperative mainte-
nance strategy for both modes is proposed and takes into
account the system’s effective age and the bidirectional
interactions.

2.1.4 General interactive failure models

All the above-mentioned models share some restrictive-
ness due to the numerous hypotheses formulated on the
structure of the system. They define a dominant compo-
nent or consider a specific architecture for the overall sys-
tem. Therefore, they cannot be generalized for all cases.

Sun et al. [54, 55] identify the interactions with an imme-
diate effect and the interactions with a gradual effect. They
assume the hypothesis of a gradual effect accurately rep-
resents physical systems. In a system with N components,
they distinguish an independent failure rate denoted by
h;(t) inherent to each componenti(i=1,2,...,N)and a
dependent or interactive failure rate denoted by h;(t). The
interactive failure rate of one component integrates the
influence of other components:

hi(t) = @, [h,,(t),ﬁ-i(t)B, t], i=1,2,...,N (20)

le_(t)B is the vector of failure rates before any interaction
influencing component i. Sun et al. [55] use the Taylor
expansion to establish a parametric expression of the
dependent failure rate of one component in function
of the independent failure rates of all components. The
obtained analytical expression provides this idea of an
update in a failure rate from independent to dependent
by a linear combination with coefficients denoted by 6;:

hi(t) = hy(t) + Z 05, (DR (O, 1=1,2,....N 21

Ji

The authors call the ¢; interactive coefficients since
they represent the welghted effect of a failure rate from
a component or a failure mode on another. §;; is a param-
eter comprised between 0 (no interaction) and 1 (perfect
interaction and immediate/simultaneous failure). A matrix
of the coefficients can consequently be built. Such an
approach characterizes the interactivity independently
from any assumption on the architecture of the system.
Yet, building the matrix is not straightforward and relies on
substantive experimentation and the opinions of experts.
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The estimation of the interactive coefficients requires a
partition of the failure times in order to fit independent
failure rates for each component or failure mode. This
requires abundant observational data for each scenario
of the N; possibilities of interaction. Zhao et al. [71] reprise
the model by Sun et al. [55]. They present an alternative
to the classical method of Failure Modes and Effects Anal-
ysis (FMEA) that would account for the interactivity in a
complex system. They apply their model to a gyroscope
and demonstrate that the concept of interactive failures
are indeed applicable and have a significant influence on
the overall reliability of a system subject to multiple fail-
ure modes. Wang and Li [59] reprise the analytic model of
Sun et al. [55] as well and propose an allocation method of
redundancies in the design of a system. They demonstrate
that the effect of interactive failures can be minimized if
they are properly modeled in the system design process.
The parameters pertaining to reliability indexes’ interac-
tion are summed up in Table 2.

2.2 State-based interaction

In the context of conditional maintenance, the interactivity
can be represented with a system’s state variables. With
sensors and captors, data on the system’s degradation
is collected and it helps to provide a physical interpreta-
tion of interactive failures. Keizer et al. [27] review diverse
condition-based maintenance policies for systems with
multiple dependent components. They consider struc-
tural, stochastic and resource dependences. Among mod-
els with stochastic dependences, they distinguish failure
interaction models as follows:

e Failure induced damage: the failure of one component
causes immediate damages to other components by
causing an immediate failure or increasing the dete-
rioration level;

e Load sharing: a component fails but the system keeps
operating as the other components need to work
harder;

e Common-mode deterioration: many components fail
simultaneously.

We consider a slightly different classification since some
of the reviewed models by Keizer et al. [27] are copula-based.
The following approaches are not. Chen et al. [9] distinguish
the natural failure of a system caused by its degradation pro-
cess from traumatic failures due to external shocks caused
by the environment. The degradation follows a stochastic
process D(t) and a failure threshold is fixed D;. The shocks
occur independently from the degradation process and fol-
low a Poisson process of intensity 4. The traumatic failures
are assumed to occur with a probability p that depends on
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the degradation level. The system is more prone to failure
modes if the degradation level increases significantly. This
is particularly true for mechanical systems subject to degra-
dation. The overall system becomes more vulnerable to its
environment as it ages (e.g. proneness to corrosion, vibra-
tion, physical shocks etc.). The internal components and their
mechanical links are in reverse subject to the propagation
of external shocks.

p(t) = exp [a(D(t) - Df)]| (22)
where a is a parameter of the dependence.

As a matter of fact, the traumatic failure rate h,(t) depends
on the probability p:

hy(t) = A.p(t) (23)

The moment of a natural failure is denoted by T, and
the moment of a traumatic failure by T,. The system’s failure
times are defined as T = min{T,, T, }. The authors consider
an example with linear degradation D(t) = Bt where Bis a
random variable so that B = g for traumatic failures. Thus,
the survival function of the system is:

Rr(t)=P(T>t)=P(Ty;>1t) -P(T,>t|T;> 1)

D D¢/t t
=Fg <Tf> -/ exp [— [ dexp |a(u — Df] du] fo(p)dp
(24)

The authors apply the renewal theory to the proposed
model and derive an inspection policy that minimizes the
long-term cost of maintenance. In this approach, the cumu-
lative effect of shocks and the variability of their amplitude
are not accounted for because shocks can cause traumatic
failure or have no effect.

Huynh et al. [20, 21] aim to combine the competitive
effects of degradation, internal and external shocks. They
reprise the concept of natural and traumatic failures and
define the degradation as a continuous stochastic process
X(t). A Gamma distribution is selected to model the degra-
dation since it characterizes in a satisfying manner diverse
phenomenon like erosion, corrosion, etc. The shocks follow
a non-homogeneous Poisson process. The system’s failure
rate depends on the degradation level. Above a fixed deg-
radation level threshold M, the system’s failure rate h(t) is
altered. It means that the system becomes more vulnerable
to internal and external shocks. It also suggests that there
is a specific moment when the interaction becomes more
significant. As an example, a component with a regulation
or protective function could fail in an electronic system, and
cause heating that would accelerate the system’s failure.

h(X() = hy(0).1xyem + D2 (O-dxe)sm (25)

where 1, is an indicator function; h;(t) and h,(t) are two
continuous and non-decreasing failure rates following the
relation h,(t) < h,(t),Vt > 0.The number of faures due to
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shocks N,(t) is a Cox process. The authors define the fol-
lowing variable: o, = inf {t > 0,N,(t) = 1}.The survival
function of the system is then:

Fi(t) = P(o, > t) = PX(t) < M).P(o, > tIX(t) < M)
+ P(o, > t,X(t) > M)

FUM(resp. faM) is the distributiorl function (resp. p.d.f.) of
the time when M is reached. F,(t) is the survival func-
tion associated to h,(t). Huynh et al. [20, 21] suggest that
the parameters of this model, like the threshold M, h,(t)
and h,(t), can be estimated by classical statistical meth-
ods. They apply the principle of minimal repairs and the
renewal theory as well and obtain an inspection and main-
tenance policy that minimizes the long-term cost in func-
tion of the age and the degradation level.

Do et al. [11] consider a system consisting of two
dependent components that are connected in series.
This means that the two components are critical to
the functioning of the system. Their dependence is
expressed by the relationship of their degradation pro-
cesses. The accumulation of wear is described by a sca-
lar random variable X{ and a component i is assumed
to have failed when a threshold L; is reached. The accu-
mulation of wear att + 1becomes:

Xi

t+1
()= (x)”

where AX' is the independent random increment of the
deterioration level, f(X{) represents the impact of a com-

=X +£(X)+ax, j#i

ponent jon i, and ¢/, j/ are positive parameters quantify-
ing the influence of a component j on i. The parameters
of the acceleration of the degradation processes ¢/, j¢
would have to be estimated through experimental meth-
ods or abundant condition-based maintenance historical
data. Assaf et al. [3, 4] present a model based on Do et al.
[11] involving similar issues for multicomponent systems
in the form of degradation rate-state interactions. The
interaction is defined as an acceleration of the wear indica-
tors caused to a component by neighbor components.
Song et al. [52, 53] work on multicomponent systems
with the hypothesis that each component has 2 failure
modes that are stochastically dependent. Each compo-
nent is subject to degradation and shocks. This approach
is motivated by the fact that a component’s degrada-
tion can often be evaluated experimentally easier than
the interactive effects of other components. It would
be for example hard to evaluate with precision how the
corrosion of a component could have caused the defor-
mation of another. Components are then assumed to
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cause random shocks on each other. A resistance limit
to shocks D; specific to the componenti(i = 1,2,...,n)is
fixed. A component degrades following a process X;(t)
with a failure threshold H,. Contrary to the two afore-
mentioned models, the cumulative effects of shocks are
calculated and this increases the degradation level. W,
Y, and S;(t) are respectively defined as the amplitude of
the j-th shock on component i, the proportion of the j
-th shock impact on component i and the cumulative of
shocks Y;. The survival function of the systems depends
on Fy, (w) and Fy (x;, t) that are respectively the cumula-
tive density functions of W;; and Xs (1) = Xi(t) + S;(t).The
reliability of a single component depends on the survival
probability in case of a single shock and the probability
that the failure threshold is not reached by the accumu-
lated shocks:

[c)

work results from some earlier collaborative research
on multiple competitive failure modes, failure limits
change and shock damage interaction: Feng and Coit
[15], Peng et al. [47], Jiang et al. [24], Arab et al. [2]. The
proposed approach considers two conditionally inde-
pendent events: NHF, meaning No Hard Failure occurs
by time t and NSF, meaning No Soft Failure occurs by
time t. Hard failures are due to random shocks exceed-
ing a threshold D,. These shocks occur following a Pois-
son process of intensity 4. The k-th random shock is
denoted by W, with a c.d.f F,(w) and the number of
shocks is denoted by N(t). Soft failures are caused by
the degradation. A threshold H is defined and can be
reached by the combined effect of random shocks and
natural degradation. The natural degradation is defined
as X(t) = @ + pt + €. where the initial degradation ¢ and

Fy (% t) = P(Xs () <x;) = D <Z Gi(x; — u, t)fﬁl_m>(u)du> P(N(t) = m) (28)

m=0

where G;(t) is the cumulative density function of X;(t) and
f\’(‘_(u) is the distribution function of the sum of the inde-

pendent and identically distributed k variables Y;. The sur-
vival function of the system is then determined for stand-
ard architectures (series, parallel, series—parallel). For
example, the reliability of a system with components in
series is:

=)

0 N(t)
R(t) = Z H lP(W,- < D,)mP<X,-(t) + Z Y <H]IN(@)=m
; j=1

m=0 i=1

the degradation rate f are random variables, and the
random error ¢ follows a normal distribution. The deg-
radation rate g can change from g, to f§, due to a trigger
J-th shock and become:

_J e+ BT, +5(t=T) +& JSN@)
AO= { @+ pit+e, J> N (30)
>] X P(N(t) = m) (29)

A maintenance strategy that minimizes the cost is
derived and an optimal inspection period is estimated. It
is important to note, however, that the proposed model
considers a number of shocks common to all components.
The failure threshold is fixed and has no variability. The
amplitude of shocks is not considered a random process
when in reality it could be.

One of the more elaborate approaches is in an arti-
cle by Rafiee et al. [48] that links the concept of inter-
active failures with a changing degradation rate. This

where T, is the transition time, the time when the rate
changes. Y, and 5(t) denote respectively the k-th shock’s
damage size and the total damage size due to all random
shocks. The overall degradatioNr(\)is represented by
t
Xs(t) = X(t) + S(t) where S(t)= Y. Y, if N(t)>0 and
k=1
S(t) = 0 otherwise. The survival function of a device sub-
ject to two dependent competing failure processes is
denoted by R(t). Equations (31) sum up the proposed
model:
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where f; (t;1j)is the p.d.f.of T,for J = .

This approach is of even more interest since it puts
into perspective 4 distinct models of shock interaction
and proposes an application on micro-electromechani-
cal systems (MEMS). This study also contains a sensitivity
analysis to provide a physical interpretation of the inter-
activity. The shock processes considered are:

e The generalized extreme shock model: a single shock
above a critical threshold value changes the degrada-
tion rate of a system.

e The generalized 6-shock model: the interval between
two sequential shocks above a critical threshold value
is inferior to a limit 6 so that the degradation rate
changes.

e The generalized m-shocks model: An accumulation of
m shocks above a critical threshold value changes the
degradation rate.

e The generalized consecutive shocks model: a suc-
cession of n shocks above a critical threshold value
changes the degradation rate.

Liu et al. [40] propose an extension to this mod by
including the damage due to self-regulation in self-healing
systems.

These diverse models of shock processes represent the
internal failure interactions as well as the external effects
of a system’s environment. Other models considering a
changing degradation rate are available in the literature
such as Bian and Gebraeel. [6], Rasmekomen and Parlikad
[49], Hao et al. [14, 18, 51]. Yet, for all of the models, the
idea that the amplitude of the shocks, internal and exter-
nal, can vary or be random, needs to be studied further. In
fact, the changing degradation rate is in most cases sub-
ject to a constant factor.

Liang et al. [36] build on the previous work of Liang and
Parlikad [37] and Rasmekomen and Parlikad [49] to deal
with the issue of fault propagation. They consider that
the phenomena of dependences, induced or inherent to
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a system, can interact and lead to a cooperative accelera-
tion of dependent failures and cause new dependences.
They model the deterioration of a multicomponent system
as a multi-layered vector-valued continuous-time Markov
chain. They distinguish non-critical component from criti-
cal components. For a system with v critical components,
the normal deterioration is {X(t)} = {X; o(t), ..., X, o(D)}.
They establish the inherent deterioration rate of a critical
component /:

wllo(t) = I‘,’O + Z

je{1,2...v}/1

g(on(t)) (32)

where r,, is the intrinsic deterioration rate and g(.) is the
affected deterioration rate, which is a linear function of
other critical components’ conditions X; (t). Non-critical
components also influence the deterioration of the critical
components by affecting their state. After the h th mal-
function of a non-critical component, the inherent dete-
rioration of a critical component | becomes:

o =rp+ Y g(Xu0) (33)

je{1,2...v}/1

The transition rate between those two states is:
v
A = z np+g3ilv=1) (34)
I=1

Liang et al. [36] remark that the current knowledge of
fault propagation relies heavily on the expert opinion. This
suggests a potential bias which remains to be addressed.

The parameters pertaining to state-based interaction
are summed up in Table 3.

2.3 Copula-based interaction model

Copula-based interaction models differ from the above
models in the sense that they rely on little to no assump-
tion on interaction mechanisms. They define the reliabil-
ity indexes and/or the state variables of components as
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random variables and model the dependence analyti-
cally. Copulas are used to built multivariate probability
distributions which, in most cases, consider that the mar-
ginal probability distribution of each variable is uniform.
A copula C can be defined as the joint distribution of p
random variables U;, U,, .., U, each of which is marginally
uniformly distributed, so that the joint cumulative distribu-
tion function of such a distribution is:

C(uy, Uy, ) = Pr(Uy <uy, Uy < uy, ..y U, < up). (35)

The copulas are parametric functions. Their parameters
govern the intensity of the dependence. There is a large
number of copulas. The most commonly used are Archi-
medean and Gaussian copulas. Archimedean copulas
have a closed form. A unique parameter represents the
intensity of the dependence. They have the advantage of
being applicable to cases of high dimensionality. Some
examples of widely known Archimedean copulas are Ali-
Mikhail-Hag, Clayton, Frank and Gumbel copulas. Gaussian
copulas are determined following the matrix of correlation
of the considered random variables. Kolev et al. [28] pro-
vide useful information regarding copulas in their review.

While it could be argued that some of the following
models have hybrid traits resembling reliability-index
and state-based interaction models, we classify them as
copula-based since the interactivity between components
and/or failure modes is modelled through candidate copu-
las which are the focus of these approaches.

Limbourg et al. [38] explore the influence of spatial
dependencies on a multi-component system’s reliability.
They study diverse architecture, especially voting systems.
Mostly, they bring emphasis on the fact that when com-
ponents are neighbor, they show dependent failures. A
Gaussian Copula C is used to model the dependent failures
probabilities among neighbor components. Given a state
variable x, the dependent failure probability F(x) of a sys-
tem with n components is:

F(X)ZC(F‘I(X)I---IFH(X)) (36)
where F;(x) (i = 1, ... n) is the failure probability of each
component.

A copula can directly link reliability indexes. For
example, Jiayin et al. [25] use a copula C to model the
dependence of ncomponents in a system. They propose
a characterization with a copula following the type of
architecture: series or parallel. The reliability of the sys-
tem is written:

e For asystem with n components in parallel:

Roaret(t) = 1= Co (1= Ry(t), ..., T — Ry(1)) (37a)
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e Foraseries system:

Rs(t) = Al_g 1)+ Al_g (0Cn(Un, s o Uy (37b)

1-R, (0"

where A2f(x) = f(x,) — f(x;)andu; = 1 — R;is the fail-
ure probability of a single component i. The authors
choose the Gumbel copula. The latter is Archimedean
and has a unique parameter 6 that represents the
degree of correlation of the random variables. This
parameter can be estimated by the maximum likeli-
hood method.

Similarly, Jia et al. [23] demonstrate how a copula can
be used to evaluate reliability indexes for multicompo-
nent systems with failure interactions among the com-
ponents. They provide an illustration through the Clay-
ton copula. They especially address the survival function,
the failure rate and the meantime to failure for series,
parallel, and k-out-of-n systems. Eryilmaz [12] studies
k-out-of-n systems as well considering n dependent
components with different weights and diverse failure
distributions. Examples with Clayton and Gumbel copu-
las are included in the paper. This shows the large appli-
cability of copula-based models. Yet, even though the
methods proposed could be applied; usability would be
another issue. The mathematical complexity suggests a
certain expertise or supporting algorithms. There is also
a certain limitation into the assumption that diverse
components would all interact between each other fol-
lowing the same mechanism and a single interaction
copula. In response to that matter, Navarro and Durante
[46] take a step further in the determination of a joint
reliability function of residual lifetimes for a multicompo-
nent system. Their study of coherent systems leads them
to define special cases of dependence mechanisms:

o All the components of the system are working;

e Some components have failed at given time

e Some components have failed at some unknown failure
times.

A distortion function allows the distinction of such
cases and is the copula linking the failure functions of all
the components. Yet, even though the parameters of the
chosen function are tailored to specific cases, it is sup-
posed that all the components involved follow the same
failure interaction mechanism.

Xu et al. [62] study a multistate manufacturing system
and bring an emphasis on the fact that in most cases not
all components in a system are stochastically dependent.
They define the failure interaction function as follows:
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Peo =[] G (xa) [P0 (38)
i1 =1

where C;(x) is the general failure rate based on a copula
of components with failure interaction, P.(x) is the failure
rate of a dependent component j, and ¢; is the interaction
coefficient of component i. For high accuracy and to deal
with problems of small data, Xu et al. [62] suggest that
the Grey system theory be used for the estimation of the
parameters rather than classical methods like the Moment
Estimation Method or Maximum Likelihood Estimation
Method. Yet, the issue of the mathematical complexity
of the overall model remains and is combined with the
empirical nature of the Grey system theory. It limits the
physical interpretation of the interaction mechanisms.

Copulas can also link degradation processes in diverse
ways. Guo et al. [17] intend to determine the joint reliabil-
ity R of two degradation processes that cause dependent
competitive risks. They propose a reliability model based
on a copula C. The latter models the interdependence of
the two phenomena and integrates the reliability associ-
ated to each degradation process R, and R,. The authors
suggest two distinct definitions of the copula.

R(t) = Ry(1) + Ry(t) = 1+ C(1 =R (), 1 = Ry(1),0)
or (39)
R(t) = C(Ry (1), Ry(1),0)

0 is a vector of the copula parameters. It governs the ampli-
tude of the dependence’s strength. Simulated data are
used in this study.  is estimated by the maximum likeli-
hood method. Gumbel, Clayton, t- and Gaussian copulas
are comparatively applied in the model. The goodness of
fit is evaluated by the following criteria: Log-likelihood
(LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC). Moreover, the models obtained are
compared among each other following the average rela-
tive error (ARE). Guo et al. [17] identify the Gaussian copula
as the best candidate function for both copula definitions
since it gives relatively more precise results.

Wang and Pham [60] study competitive dependent risks
related to degradation and random shocks. The survival
function R(t) of a system with ncomponents is determined
in function of the number of probable fatal shocks N(t)
through a copula C.

R(t) = C(Ry(t), ..., Ry(1)) - P(N(t) = 0) (40)

Constant copulas (Normal, Plackett, Gumbel, Clayton,
t-, Gaussian, etc.) and time-varying copulas (Normal,
Rotated-Gumbel, Symmetrized Joe-Clayton) are compar-
atively considered as candidates. The strength of the fit

is evaluated according to diverse criteria: Log-likelihood
(LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC). Wang and Pham [60] demonstrate that
time-varying copulas produce better results than constant
copulas because they better fit the simulated data. This
shows that there is a possible variability in the phenom-
enon of failure interaction. An and Sun [1] follow the same
train of thoughts as Wang and Pham [60] and develop a
similar model for dependent degradation processes and
shock loads above a certain level. This model is tested on
a MEMS application with diverse candidate copulas.

Xietal. [61] use a distinctive approach that accounts for
the interactivity within a complex system. They develop
a sampling method involving a copula in the context of
Residual-Useful-Life (RUL) prediction. Their method con-
sists of two steps: first, statistical learning of the historical
data and second real-time RUL prediction. A copula Cis
used to model the dependences between failure times T;
and degradation levels Ty, of the system considered:

C(uyuy) = C(F(T), Fu(Tw)),
where F is an N-dimensional distribution function with
marginal functions Fy, ..., Fy. The copula is selected fol-
lowing the Bayesian approach of Huard et al. [19]. While
this method does not explicitly model the dependency
between failure modes, it builds a relation between degra-
dation levels and any other type of failure. This represents
how the degradation of the system makes it more prone
to its diverse failure modes.

Mercier and Pham [42] take a different direction. They
consider a system with two units and model the failure
interaction by a deterioration process following a bivariate
non-decreasing Levy process:(X[ = <Xt(”,Xr(2)> >z>o' apro-

T, <Tyfori <N (41)

cess with range Ri starting from (0, 0). In Tankov [57], Peter
Tankov introduced Lévy copulas to model the dependen-
cies between components of a multidimensional spec-
trally positive Lévy process. The system is considered as
failed when it reaches a failure zone £ c R2. The failure
timeis:

o, =inf{t>0|X, € L} (42)

Considering L, > 0 and L, > 0 as the respective failure
thresholds of units 1 and 2, three situations are studied:

e Units setin series: £ = R2\ [0, L, [X[0, L, [;

e Units setin parallel: £ = [L;, co[X[L,, oo|;

e Both components of(Xt)DO, standing for different wear
indicators of a single system.

Since, the increments in a Levy Process are supposed
to be independent, there is no specific closed-form that
represents the interactivity. The wear indicators contribute
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collaboratively to the assessment of the system’s overall
degradation. The studied system is assumed to be con-
tinuously monitored so that, upon failure, a signal is sent
to trigger an instantaneous perfect repair. Based on this
model, the authors propose a preventive maintenance
policy assessed through a cost function on an infinite hori-
zon time. The determined policy performs better than a
simple periodic replacement policy. Likewise, Li et al. [34]
model the stochastic dependence between the degrada-
tion of two components due to common environment
with the Clayton-Lévy copula. Yet, the lack of traceability
and complexity in the Levy process is a limitation in terms

Table 4 Parameters of copula-based interaction models

of comprehending failure mechanisms and propose prag-
matic maintenance actions.

Furthermore, determining the relationship between
maintenance and failure interaction is a work in progress.
Yang et al. [64] establish a joint survival function for a
repairable multicomponent system. The system is sub-
ject to partially perfect repair. It means that since only
one component at a time fails and causes the system to
fail, only the failed component is fully repaired, The latent
age to failure of each component i denoted by d; is then
critical in the calculation of the system’s survival function.
The latter is defined as a multivariate Weibull distribution

Model

Assumptions

Crucial parameters

Output

Illustrative examples

Limbourg et al. [38]

Jiayin et al. [25]

Jia et al. [23], Eryilmaz [12]

Xu et al. [62]

Guo etal.[17]

Wang and Pham [60]

Xietal.[61]

Mercier and Pham [42], Li
etal. [34]

Yang et al. [64], Zhang
and Yang [67], Yang
etal. [63]

Zhang et al. [68]

Multi-component
Gaussian copula
Voting system

Multi-component

Gumbel copula

Series or parallel archi-
tecture

Multi-component

Gumbel-Hougaard, Clay-
ton copulas

k-out-of-n systems

Multi-component
Grey system theory
Coherent systems

Multi-component

2 degradation processes

Gaussian copulas

Series or parallel archi-
tecture

Multi-component

degradation and random
shocks

time-varying copulas

Series or parallel archi-
tecture

Multi-component
Bayesian approach

2 components

Deterioration following a
Levy process

Components in series or
in parallel, with different
wear indicators collabo-
ratively accelerating the
failure times

Multi-component

Gumbel-Hougaard,
Clayton and Gaussian
copulas

Any architecture
Gumbel-Hougaard copula
Accelerated life tests

F;(x) :the failure probabil-
ity of each component i

R;(t) :the survival func-
tion of each component
i

R;(t): the survival function
of each component |

P;(x): the failure rate of
each dependent com-
ponent j

R;(t) :the survival func-
tion of each component
i

R;(t) :the survival func-
tion of each component
i

N(t): the number of prob-
able fatal shocks

T;: the failure times
Ty: the degradation levels

— M y@
<Xr - <X’ X >>r>o:

degradation of the sys-

tem with component 1

and 2 as a Levy process
£ c R2:Failure zone

d;: the latent age to failure
of each component i

R;;(t): the reliability con-
sidering failure mode j
under S;

F(x) :the failure probabil-
ity of the system

R(t): the survival function
of the system

R(t): the survival function
of the system

P(x): the failure rate of the
system

R(t): the survival function
of the system

R(t): the survival function
of the system

RUL: the remaining-use-
ful-life of the system

o,: the failure time of the
system

R(t): the survival function
of the system

R(t): the survival function
of the system

Numerical examples

Case study

Drive shaft of a machine
only subject to bending
moment

Numerical examples

Numerical examples
Cylinder engine manufac-
turing system

Numerical examples

Numerical examples

Case study
Electric cooling fan

Numerical examples

Case studies

Cylinder head production
system

Car body assembly process

Forklift vehicle system

Case study
Rolling ball bearings
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constructed via Archimedean (Gumbel-Hougaard copula)
or Gaussian copulas. For a system with K components, this
joint distribution is denoted by S(d, ..., dy, ) where @ is
the vector of parameters of the model estimated by Maxi-
mum Likelihood. Furthermore, the authors use hypothesis
testing to test the statistical dependency of component
failures. Yet, even though this paper offers some insight
into a relationship between maintenance actions (partially
perfect repair) and failure dependencies, it remains limited
since maintenance operations can be quite diverse (mini-
mal repair, perfect repair, etc.). Zhang and Yang [67] and
Yang et al. [63] rely on this previously proposed model to
develop a maintenance approach that involves renewal
theory. They specifically use Clayton and Gaussian copu-
las. But, the complexity of the obtained model requires
the use of a simulation based optimization approach with
stochastic approximation.

Zhang et al. [68] focus their interest on Acceler-
ated Life Tests. Considering k different stress levels S;
(i=1,...,k), they aim to define a joint survival function
for a system with p failure modes by using a copula Cp.
They do so by making the assumptions that the distribu-
tion families, the mechanism of each competing failure
mode and the copula used to construct the joint survival
function will not change under different stress levels. In
reality, the interaction mechanisms might be affected
by the difference of stress levels. The survival copula
Ep(R,1 (t), ..., Rp(D]6c ), where Ry(t) is the reliability con-
sidering failure mode j under S; and 6. is the parameter
vector, can be Archimedean as suggested by the authors.
In fact, they use the Gumbel-Hougaard copula due to its
relative simplicity.

The parameters pertaining to copula-based interac-
tion are summed up in Table 4.

3 Comparative study of failure interaction
models

The above-mentioned approaches have the general
advantage of presenting models that account for the
phenomenon of failure interaction. Thus, they are more
realistic than all classical techniques that consider failures
as independent. There are other advantages and also limi-
tations. They are divided into three different aspects: con-
cepts, methods and applications.

3.1 Concepts

The conceptual differences between the models relate
to the starting assumptions and the concept’s meaning

established to validate the dependence failure hypothesis.
These aspects are summed up in Table 5.

One can notice that reliability indexes’ interaction
models rely on elaborate assumptions about the system'’s
structure. The dependence is one-sided and some entities
are assumed to be dominant beforehand in most cases.
Moreover, they are only applied to simple architectures
(series, parallel, etc.). The main issue with state-based
interaction models is that the interactivity within complex
systems is rarely measureable by a finite set of state vari-
ables. The interactivity itself is rarely observable since only
components critical to the system’s primary function will
be monitored. In fact, the interactions could affect more
than just the components with sensors or captors. Then,
there is a risk of significant bias in the results interpreta-
tion. Copula-based interaction models are quite useful
in cases when there is little prior information about the
system. But, they rely on rigid and complex analytical
functions selected from a finite set. The failure interaction
might not respect the form of the preselected functions.
Moreover, some specificities in the architecture can be dis-
tinguished through qualitative and experimental informa-
tion. This information would be left out if an approach that
is solely analytical is used.

3.2 Methods

The differences in terms of methodology are related to
the diverse techniques and the selected study process
to develop the starting hypotheses. Table 6 sums up the
issues related to methodology.

The methods used for copula-based interaction models
have significant mathematical complexity in comparison
to other methods. It is also difficult to associate a physi-
cal explanation to the parameters even though they use a
large array of well-known statistical learning methods and
tests. Reliability indexes’interaction models are applicable
to diverse preventive maintenance policies. State-based
interaction models are limited to the domain of condi-
tional maintenance but have the best interpretability.
Most models in the literature rely on experimental designs
and simulated data when it is known that there could be
higher variability in reality.

3.3 Applications

The applications are numerous when it comes to interac-
tive failures. But how efficient are they? The criteria to con-
sider include the performance of the methods employed
in terms of financial savings or availability improvement,
and the level of expertise and complexity required for
the application. Research is often subject to less practical
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constraints than in the field of application. Usually, indus-
trial companies are limited in terms of their capabilities
for experimentation, expertise levels, and time constraints.
It is therefore important to see which approaches can be
applied in a general set with basic or generic tools. Table 7
emphasizes the issue of applicability.

Copula-based interaction models are the least practical
as standalone applications due to their analytical complex-
ity. Reliability indexes’interaction models are less complex
but still difficult to apply due to high computational com-
plexity. This issue is amplified by the lack of dedicated
software for reliability models integrating the interactiv-
ity. State-based interaction models would provide the
best results in the industry. Yet, they require the highest
economic investment in order to be applied.

4 Conclusion

The interactivity of failure modes is a concept presented
by the literature in the context of stochastic dependence.
This failure interaction can be defined as a gradual, imme-
diate, unidirectional or bidirectional phenomenon. Diverse
models are reviewed and classified into three distinctive
categories: Reliability indexes’ interaction, state-based
interaction, and copula-based interaction.

All of the models presented are more realistic than
classical methods that overlook the interactivity or
assume it to be negligible. Yet, they have a few limita-
tions. Copula-based interaction models are data-driven
and based on a limited set of analytical functions. Their
complexity makes them impractical for the industry,
especially since interpretation of these models can be
ambiguous. Reliability indexes’ interaction models can
be paired with numerous classical statistical learning
and preventive maintenance methods. But, they rely on
restrictive hypotheses about a system’s structure. State-
based interaction models have the best interpretability.
But, conditional maintenance can be costly and the state
variables might capture only partial aspects of the phe-
nomenon studied.

Another general observation about all models is how
they lack representation of the variability in the interactiv-
ity phenomenon. In most cases, the parameters, factors
or coefficients used to account for the interactivity are
defined as constant numbers or effects rather than ran-
dom variables. In future work, it would be useful to put
forth an interaction model that could integrate this vari-
ability more comprehensively to the chosen coefficients
or parameters of interaction.
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