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Abstract
Classical reliability models consider the failure modes of a multicomponent system as independent phenomena, even if 
these modes concern only one component or neighbouring components. In fact, when a failure mode occurs on a given 
system, causes may be related to external events or to the physical degradation of any component in the system. In both 
cases, failure modes can partially or totally share some root causes, which may compromise the principle of independence 
of failure modes. This paper reviews the failure interaction models that characterise the effect of any failure mode of a 
component on the failure modes of its neighbors and on the entire system. Three relevant groups of interaction models 
are reviewed: reliability indexes’ interaction, state-based interaction and copula-based interaction. All these models 
share the hypothesis of stochastic dependence between failure modes, also referred to as failure interaction. They differ 
in their fundamental modeling concepts. Advantages and limits of each of them are emphasized in a comparative study 
dealing with dependency concepts, modeling methods and application domains.

Keywords Failure interaction · Stochastic dependence · Reliability analysis · Multicomponent system

1 Introduction

Risk management of industrial systems involves both an 
intelligent optimization of maintenance resources and 
an ability to anticipate the potential failures of its com-
ponents [5]. Failure analysis based on reliability engineer-
ing methods is the core of this particular subject matter. 
Common methods used in this area, such as Failure Mode 
and Effects Analysis (FMEA), reliability block diagrams 
and Stress-Strength analysis, assume that the failure 
modes occur independently even if they concern only one 
component or neighbour components [26, 8, 41]. When 
multiple failure modes may be observed on a given sys-
tem within a relative short operation time, they remain 
stochastically independent. Although this fundamental 
assumption allows some level of simplicity when address-
ing the failure analysis and risk assessment, it may be quite 
restrictive and irrelevant due to the mutual influence or 

interaction of multiple failure modes within the system. 
This is especially true considering that diverse nowadays 
systems (Reverse osmosis membranes, semi-conductors, 
etc.) have become more and more complex. Their func-
tional decomposition show multiple components that 
interact. Understanding the interactivity of failures within 
a multicomponent system has become a critical and com-
plex challenge for reliability analysis.

This paper reviews failure interaction modeling in the 
context of multiple failure modes and provides a frame-
work allowing to identify and select the proper models 
pertaining to relevant technical matters and applications. 
The reviewed models share the principle of stochastic 
dependence between failure modes also called failure 
interaction. While stochastic models are diverse and 
numerous, we chose to limit our review to failure inter-
action models. They seek to characterise the effect of 
any failure mode of a component on the failure modes 
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of its neighbors and the entire system. This is critical in 
the understanding and prediction of how and why a 
system fails. Practical implications like maintenance 
methods and strategies can then be addressed through 
these models. They are classified into three approaches: 
reliability indexes’ interaction, state-based interaction 
and copula-based interaction. Based on their fundamen-
tal modeling hypothesis, advantages and limits of each 
approach are emphasized in a comparative study dealing 
with dependency concepts, modeling methods and appli-
cation domains.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the concepts of failure interaction as appre-
hended in the literature on failure analysis. Interactive 
failure models are discussed according to each proposed 
approach. Modeling equations are described in detail to 
show the main differences between the models reviewed. 
Section 3 presents a comparative study of the reviewed 
interactive failure models based on their concepts, meth-
ods and applications related to the subject matter. Sec-
tion 4 contains some concluding remarks.

2  Concepts of interactive failures

Cho and Parlar [10] present the interdependences of 
a system’s components in three categories: economic, 
structural- and stochastic. Economic dependence exists 
whenever the combination of diverse maintenance 
actions, if performed simultaneously, can have a signifi-
cant impact on the overall cost of the system’s mainte-
nance. Structural dependence relates to the architecture 
of the system. Some components may indissociably 
share a specific function. In this case, the maintenance 
of a component requires that the other components be 
stopped or dismounted. For example, the principle of 
cascading failures considers a system within which com-
ponents fail successively in a specific pattern, subject to 
the architecture. Concepts of interactive failures or fail-
ure interaction presented in this review are beyond eco-
nomic and structural considerations. They are defined 
as stochastic dependences. Stochastic dependence 
appears when the failure or the degradation of a com-
ponent influences the state of another component. This 
category of failure dependence establishes a relation 
between the states of a system’s components, regard-
less of its architecture. The inherent principle suggests 
that the propagation of a component’s failure alters the 
reliability of other components, and consequently, of the 
overall system. In this case, relationships are determined 
between the components’ ages, failure rates and failure 
times. This stochastic dependence implies that the states 

of components interact, in which case, the terms inter-
active failures and failure interaction become relevant.

Murthy and Nguyen [43, 44] present two types of fail-
ure interaction:

• Type I, induced failures: a component causes the 
instantaneous failure of another component with a 
probability p or has no effect with a probability 1 − p;

• Type II, failure rate or shock damage interaction: 
a component’s failure changes the failure rate of 
another component; in other words, a component’s 
failure acts as a shock on another component and the 
accumulation of shocks accelerates the failure rate.

The aforementioned types of failure interactions are 
largely reused, updated and extended in most models 
presented by this review. For example, Nakagawa and 
Murthy [45] consider shock damage interactions to 
find the optimal replacement number to minimize the 
expected cost of maintenance. Failure interaction can 
be defined as a gradual, immediate, unidirectional or 
bidirectional phenomenon. The most relevant works 
pertaining to the subject of interactive failures or fail-
ure interaction can be classified into 3 groups of models:

• Reliability indexes’ interaction: Failure rates of diverse 
components and/or failure modes are linked by an 
analytical function, which in general has an incre-
mental effect on the system’s overall failure rate. 
Structural and economic dependencies within the 
system influence greatly the choice of the function. 
As a consequence, these models address in general 
simple architectures (series, parallel, etc.). Such mod-
els are built from failure times in maintenance logs 
and don’t explicit physical degradation processes;

• State-based interaction: A relationship is established 
between the diverse degradation processes within 
the system. The monitoring process of state variables 
(Temperatures, wear, etc.) is rather important in this 
case since the interaction will be defined considering 
the variations in the degradation rates of a system’s 
components;

• Copula-based interaction: These models are created 
regardless of any assumptions one might have on 
the evolution of the degradation processes and/or 
the failure times. A function (copula) that links com-
ponents’ reliabilities is selected based solely on the 
likelihood of the data.

Table 1 summarizes the general criteria that led to the 
classification of the failure interaction models.
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2.1  Reliability indexes’ interaction

Reliability indexes’ interaction models are the most com-
mon in the literature. They establish an analytical rela-
tionship of dependence between the reliability indexes 
or parameters of a system’s components. Practically, they 
establish a mathematical dependence between failure 
rates or failure times regardless of any physical degrada-
tion parameter. They rely solely on the accuracy of the 
maintenance logs. They combine the concepts proposed 
by Murthy and Nguyen [43, 44] for systems with two com-
ponents or more.

2.1.1  Failure interaction of two components

Satow and Osaki [50] base their study on the hypothesis 
defined by Murthy and Nguyen [43, 44]. In their works, 
component 1 causes the instant failure of component 2 
(type I interaction) or causes the failure of component 2 
due to the accumulation of multiple shocks (type II interac-
tion). The idea is that within physical systems components’ 
failures can be precipitated by the failure of neighbour 
components through random phenomena like vibrations, 
frictions, etc. The failures of component 1 are assumed to 
follow a non-homogeneous Poisson process of intensity 
h(t) . The system has to be replaced at the N-th failure of 
component 1 and whenever component 2 fails. In the case 
of induced failures (type I interaction), pj denotes the prob-
ability that component 2 fails instantaneously at the j-th 
failure of component 1. The mean time to replacement is:

where H(t) =
t

∫
0

h(u)du . In the case of shock damage inter-

action (type II interaction), component 1 causes damage 
with a distribution G(x) to component 2 that fails when the 
total damages reach a threshold level Z.

(1)MTTR =

N−1∑
j=0

(
1 − p1

)
…

(
1 − pj

) ∞

∫
0

[H(t)]j

j!
e−H(t)dt

where G(k)(x) is the k-fold convolution function of H(t) with 
itself, G(0)(x) = 0 and k = 1, 2,… These models are used to 
determine a replacement policy that minimizes the cost in 
regard to the system age (t) and a threshold (Z) of shocks 
accumulated by component 2. The main difficulty of that 
method is the definition of the threshold and the damage 
distribution. Since the primarily available data are failure 
times from maintenance logs, one might need to rely on 
experimental data or a physical model in addition.

Wang and Zhang [58] associate a maintenance tech-
nician to a system with 2 dissimilar components. Con-
sidering the case of a type II interaction, a component 1 
causes random shocks on a component 2. These internal 
shocks are accumulated until the system fails. The failure 
of component 2 causes the instant failure of component 
1. Component 1 is replaced upon failure and component 
2 can be repaired. Like the previous model, a component 
is assumed to be critical to the system’s primary function. 
Moreover, it requires extensive repairs upon its failure 
while some other part can be easily replaced but, still, can 
unbalance the stability of the system as a whole through 
chain reactions or random phenomenon in the shared 
environment. Diverse quantities are then studied for a 
renewal process: Xi the time between failures of the i-th 
component 1, Yi the damage caused to component 2 by 
shocks due to the failure of the i-th component 1, Zn the 
repair time of component 2 in the n-th cycle of a replace-
ment policy. A geometric model is chosen to characterize 
the threshold of shocks accumulated by component 2. 
Another geometric model represents the evolution of the 
repair time Δn in the n-th cycle of a replacement policy. The 
distribution functions of Xi , Yi and Zn are denoted respec-
tively by F(t) , H(t) et Gn(t) so that:

(2)MTTR =

N−1∑
j=1

Gj(Z)
∞

∫
0

[
h(t)

]j
j!

e−h(t)dt

(3)
Gn(t) = G

(
bn−1t

)
Δn = aΔn−1 = an−1Δ

Table 1  Classification criteria of the failure interaction models

Models Reliability indexes’ interaction State-based interaction Copula-based interaction

Input data Failure times Failure times and state variables Failure times and state variables
Starting hypothesis 

of interaction
Incidental variations in the probability 

of failure
Incidental variations in the degrada-

tion process
None

Application field Scheduled Maintenance Conditional Maintenance Scheduled and Conditional Mainte-
nance

Focus of the models Indexes such as survival probability, 
failure rate or distribution param-
eters

Modeling of degradation processes Application of mathematical functions
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where a and b (0 < b ≤ 1, 0 < a ≤ 1) . are the geometric 
ratios. Wang and Zhang [58] define Ti and vi as respectively 
the time between failures and the number of component 
1 failures in the i-th operation cycle. Z(i) denotes the total 
amplitude of accumulated shocks due to component 2 
failures. Equation (4) illustrates the model.

where H(k)(Δ) is the k-fold convolution function of H(t) and 
k = 1, 2,… In reality, the length of repair time cannot be 
described as strictly geometric. There is in fact high ran-
domness due to the human factor in the repair process. 
But, the model (4) succeeds in determining a relation 
between the age of a system and the repair time while 
including shock damage interaction.

Lai and Yan [33] base their work on type II interactions 
that are also extensively studied in related early articles by 
Lai and Chen [31, 32] and Lai [30]. The model (5) consid-
ers a repairable component 2 and a non-repairable com-
ponent 1. The main point of this model is to introduce a 
certain proportionality in failure rate interaction that is 
intuitively assumed. The potential for chain reactions and 
the shared environment contribute to an acceleration of 
the failure rate. The failure rate of component 2 follows 
a non-homogeneous Poisson process of intensity h2(t) . 
Every failure of component 2 increases the failure rate of 
component 1. Inversely, if component 1 fails, component 
2 instantly fails. This hypothesis can be restrictive since 
no retroactive effect is accounted for. The failure rate of 
component 1 is:

where N2(t) is the number of failures of component 2. Lai 
and Yan [33] apply the concept of minimal repairs to com-
ponent 2. They take into account the economic depend-
ences within a system and determine a replacement policy 
with an optimal number of minimal repairs for a mainte-
nance cycle of optimal duration T .

Golmakani and Moakedi [16] use the same model (5) 
but consider 2 types of failures. A component 1 is subject 
to soft failures following a non-homogeneous Poisson pro-
cess. A component 2 is subject to hard failures following a 
homogeneous Poisson process. Hard failures have an instant 
detectable effect and require immediate intervention when 
they occur. Soft failures can only be detected by a scheduled 
inspection because they don’t stop the system but decrease 
its performance. Generally, hard failures pertain to the ina-
bility to perform a primary function while soft failures are 

(4)
P
(
vi = k

)
= P

(
Z1 + Z2 +⋯ + Zk−1 < ai−1Δ < Z1 + Z2 +⋯ + Zk−1 + Zk

)
,

P
(
vi = k

)
= H(k−1)

(
ai−1Δ

)
− H(k)

(
ai−1Δ

)

(5)h1(t) =

∞∑
j=0

h1
(
t|N2(t) = j

)
× P

(
N2(t) = j

)

related to secondary functions. A component’s hard failure 
can be the root cause of another component’s soft failure 
if this component serves a secondary function (e.g. protec-
tive apparel) for a more critical component. The model (6) is 
based on the assumption that a hard failure by component 
2 increases the failure rate of component 1. The latter has 

inversely no effect on component 2 if it stops working. A 
coefficient p represents the percentage of increase of the 
failure rate of component 1 due to hard failures.

where h0
1
(t) is the initial failure rate of component 1. The 

estimation of the coefficient p would rely on experimental 
data or the availability of a physical model. Yet, consider-
ing a constant incremental effect ( p ), suggests that the 
interaction have little to no variability. Though, defining 
the failures in consideration of the time of detection and 
inspection allows the authors to characterize the effects of 
interaction in a maintenance strategy based on the opti-
mal number of inspections in a cycle.

Sung et al. [56] combine the concepts of failure rate inter-
action (type II) and external shocks. The effect of external 
shocks is particularly important for mechanical systems 
that often have a protective external component subject 
to the state of the surrounding environment. Whether a 
system is well-designed or not, it is merely impossible to 
perfectly prevent an interaction with external factors. This 
interaction has an internal consequence as well. The exter-
nal shocks occur following a non-homogeneous Poisson 
process of intensity r(t) which suggests randomness. They 
cause minor failures with a probability p and catastrophic 
with a probability 1 − p , exclusively to a component 2. The 
failures of component 2 act as internal shocks as well and 
increase the failure rate of component 1. The entire system 
fails if component 1 fails. The number of component 2 fail-
ures N2(t) follows a non-homogeneous Poisson process of 
intensity �(t) = h2(t) + p.r(t) where h2(t) is the failure rate 
independently of the external shocks. Thus the failure rate 
of the system depends on the failure rate of the dominant 
component 1 and the number of external shocks endured 
by the other component. Equation (7) gives the failure rate 
of the dominant component:

(6)h1(t) =

∞∑
j=0

(
1 +

p

100

)j

h0
1
(t) × P

(
N2(t) = j

)

(7)h1(t) =

∞∑
j=0

h1
(
t|N2(t) = j

)
× P

(
N2(t) = j

)
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The survival function of the system is given by:

This method allows the inclusion in an analytical model 
of the effect of the environment on the system but the 
starting hypothesis remains restrictive since only systems 
with a single dominant component are addressed by this 
model. A long-term replacement policy is derived by the 
authors in function of an optimal number of minimal 
repairs, which minimizes the overall cost of maintenance.

2.1.2  Failure interaction in a multicomponent system

The models are relatively abundant in the case of systems 
with two components. They become less representative 
for multicomponent systems. In fact, models for multi-
component systems are less abundant in the literature 
since the understanding of the interaction becomes 
more difficult when the studied system is more complex. 
Jhang and Sheu [22] compare maintenance strategies 
for a system with N components. Each component i  can 
be subject to a minor failure with a probability 1 − pi or 
cause a major failure to all other components stopping 
the system with a probability pi (type I interaction). This 
is similar to the reasoning behind hard/soft failures but, 
here, a retroactive effect considering the set of compo-
nents affected is accounted for. Minimal repairs are used 
in the case of minor failures. All failures are assumed to 
follow a non-homogeneous process of intensity hi(t) . 
The failure times are simulated by random draws by the 
authors. Y = min

{
Y1,i , 1 ≤ i ≤ N

}
 is defined as the time 

until the first system replacement; where Y1,i is the time 
until a failure from component i stops the system. The reli-
ability function of Y1,i is:

The survival function of Y  is:

The interactive model (10) is considered with both—but 
separately—age and block replacement policies that are 
common maintenance strategies. This shows the flexibility 
of the approach. Yet, building this model from failure times 
in maintenance logs would require substantive data on all 
components; while in reality, only critical components are 
properly observed for a limited period. The main results 
show that accounting for the interactivity of failures in the 

(8)F̄(t) = exp

{
−

t

∫
0

[
h1(x) + (1 − p)r(x)

]
dx

}

(9)F̄pi ,i(t) = exp

{
−

t

∫
0

[
pi(x)hi(x)

]
dx

}

(10)F̄(t) = exp

{
−

N∑
i=1

t

∫
0

[
pi(x)hi(x)

]
dx

}

developed models helps to better anticipate the mainte-
nance costs.

Lai [29] broadens the scope of earlier work on type II 
interactions in systems with two components and stud-
ies type II interactions for multicomponent systems. He 
considers a system consisting of N components. One of 
them is assumed to be dominant and non-repairable, 
while the others are secondary components and can 
be repaired. They are mutually independent and follow 
non-homogeneous Poisson processes. The hypothesis 
of dominance is plausible if the primary function in a 
system is guaranteed by a single component. Though, 
as aforementioned, industrial systems tend to be more 
and more complex and multiple components can share 
a critical function or have more than one critical func-
tions. The failure of a secondary component increases 
the failure rate of the primary component. Lai [29] pro-
poses a replacement policy following the system’s age, 
considering that secondary failures are corrected by 
minimal repairs. Li et al. [35] use the same model with 
n + 1 components. One of them is dominant and non-
repairable and the others are secondary and repair-
able. The secondary components are mutually inde-
pendent and follow exponential laws of parameters 
hn(t) < hn−1(t) < ⋯ < h2(t) < h1(t) . A voting system of 
m components out of the secondary n causes the failure 
of the system. Such an approach adds more randomness 
to the model since unlike the model of Lai [29] the set of 
components interacting and failing can vary. The failures 
of secondary components increase the failure rate of the 
primary component denoted by hN(t):

where ki is the number of failures Ni(t) of component i  . 
Sik(k = 0, 1, 2,…) is defined as the random failure time of 
component i  . The probability that k or more secondary 
components fail is:

where Ri(t) = ∫ t

0
hi(x)dx is the survival function of a single 

component. hN(t) depends on the conditional probability 
hNki (t) = P

(
t|N1(t) = k1,… ,Nn(t) = kn

)
 and:

Estimating the probability of failure of the dominant 
component is complex and the authors propose the use 
of Markov processes. A transition matrix helps to deter-
mine the performance and reliability parameters of the 
system. However, the use of Markov processes adds a 

(11)hN(t) = h
(
t; k1, k2,… , ki ,… , kn

)

(12)P
(
Sik ≤ t

)
=

∞∑
j=k

[
Ri(t)

]j
e−Ri (t)

j!
=

∞∑
j=k

Pij(t)

(13)hN(t) =
∑
k1

∑
k2

…
∑
kn

hNki (t)Pnkn (t)… P1k1 (t)
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certain complexity to the model because the number of 
states of the dominant component will be directly cor-
related to the number of secondary components.

As above-mentioned, there are cases that respect the 
ideas of the dominance of a single component and the 
unilaterality of interactions. Yet, these hypotheses are 
restrictive for systems with a more complex structure.

Zhang et al. [69, 70] also use Markov processes to character-
ize the states of a system with n components. They integrate 
the concept of interactivity in a more general manner. There 
is no predetermined dominant component since in most 
systems the primary function is performed by a set of com-
ponents with the same level of criticality. This shared level of 
criticality influences the maintenance actions. This is why the 
authors include opportunistic maintenance concepts to their 
study. This adds to the model dynamics between failure effects 
and maintenance actions. A component is assumed to have a 
finite set of states: � = {0,… ,m} where state 0 is the initial 
state, and states 1,… ,m − 1 reflect the deteriorating condi-
tions. The component is subject to corrective maintenance 
when it reaches m . Markov chains are used to model the state 
transition of a component with a transition rate h . The deterio-
ration process of a component speeds up when other compo-
nents fail. Maintenance opportunity from other components is 
assumed to follow a Poisson process of intensity � = hf + �p 
where hf is the failure rate of other components and �p is the 
rate of preventive maintenance on other components. A vari-
able a identifies the maintenance actions by:

• a = 0 : no maintenance
• a = 1 : conducting maintenance.
• S = {(i,�)|0 ≤ i ≤ m;0 ≤ � ≤ 2} . is defined as a space 

where i is the state of a component and � is the occur-
rence of maintenance opportunity given by:

• � = 0 : no maintenance opportunity;
• � = 1 : maintenance opportunity due to failures of other 

components;
• � = 2 : maintenance opportunity due to other compo-

nents’ preventive maintenance.

The transition probability from state s ∈ S to another 
s� ∈ S is defined by Pss� (a) in the following manner:

(14)

P(i,�)(j,0)(a) =

�
h(� + h)−1pij if a = 0

h(� + h)−1p0j if a = 1
, 0 ≤ i, j ≤ m

P(i,�)(j,1)(a) =

�
hf (� + h)−1qij if a = 0

hf (� + h)−1q0j if a = 1
, 0 ≤ i, j ≤ m

P(i,�)(j,2)(a) =

⎧
⎪⎨⎪⎩

�p(� + h)−1 if a = 0, 0 ≤ i = j ≤ m

�p(� + h)−1 if a = 1, 0 ≤ i ≤ m, j = 0

0 else

where pij is a transition probability that a component dete-
riorates from state i  to state j and qij is defined as another 
transition probability induced by other components’ fail-
ures. The authors propose the method of Hidden Markov 
Chains to determine the transition matrix according to 
observed data. This suggests a certain abundance of reli-
able observational data on each component’s failure. 
By applying the concept of opportunistic maintenance 
to their model, they take into account the economic 
dependences.

Liu et al. [39] represent the interactivity by a probability 
matrix P =

(
pij
)
 considering type I interactions as defined 

by Murthy and Nguyen [43]. Thus, a component i causes 
an instant failure to a component j with a probability pij 
and has no effect with a probability 1 − pij . Failure interac-
tion undoubtedly decreases the reliability of a system. By 
accounting for the interactivity, Liu et al. [39] identify some 
issues in the early stages of a system’s design that could 
affect the constructor’s warranty. This shows that the con-
cept of failure interaction has on the long run, in addition to 
the physical implications of a failure, an extensive and accel-
erating effect on the decrease of a system’s economic value. 
They define w as a system’s period of warranty, pi(w) the 
probability of failure for a component i during w , �i(w) the 
probability that a component i failure will cause the system 
failure, and FS(w) the distribution function of the system:

where Yi = min
(
Tj ,∀j ∈ �, j ≠ i

)
,� = {1, 2,… , n} . The 

number of failures Nij of a component j caused by a com-
ponent i :

The authors apply their model to series and parallel archi-
tectures to adjust the warranty cost considering the number 
of failures due to type I interactions. This approach could be 
improved by including type II interactions. Zhang et al. [66] 
tackle the issue of product warranty as well by considering 
type III interactions that we classified in this paper as type 
II interactions. They base their model on Satow and Osaki 
[50] with two components in series. Moreover, the methods 
aforementioned, perform limitedly when it comes to com-
plex architectures. Their core concepts revolve around key 
assumptions on some dependencies.

(15)

FS(w) = 1 − RS(w)

�i(w) = pi(w)∕FS(w)

pi(w) = Pr
[
Ti ≤ Yi , Ti ≤ w

]

(16)E[Nij] =
pij ⋅ pi(w)

RS(w)
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2.1.3  Interaction of failure modes from a system 
point‑of‑view

A system can be subject to diverse failure modes. These 
modes can influence each other, mutually or not. The 
models considered thus far are based on assumptions of 
failure interaction between the components of a system. 
They do not explicitly identify the dependences between 
diverse failure modes of the system as a whole. They could 
be applied in such cases by considering the modes as com-
ponents in series, but the interactivity of failure modes can 
have a more complex form. Some recent papers intend to 
model this dependence.

Zequeira and Bérenguer [65] distinguish two types of 
failure modes: maintainable and non-maintainable. The 
modes are distinguished considering the reparability in 
the occurrence of a failure. Preventive maintenance cor-
rects the deterioration due to maintainable modes. Non-
maintainable modes can only be corrected by a complete 
overhaul of the system. Moreover, minimal repairs are con-
sidered in the case of failures. The model is applied to com-
ponents in series. It puts the stochastic dependence on 
display by considering that the failure rate of maintainable 
modes hm(t) depends on the failure rate of non-maintain-
able modes hnm(t) . There is a certain similarity to the hard/
soft failures reasoning but, here, only maintainability dis-
tinguishes the two types of failures. A term p(t) is defined 
as the probability that a non-maintainable mode will 
automatically cause a maintainable mode. This probabil-
ity is estimated by considering the physical and structural 
characteristics of the system. In other words, there needs 
to be a supportive physical model or conclusive experi-
mental model to determine how the modes are linked. 
Preventive maintenance is performed at periods kT  where 
k = 0, 1, 2,… and T > 0 . During a period 

[
kT , (k + 1)T

[
 the 

maintainable failure rate is hm
[
t − (k − 1)t

]
+ p(t)hnm(t) . 

Then, the system’s failure rate during period 
[
kT , (k + 1)T

[
 

is given by (17):

The authors use a mechanical coupling as an illustrative 
example, which shows applicability of the model on real-
life systems. However, not all maintainable failure modes 
have the same impact or repair-time. Considering them as 
a single category alters the comprehension of a system’s 
deterioration process. They also propose an imperfect pre-
ventive maintenance policy to estimate an optimal com-
plete revision period T  and an optimal number of preven-
tive replacements N that minimize the overall cost.

Castro [7] proposes an improvement on the model by 
Zequeira and Bérenguer [65]. He suggests that the occur-
rence of maintainable failures is correlated with the number 
of non-maintainable failures denoted by N2(t) aggregated 

(17)hk,T (t) = hnm(t) + hm
[
t − (k − 1)t

]
+ p(t)hnm(t)

following the installation of a system. This choice is moti-
vated by the fact that the number of non-maintainable 
failures in a specific period is easier to comprehend than 
a failure rate to estimate. The failure rate of maintainable 
modes h1,k(t) during period 

[
kT , (k + 1)T

[
 is then defined 

as a doubly stochastic Poisson process or a Cox process. 
An adjustment factor a > 1 quantifies the effect of cumula-
tive degradation due to non-maintainable failures in such 
a model:

where h1,0(t) is the failure rate of maintainable modes 
before the first operation of preventive maintenance. The 
number of failures considering the distinctive modes is 
integrated with a periodic preventive maintenance strat-
egy. With minimal repairs used as troubleshooting actions, 
the strategy estimates the optimal number of minimal 
repairs N before a complete revision at period T  that mini-
mizes the overall cost. Both (17) and (18) models share the 
same principle of a unidirectional interactivity. It is not 
taken into account that two maintainable modes could 
be significantly distinctive and interact in a bidirectional 
manner.

Fan et al. [13] have, interestingly, proposed a model with 
two failure modes that have bidirectional stochastic depend-
ence. Their model is based on the works of Murthy and 
Nguyen [43, 44], Zequeira and Bérenguer [65] and Castro 
[7]. This is important since the assumption of failure interac-
tion regardless of architecture suggests the possibility of a 
retroactive effect. Most of the previous models consider this 
effect as immediate, instant or total (on the whole system) 
while it could be gradual. The failure rates are defined as 
doubly stochastic Poisson processes or Cox processes. The 
authors consider that the failure rate of mode i  depends 
on the number of the failure in the other mode 𝜄 and vice 
versa. A performance variable is associated with each failure 
mode. In this model, t is defined in function of the number 
of passed preventive maintenance cycles. In fact t = tk + tL 
where tk is the time from the system’s installation to the k-th 
maintenance operation and tL is the operating time since the 
last preventive action. h0,i(t) is the failure rate before the first 
preventive maintenance. At the l-th preventive maintenance 
cycle, the failure rate for the mode i is:

where a
N̄Z
𝜄,l

i
 and a

NZ
𝜄,l
(t)

i
 are adjustment factors represent-

ing the effect of mode 𝜄  . N̄Z
𝜄,l

 is the number of failures by 
mode 𝜄 before tl . N

Z
𝜄,l
(t) is the number of failures by mode 

(18)

h1,k(t) = h1,0(t − kT )aN2(kT ), kT ≤ t < (k + 1)T , a > 1

(19)hi
�
tl + 𝜏

�
=

⎧⎪⎨⎪⎩

h0,i

�
y+
i,l
+ 𝜏

�
a
N̄Z
𝜄,l

i
, si l ≤ k

h0,i

�
y+
i,l
(t) + 𝜏

�
a
NZ
𝜄,l
(t)

i
, si l > k
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𝜄 estimated at t  . y+
i,l

 is the effective age of the mode i  right 
after the l-th preventive maintenance. y+

i,l
(t) is the pre-

dicted effective age of the mode i  right after the (l − k)

-th preventive maintenance at t  . This approach is suitable 
for repairable systems. As an application, Fan et al. [13] 
develop a Cooperative Predictive Maintenance Model that 
relies on minimal repairs and imperfect maintenance with 
restricted resources. A subsequent cooperative mainte-
nance strategy for both modes is proposed and takes into 
account the system’s effective age and the bidirectional 
interactions.

2.1.4  General interactive failure models

All the above-mentioned models share some restrictive-
ness due to the numerous hypotheses formulated on the 
structure of the system. They define a dominant compo-
nent or consider a specific architecture for the overall sys-
tem. Therefore, they cannot be generalized for all cases.

Sun et al. [54, 55] identify the interactions with an imme-
diate effect and the interactions with a gradual effect. They 
assume the hypothesis of a gradual effect accurately rep-
resents physical systems. In a system with N components, 
they distinguish an independent failure rate denoted by 
hIi(t) inherent to each component i(i = 1, 2,… ,N) and a 
dependent or interactive failure rate denoted by hi(t) . The 
interactive failure rate of one component integrates the 
influence of other components:

h⃗ji (t)B is the vector of failure rates before any interaction 
influencing component i  . Sun et al. [55] use the Taylor 
expansion to establish a parametric expression of the 
dependent failure rate of one component in function 
of the independent failure rates of all components. The 
obtained analytical expression provides this idea of an 
update in a failure rate from independent to dependent 
by a linear combination with coefficients denoted by �iji:

The authors call the �iji interactive coefficients since 
they represent the weighted effect of a failure rate from 
a component or a failure mode on another. �iji is a param-
eter comprised between 0 (no interaction) and 1 (perfect 
interaction and immediate/simultaneous failure). A matrix 
of the coefficients can consequently be built. Such an 
approach characterizes the interactivity independently 
from any assumption on the architecture of the system. 
Yet, building the matrix is not straightforward and relies on 
substantive experimentation and the opinions of experts. 

(20)hi(t) = 𝜑i

[
hIi(t), h⃗ji (t)B, t

]
, i = 1, 2,… ,N

(21)hi(t) = hIi(t) +
∑
ji

�iji (t)hji (t)B, i = 1, 2,… ,N

The estimation of the interactive coefficients requires a 
partition of the failure times in order to fit independent 
failure rates for each component or failure mode. This 
requires abundant observational data for each scenario 
of the N

2

2
 possibilities of interaction. Zhao et al. [71] reprise 

the model by Sun et al. [55]. They present an alternative 
to the classical method of Failure Modes and Effects Anal-
ysis (FMEA) that would account for the interactivity in a 
complex system. They apply their model to a gyroscope 
and demonstrate that the concept of interactive failures 
are indeed applicable and have a significant influence on 
the overall reliability of a system subject to multiple fail-
ure modes. Wang and Li [59] reprise the analytic model of 
Sun et al. [55] as well and propose an allocation method of 
redundancies in the design of a system. They demonstrate 
that the effect of interactive failures can be minimized if 
they are properly modeled in the system design process. 
The parameters pertaining to reliability indexes’ interac-
tion are summed up in Table 2.

2.2  State‑based interaction

In the context of conditional maintenance, the interactivity 
can be represented with a system’s state variables. With 
sensors and captors, data on the system’s degradation 
is collected and it helps to provide a physical interpreta-
tion of interactive failures. Keizer et al. [27] review diverse 
condition-based maintenance policies for systems with 
multiple dependent components. They consider struc-
tural, stochastic and resource dependences. Among mod-
els with stochastic dependences, they distinguish failure 
interaction models as follows:

• Failure induced damage: the failure of one component 
causes immediate damages to other components by 
causing an immediate failure or increasing the dete-
rioration level;

• Load sharing: a component fails but the system keeps 
operating as the other components need to work 
harder;

• Common-mode deterioration: many components fail 
simultaneously.

We consider a slightly different classification since some 
of the reviewed models by Keizer et al. [27] are copula-based. 
The following approaches are not. Chen et al. [9] distinguish 
the natural failure of a system caused by its degradation pro-
cess from traumatic failures due to external shocks caused 
by the environment. The degradation follows a stochastic 
process D(t) and a failure threshold is fixed Df  . The shocks 
occur independently from the degradation process and fol-
low a Poisson process of intensity � . The traumatic failures 
are assumed to occur with a probability p that depends on 
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the degradation level. The system is more prone to failure 
modes if the degradation level increases significantly. This 
is particularly true for mechanical systems subject to degra-
dation. The overall system becomes more vulnerable to its 
environment as it ages (e.g. proneness to corrosion, vibra-
tion, physical shocks etc.). The internal components and their 
mechanical links are in reverse subject to the propagation 
of external shocks.

where � is a parameter of the dependence.
As a matter of fact, the traumatic failure rate hs(t) depends 

on the probability p:

The moment of a natural failure is denoted by Td and 
the moment of a traumatic failure by Ts . The system’s failure 
times are defined as T = min

{
Td , Ts

}
 . The authors consider 

an example with linear degradation D(t) = Bt where B is a 
random variable so that B = � for traumatic failures. Thus, 
the survival function of the system is:

The authors apply the renewal theory to the proposed 
model and derive an inspection policy that minimizes the 
long-term cost of maintenance. In this approach, the cumu-
lative effect of shocks and the variability of their amplitude 
are not accounted for because shocks can cause traumatic 
failure or have no effect.

Huynh et al. [20, 21] aim to combine the competitive 
effects of degradation, internal and external shocks. They 
reprise the concept of natural and traumatic failures and 
define the degradation as a continuous stochastic process 
X (t) . A Gamma distribution is selected to model the degra-
dation since it characterizes in a satisfying manner diverse 
phenomenon like erosion, corrosion, etc. The shocks follow 
a non-homogeneous Poisson process. The system’s failure 
rate depends on the degradation level. Above a fixed deg-
radation level threshold M , the system’s failure rate h(t) is 
altered. It means that the system becomes more vulnerable 
to internal and external shocks. It also suggests that there 
is a specific moment when the interaction becomes more 
significant. As an example, a component with a regulation 
or protective function could fail in an electronic system, and 
cause heating that would accelerate the system’s failure.

where �(.) is an indicator function; h1(t) and h2(t) are two 
continuous and non-decreasing failure rates following the 
relation h1(t) ≤ h2(t),∀t ≥ 0 . The number of faures due to 

(22)p(t) = exp
[
�
(
D(t) − Df

)]

(23)hs(t) = �.p(t)

(24)

RT (t) = P(T > t) = P
(
Td > t

)
⋅ P

(
Ts > t|Td > t

)

= FB

(
Df

t

)
⋅

Df ∕t

∫
−∞

exp

[
−

t

∫
0

𝜆 exp
[
𝛼(𝛽u − Df

]
du

]
fB(𝛽)d𝛽

(25)h(X (t)) = h1(t).�X(t)≤M + h2(t).�X(t)>M

shocks Ns(t) is a Cox process. The authors define the fol-
lowing variable ∶ �s = inf

{
t ≥ 0,Ns(t) = 1

}
 . The survival 

function of the system is then:

F�M(resp. f�M ) is the distribution function (resp. p.d.f.) of 
the time when M is reached. F̄1(t) is the survival func-
tion associated to h1(t) . Huynh et al. [20, 21] suggest that 
the parameters of this model, like the threshold M , h1(t) 
and h2(t) , can be estimated by classical statistical meth-
ods. They apply the principle of minimal repairs and the 
renewal theory as well and obtain an inspection and main-
tenance policy that minimizes the long-term cost in func-
tion of the age and the degradation level.

Do et al. [11] consider a system consisting of two 
dependent components that are connected in series. 
This means that the two components are critical to 
the functioning of the system. Their dependence is 
expressed by the relationship of their degradation pro-
cesses. The accumulation of wear is described by a sca-
lar random variable Xi

t
 and a component i  is assumed 

to have failed when a threshold Li is reached. The accu-
mulation of wear at t + 1 becomes:

where ΔXi is the independent random increment of the 
deterioration level, f

(
X
j

t

)
 represents the impact of a com-

ponent j on i  , and � j , �j are positive parameters quantify-
ing the influence of a component j on i  . The parameters 
of the acceleration of the degradation processes � j , �j 
would have to be estimated through experimental meth-
ods or abundant condition-based maintenance historical 
data. Assaf et al. [3, 4] present a model based on Do et al. 
[11] involving similar issues for multicomponent systems 
in the form of degradation rate-state interactions. The 
interaction is defined as an acceleration of the wear indica-
tors caused to a component by neighbor components.

Song et al. [52, 53] work on multicomponent systems 
with the hypothesis that each component has 2 failure 
modes that are stochastically dependent. Each compo-
nent is subject to degradation and shocks. This approach 
is motivated by the fact that a component’s degrada-
tion can often be evaluated experimentally easier than 
the interactive effects of other components. It would 
be for example hard to evaluate with precision how the 
corrosion of a component could have caused the defor-
mation of another. Components are then assumed to 

(26)
F̄
s(t) = P

(
𝜎
s
> t

)
= P(X (t) ≤ M).P

(
𝜎
s
> t|X (t) ≤ M

)
+ P(𝜎

s
> t, X (t) > M)

(27)
Xi
t+1

= Xi
t
+ f

(
X
j

t

)
+ ΔXi , j ≠ i

f
(
X
j

t

)
= �j

∗

(
X
j

t

)� j
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cause random shocks on each other. A resistance limit 
to shocks Di specific to the component i(i = 1, 2,… , n) is 
fixed. A component degrades following a process Xi(t) 
with a failure threshold Hi . Contrary to the two afore-
mentioned models, the cumulative effects of shocks are 
calculated and this increases the degradation level. Wij , 
Yij and Si(t) are respectively defined as the amplitude of 
the j-th shock on component i  , the proportion of the j
-th shock impact on component i  and the cumulative of 
shocks Yij . The survival function of the systems depends 
on FWi

(�) and FXi
(
xi , t

)
 that are respectively the cumula-

tive density functions of Wij and XSi (t) = Xi(t) + Si(t). The 
reliability of a single component depends on the survival 
probability in case of a single shock and the probability 
that the failure threshold is not reached by the accumu-
lated shocks:

where Gi(t) is the cumulative density function of Xi(t) and 
f k
Yi
(u) is the distribution function of the sum of the inde-

pendent and identically distributed k variables Yij . The sur-
vival function of the system is then determined for stand-
ard architectures (series, parallel, series–parallel). For 
example, the reliability of a system with components in 
series is:

A maintenance strategy that minimizes the cost is 
derived and an optimal inspection period is estimated. It 
is important to note, however, that the proposed model 
considers a number of shocks common to all components. 
The failure threshold is fixed and has no variability. The 
amplitude of shocks is not considered a random process 
when in reality it could be.

One of the more elaborate approaches is in an arti-
cle by Rafiee et al. [48] that links the concept of inter-
active failures with a changing degradation rate. This 

(28)FXi

�
xi , t

�
= P

�
XSi (t) < xi

�
=

∞�
m=0

�
xi

∫
0

Gi

�
xi − u, t

�
f
⟨m⟩
Yi

(u)du

�
P(N(t) = m)

(29)R(t) =

∞∑
m=0

n∏
i=1

[
P
(
Wi < Di

)m
P

(
Xi(t) +

N(t)∑
j=1

Yij < Hi|N(t) = m

)]
× P(N(t) = m)

work results from some earlier collaborative research 
on multiple competitive failure modes, failure limits 
change and shock damage interaction: Feng and Coit 
[15], Peng et al. [47], Jiang et al. [24], Arab et al. [2]. The 
proposed approach considers two conditionally inde-
pendent events: NHFt meaning No Hard Failure occurs 
by time t  and NSFt meaning No Soft Failure occurs by 
time t  . Hard failures are due to random shocks exceed-
ing a threshold D1 . These shocks occur following a Pois-
son process of intensity � . The k-th random shock is 
denoted by Wk with a c.d.f FW (w) and the number of 
shocks is denoted by N(t) . Soft failures are caused by 
the degradation. A threshold H is defined and can be 
reached by the combined effect of random shocks and 
natural degradation. The natural degradation is defined 
as X (t) = � + �t + � . where the initial degradation � and 

the degradation rate � are random variables, and the 
random error � follows a normal distribution. The deg-
radation rate � can change from �1 to �2 due to a trigger 
J-th shock and become:

where TJ is the transition time, the time when the rate � 
changes. Yk and S(t) denote respectively the k-th shock’s 
damage size and the total damage size due to all random 
shocks. The overall degradation is represented by 

XS(t) = X (t) + S(t) where S(t) =
N(t)∑
k=1

Yk  if N(t) > 0 and 

S(t) = 0 otherwise. The survival function of a device sub-
ject to two dependent competing failure processes is 
denoted by R(t) . Equations (31) sum up the proposed 
model:

(30)X(t) =

{
𝜑 + 𝛽1TJ + 𝛽2

(
t − TJ

)
+ 𝜀, J ≤ N(t)

𝜑 + 𝛽1t + 𝜀, J > N(t)
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where fTj
(
tj|j

)
 is the p.d.f. of TJ for J = j.

This approach is of even more interest since it puts 
into perspective 4 distinct models of shock interaction 
and proposes an application on micro-electromechani-
cal systems (MEMS). This study also contains a sensitivity 
analysis to provide a physical interpretation of the inter-
activity. The shock processes considered are:

• The generalized extreme shock model: a single shock 
above a critical threshold value changes the degrada-
tion rate of a system.

• The generalized �-shock model: the interval between 
two sequential shocks above a critical threshold value 
is inferior to a limit � so that the degradation rate 
changes.

• The generalized m-shocks model: An accumulation of 
m shocks above a critical threshold value changes the 
degradation rate.

• The generalized consecutive shocks model: a suc-
cession of n shocks above a critical threshold value 
changes the degradation rate.

Liu et  al. [40] propose an extension to this mod by 
including the damage due to self-regulation in self-healing 
systems.

These diverse models of shock processes represent the 
internal failure interactions as well as the external effects 
of a system’s environment. Other models considering a 
changing degradation rate are available in the literature 
such as Bian and Gebraeel. [6], Rasmekomen and Parlikad 
[49], Hao et al. [14, 18, 51]. Yet, for all of the models, the 
idea that the amplitude of the shocks, internal and exter-
nal, can vary or be random, needs to be studied further. In 
fact, the changing degradation rate is in most cases sub-
ject to a constant factor.

Liang et al. [36] build on the previous work of Liang and 
Parlikad [37] and Rasmekomen and Parlikad [49] to deal 
with the issue of fault propagation. They consider that 
the phenomena of dependences, induced or inherent to 

(31)

P
�
NHFt

�
=
�
FW

�
D1

��N(t)

P
�
NSFt

�
=

∞�
i=0

∞�
j=0

P
�
XS(t) < H�J = j,N(t) = i

�
× P(J = j�N(t) = i) × P(N(t) = i)

P
�
XS(t) < H�J = j,N(t) = i

�
=

⎧
⎪⎨⎪⎩

t

�
0

P

�
𝜑 + 𝛽1tj + 𝛽2

�
t − tj

�
+ 𝜀 +

i∑
k=1

Yk < H

�
fTj

�
tj�j

�
dtj , j ≤ i

P
�
𝜑 + 𝛽1t + 𝜀 < H

�
, j > i

R(t) =

∞�
i=0

∞�
j=0

P
�
NSFt�J = j,N(t) = i

�
× P

�
NHFt�J = j,N(t) = i

�
× P(N(t) = i)

a system, can interact and lead to a cooperative accelera-
tion of dependent failures and cause new dependences. 
They model the deterioration of a multicomponent system 
as a multi-layered vector-valued continuous-time Markov 
chain. They distinguish non-critical component from criti-
cal components. For a system with � critical components, 
the normal deterioration is 

{
X0(t)

}
=
{
X1,0(t),… , X�,0(t)

}
 . 

They establish the inherent deterioration rate of a critical 
component l :

where rl,0 is the intrinsic deterioration rate and g(.) is the 
affected deterioration rate, which is a linear function of 
other critical components’ conditions Xj,0(t) . Non-critical 
components also influence the deterioration of the critical 
components by affecting their state. After the h th mal-
function of a non-critical component, the inherent dete-
rioration of a critical component l  becomes:

The transition rate between those two states is:

Liang et al. [36] remark that the current knowledge of 
fault propagation relies heavily on the expert opinion. This 
suggests a potential bias which remains to be addressed.

The parameters pertaining to state-based interaction 
are summed up in Table 3.

2.3  Copula‑based interaction model

Copula-based interaction models differ from the above 
models in the sense that they rely on little to no assump-
tion on interaction mechanisms. They define the reliabil-
ity indexes and/or the state variables of components as 

(32)�l,0(t) = rl,0 +
∑

j∈{1,2…,�}∕l

g
(
Xj,0(t)

)

(33)�l,h(t) = rl,h +
∑

j∈{1,2…,�}∕l

g
(
Xj,h(t)

)

(34)�i,h(t) =

�∑
l=1

rl,h + g(i(� − 1))



Vol.:(0123456789)

SN Applied Sciences (2019) 1:66 | https://doi.org/10.1007/s42452-018-0063-2 Review Paper

Ta
bl

e 
3 

 P
ar

am
et

er
s 

of
 s

ta
te

-b
as

ed
 in

te
ra

ct
io

n 
m

od
el

s

M
od

el
A

ss
um

pt
io

ns
Cr

uc
ia

l p
ar

am
et

er
s

O
ut

pu
t

Ill
us

tr
at

iv
e 

ex
am

pl
es

Ch
en

 e
t a

l. 
[9

]
A

ny
 a

rc
hi

te
ct

ur
e

N
at

ur
al

 fa
ilu

re
s 

an
d 

tr
au

m
at

ic
 

fa
ilu

re
s

D
eg

ra
da

tio
n 

an
d 

ex
te

rn
al

 s
ho

ck
s

Ex
te

rn
al

 s
ho

ck
s 

in
flu

en
ce

 th
e 

de
gr

a-
da

tio
n 

pr
oc

es
s

D
(t
) : 

th
e 

de
gr

ad
at

io
n 

as
 a

 s
to

ch
as

tic
 

pr
oc

es
s

D
f : 

a 
fix

ed
 fa

ilu
re

 th
re

sh
ol

d
p

 : t
he

 p
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e 
of

 
tr

au
m

at
ic

 fa
ilu

re
s 

de
pe

nd
in

g 
on

 
th

e 
de

gr
ad

at
io

n 
le

ve
l

R
T
(t
) : 

th
e 

su
rv

iv
al

 fu
nc

tio
n 

of
 th

e 
sy

st
em

 w
he

re
 T

 is
 th

e 
m

in
im

um
 

be
tw

ee
n 

th
e 

m
om

en
t o

f a
 n

at
ur

al
 

fa
ilu

re
 a

nd
 th

e 
m

om
en

t o
f a

 tr
au

-
m

at
ic

 fa
ilu

re

N
um

er
ic

al
 e

xa
m

pl
es

D
eg

ra
da

tio
n-

th
re

sh
ol

d-
sh

oc
k 

of
 a

 
la

se
r d

ev
ic

e

H
uy

nh
 e

t a
l. 

[2
0,

 2
1]

A
ny

 a
rc

hi
te

ct
ur

e
D

eg
ra

da
tio

n,
 in

te
rn

al
 a

nd
 e

xt
er

na
l 

sh
oc

ks
Th

e 
fa

ilu
re

 ra
te

 c
ha

ng
es

 a
bo

ve
 a

 
de

gr
ad

at
io

n 
le

ve
l t

hr
es

ho
ld

M
 : d

eg
ra

da
tio

n 
le

ve
l t

hr
es

ho
ld

X
(t
) : 

de
gr

ad
at

io
n 

as
 a

 c
on

tin
uo

us
 

st
oc

ha
st

ic
 p

ro
ce

ss

F̄ s
(t
)
∶ t

he
 s

ur
vi

va
l f

un
ct

io
n 

of
 th

e 
sy

st
em

N
um

er
ic

al
 e

xa
m

pl
es

D
o 

et
 a

l. 
[1

1]
, A

ss
af

 e
t a

l. 
[3

, 4
]

M
ul

ti-
co

m
po

ne
nt

Co
m

po
ne

nt
s 

in
flu

en
ce

 e
ac

h 
ot

he
r 

th
ro

ug
h 

ac
cu

m
ul

at
io

n 
of

 w
ea

r
de

gr
ad

at
io

n 
ra

te
-s

ta
te

 in
te

ra
ct

io
ns

Δ
X
i  : 

th
e 

in
de

pe
nd

en
t r

an
do

m
 in

cr
e-

m
en

t o
f t

he
 d

et
er

io
ra

tio
n 

le
ve

l o
f 

ea
ch

 c
om

po
ne

nt
L i

 : f
ai

lu
re

 th
re

sh
ol

d
�
j  , �

j  : 
po

si
tiv

e 
pa

ra
m

et
er

s 
qu

an
tif

y-
in

g 
th

e 
in

flu
en

ce
 o

f a
 c

om
po

ne
nt

 
j  o

n 
i

X
i t : 

ac
cu

m
ul

at
io

n 
of

 w
ea

r o
n 

ea
ch

 
co

m
po

ne
nt

 i
R
(t
) : 

th
e 

re
lia

bi
lit

y 
of

 a
 s

ys
te

m

N
um

er
ic

al
 e

xa
m

pl
es

Ex
pe

rim
en

ta
l d

at
a

ge
ar

bo
x 

ac
ce

le
ra

te
d 

lif
e 

te
st

in
g 

pl
at

fo
rm

So
ng

 e
t a

l. 
[5

2,
 5

3]
M

ul
ti-

co
m

po
ne

nt
de

gr
ad

at
io

n 
an

d 
sh

oc
ks

Cu
m

ul
at

iv
e 

sh
oc

ks
 in

flu
en

ce
 th

e 
de

gr
ad

at
io

n 
pr

oc
es

s 
ab

ov
e 

a 
fa

il-
ur

e 
th

re
sh

ol
d

D
i : 

re
si

st
an

ce
 li

m
it 

to
 s

ho
ck

s 
of

 a
 

co
m

po
ne

nt
 i

H
i : 

fa
ilu

re
 th

re
sh

ol
d 

of
 a

 c
om

po
ne

nt
 i

W
ij a

nd
 Y
ij : 

re
sp

. t
he

 a
m

pl
itu

de
 o

f t
he

 
j -t

h 
sh

oc
k 

on
 c

om
po

ne
nt

 i  
, a

nd
 

th
e 

pr
op

or
tio

n 
of

 th
e 
j -t

h 
sh

oc
k 

im
pa

ct
 o

n 
co

m
po

ne
nt

 i

F X
i

( x i
,t
)  : t

he
 fa

ilu
re

 fu
nc

tio
n 

of
 a

 
si

ng
le

 c
om

po
ne

nt
 i  

( X
i i

s 
th

e 
de

g-
ra

da
tio

n 
pr

oc
es

s)
R
(t
) : 

th
e 

re
lia

bi
lit

y 
of

 a
 s

ys
te

m
 in

 
se

rie
s 

or
 p

ar
al

le
l

N
um

er
ic

al
 e

xa
m

pl
es

Ex
pe

rim
en

ta
l d

at
a

M
ic

ro
-e

le
ct

ro
m

ec
ha

ni
ca

l s
ys

te
m

s 
(M

EM
S)

Ra
fie

e 
et

 a
l. 

[4
8]

, F
en

g 
an

d 
Co

it 
[1

5]
, P

en
g 

et
 a

l. 
[4

7]
, 

Ji
an

g 
et

 a
l. 

[2
4]

, A
ra

b 
et

 a
l. 

[2
]

A
ny

 a
rc

hi
te

ct
ur

e
So

ft
 fa

ilu
re

s 
by

 d
eg

ra
da

tio
n

H
ar

d 
fa

ilu
re

s 
by

 ra
nd

om
 s

ho
ck

s
Sh

oc
ks

 c
ha

ng
e 

th
e 

de
gr

ad
at

io
n 

ra
te

D
iv

er
se

 s
ho

ck
 m

od
el

s

H
 : t

he
 s

ys
te

m
’s 

fa
ilu

re
 th

re
sh

ol
d

�
 : t

he
 in

iti
al

 d
eg

ra
da

tio
n

�
 : t

he
 d

eg
ra

da
tio

n 
ra

te
Y
k
 : t

he
 k

-t
h 

sh
oc

k’
s 

da
m

ag
e 

si
ze

T
J : 

th
e 

tr
an

si
tio

n 
tim

e 
w

he
n 
�

 
ch

an
ge

s.

R
(t
)
∶ t

he
 s

ur
vi

va
l f

un
ct

io
n 

of
 th

e 
sy

st
em

N
um

er
ic

al
 e

xa
m

pl
es

Ex
pe

rim
en

ta
l d

at
a

M
ic

ro
-e

le
ct

ro
-m

ec
ha

ni
ca

l s
ys

te
m

s
M

ul
ti-

st
en

ts
 s

ys
te

m
s

Li
an

g 
et

 a
l. 

[3
6]

, L
ia

ng
 a

nd
 

Pa
rli

ka
d 

[3
7]

, R
as

m
ek

om
en

 
an

d 
Pa

rli
ka

d 
[4

9]

M
ul

ti-
co

m
po

ne
nt

D
iff

er
en

tia
tio

n 
be

tw
ee

n 
cr

iti
ca

l a
nd

 
no

n-
cr

iti
ca

l c
om

po
ne

nt
s

Co
m

po
ne

nt
s 

in
flu

en
ce

 e
ac

h 
ot

he
r’s

 
st

at
e 

an
d 

de
gr

ad
at

io
n 

ra
te

Fa
ul

t p
ro

pa
ga

tio
n

r l
,0

 : t
he

 in
tr

in
si

c 
de

te
rio

ra
tio

n 
ra

te
 o

f 
ea

ch
 c

om
po

ne
nt

 l
{ X

0
(t
)}  : t

he
 s

ys
te

m
’s 

no
rm

al
 d

et
er

io
-

ra
tio

n 
pr

oc
es

s
�
i,
h
(t
) : 

th
e 

tr
an

si
tio

n 
ra

te
 o

f a
 c

rit
ic

al
 

co
m

po
ne

nt
 fr

om
 a

 s
ta

te
 w

he
re

 n
o 

no
n-

cr
iti

ca
l c

om
po

ne
nt

 h
av

e 
fa

ile
d 

to
 a

 s
ta

te
 w

ith
 h

 fa
ilu

re
s 

of
 n

on
-

cr
iti

ca
l c

om
po

ne
nt

s.

�
l,
h
(t
) :,

 th
e 

in
he

re
nt

 d
et

er
io

ra
tio

n 
of

 a
 c

rit
ic

al
 c

om
po

ne
nt

 l  
af

te
r t

he
 

h
th

 m
al

fu
nc

tio
n 

of
 a

 n
on

-c
rit

ic
al

 
co

m
po

ne
nt

Ca
se

 s
tu

dy
H

ea
t e

xc
ha

ng
in

g 
sy

st
em

 in
 o

il 
re

fin
er

y 
pr

oc
es

s 
an

d 
di

st
ill

at
io

n 
to

w
er

Fl
ee

t o
f o

il 
im

m
er

se
d 

po
w

er
 tr

an
s-

fo
rm

er
s

Co
ld

 b
ox

 u
ni

t i
n 

a 
pe

tr
oc

he
m

ic
al

 p
la

nt



Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:66 | https://doi.org/10.1007/s42452-018-0063-2

random variables and model the dependence analyti-
cally. Copulas are used to built multivariate probability 
distributions which, in most cases, consider that the mar-
ginal probability distribution of each variable is uniform. 
A copula C can be defined as the joint distribution of p 
random variables U1,U2, ...,Up , each of which is marginally 
uniformly distributed, so that the joint cumulative distribu-
tion function of such a distribution is:

The copulas are parametric functions. Their parameters 
govern the intensity of the dependence. There is a large 
number of copulas. The most commonly used are Archi-
medean and Gaussian copulas. Archimedean copulas 
have a closed form. A unique parameter represents the 
intensity of the dependence. They have the advantage of 
being applicable to cases of high dimensionality. Some 
examples of widely known Archimedean copulas are Ali-
Mikhail-Haq, Clayton, Frank and Gumbel copulas. Gaussian 
copulas are determined following the matrix of correlation 
of the considered random variables. Kolev et al. [28] pro-
vide useful information regarding copulas in their review.

While it could be argued that some of the following 
models have hybrid traits resembling reliability-index 
and state-based interaction models, we classify them as 
copula-based since the interactivity between components 
and/or failure modes is modelled through candidate copu-
las which are the focus of these approaches.

Limbourg et al. [38] explore the influence of spatial 
dependencies on a multi-component system’s reliability. 
They study diverse architecture, especially voting systems. 
Mostly, they bring emphasis on the fact that when com-
ponents are neighbor, they show dependent failures. A 
Gaussian Copula C is used to model the dependent failures 
probabilities among neighbor components. Given a state 
variable x , the dependent failure probability F(x) of a sys-
tem with n components is:

where Fi(x) (i = 1,… n) is the failure probability of each 
component.

A copula can directly link reliability indexes. For 
example, Jiayin et al. [25] use a copula C  to model the 
dependence of n components in a system. They propose 
a characterization with a copula following the type of 
architecture: series or parallel. The reliability of the sys-
tem is written:

• For a system with n components in parallel:

(35)C
(
u1, u2, ..., up

)
= Pr

(
U1 ≤ u1,U2 ≤ u2, ...,Up ≤ up

)
.

(36)F(x) = C
(
F1(x),… , Fn(x)

)

(37a)Rparel(t) = 1 − Cn
(
1 − R1(t),… , 1 − Rn(t)

)

• For a series system:

where Δx2
x1
f (x) = f

(
x2
)
− f

(
x1
)
 and ui = 1 − Ri is the fail-

ure probability of a single component i  . The authors 
choose the Gumbel copula. The latter is Archimedean 
and has a unique parameter θ that represents the 
degree of correlation of the random variables. This 
parameter can be estimated by the maximum likeli-
hood method.

Similarly, Jia et al. [23] demonstrate how a copula can 
be used to evaluate reliability indexes for multicompo-
nent systems with failure interactions among the com-
ponents. They provide an illustration through the Clay-
ton copula. They especially address the survival function, 
the failure rate and the meantime to failure for series, 
parallel, and k-out-of-n systems. Eryilmaz [12] studies 
k-out-of-n systems as well considering n dependent 
components with different weights and diverse failure 
distributions. Examples with Clayton and Gumbel copu-
las are included in the paper. This shows the large appli-
cability of copula-based models. Yet, even though the 
methods proposed could be applied; usability would be 
another issue. The mathematical complexity suggests a 
certain expertise or supporting algorithms. There is also 
a certain limitation into the assumption that diverse 
components would all interact between each other fol-
lowing the same mechanism and a single interaction 
copula. In response to that matter, Navarro and Durante 
[46] take a step further in the determination of a joint 
reliability function of residual lifetimes for a multicompo-
nent system. Their study of coherent systems leads them 
to define special cases of dependence mechanisms:

• All the components of the system are working;
• Some components have failed at given time
• Some components have failed at some unknown failure 

times.

A distortion function allows the distinction of such 
cases and is the copula linking the failure functions of all 
the components. Yet, even though the parameters of the 
chosen function are tailored to specific cases, it is sup-
posed that all the components involved follow the same 
failure interaction mechanism.

Xu et al. [62] study a multistate manufacturing system 
and bring an emphasis on the fact that in most cases not 
all components in a system are stochastically dependent. 
They define the failure interaction function as follows:

(37b)RS(t) = Δ1
1−R1(t)

…Δ1
1−Rn(t)

Cn
(
u1, u2,… , un

)
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where Ci(x) is the general failure rate based on a copula 
of components with failure interaction, Pj(x) is the failure 
rate of a dependent component j , and �i is the interaction 
coefficient of component i  . For high accuracy and to deal 
with problems of small data, Xu et al. [62] suggest that 
the Grey system theory be used for the estimation of the 
parameters rather than classical methods like the Moment 
Estimation Method or Maximum Likelihood Estimation 
Method. Yet, the issue of the mathematical complexity 
of the overall model remains and is combined with the 
empirical nature of the Grey system theory. It limits the 
physical interpretation of the interaction mechanisms.

Copulas can also link degradation processes in diverse 
ways. Guo et al. [17] intend to determine the joint reliabil-
ity R of two degradation processes that cause dependent 
competitive risks. They propose a reliability model based 
on a copula C . The latter models the interdependence of 
the two phenomena and integrates the reliability associ-
ated to each degradation process R1 and R2 . The authors 
suggest two distinct definitions of the copula.

� is a vector of the copula parameters. It governs the ampli-
tude of the dependence’s strength. Simulated data are 
used in this study. � is estimated by the maximum likeli-
hood method. Gumbel, Clayton, t- and Gaussian copulas 
are comparatively applied in the model. The goodness of 
fit is evaluated by the following criteria: Log-likelihood 
(LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC). Moreover, the models obtained are 
compared among each other following the average rela-
tive error (ARE). Guo et al. [17] identify the Gaussian copula 
as the best candidate function for both copula definitions 
since it gives relatively more precise results.

Wang and Pham [60] study competitive dependent risks 
related to degradation and random shocks. The survival 
function R(t) of a system with n components is determined 
in function of the number of probable fatal shocks N(t) 
through a copula C.

Constant copulas (Normal, Plackett, Gumbel, Clayton, 
t-, Gaussian, etc.) and time-varying copulas (Normal, 
Rotated-Gumbel, Symmetrized Joe-Clayton) are compar-
atively considered as candidates. The strength of the fit 

(38)P(x) =

m∏
i=1

Ci
(
x;�i

) n∏
j=1

Pj(x)

(39)

R(t) = R1(t) + R2(t) − 1 + C
(
1 − R1(t), 1 − R2(t), �

)
or

R(t) = C
(
R1(t), R2(t), �

)

(40)R(t) = C
(
R1(t),… , Rn(t)

)
⋅ P(N(t) = 0)

is evaluated according to diverse criteria: Log-likelihood 
(LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC). Wang and Pham [60] demonstrate that 
time-varying copulas produce better results than constant 
copulas because they better fit the simulated data. This 
shows that there is a possible variability in the phenom-
enon of failure interaction. An and Sun [1] follow the same 
train of thoughts as Wang and Pham [60] and develop a 
similar model for dependent degradation processes and 
shock loads above a certain level. This model is tested on 
a MEMS application with diverse candidate copulas.

Xi et al. [61] use a distinctive approach that accounts for 
the interactivity within a complex system. They develop 
a sampling method involving a copula in the context of 
Residual-Useful-Life (RUL) prediction. Their method con-
sists of two steps: first, statistical learning of the historical 
data and second real-time RUL prediction. A copula C is 
used to model the dependences between failure times Ti 
and degradation levels TN of the system considered:

where F is an N-dimensional distribution function with 
marginal functions F1,… , FN . The copula is selected fol-
lowing the Bayesian approach of Huard et al. [19]. While 
this method does not explicitly model the dependency 
between failure modes, it builds a relation between degra-
dation levels and any other type of failure. This represents 
how the degradation of the system makes it more prone 
to its diverse failure modes.

Mercier and Pham [42] take a different direction. They 
consider a system with two units and model the failure 
interaction by a deterioration process following a bivariate 
non-decreasing Levy process: 

(
Xt =

(
X
(1)
t , X

(2)
t

))
t>0

 , a pro-

cess with range ℝ2
+

 starting from (0, 0) . In Tankov [57], Peter 
Tankov introduced Lévy copulas to model the dependen-
cies between components of a multidimensional spec-
trally positive Lévy process. The system is considered as 
failed when it reaches a failure zone  ⊂ ℝ

2
+

 . The failure 
time is:

Considering L1 > 0 and L2 > 0 as the respective failure 
thresholds of units 1 and 2, three situations are studied:

• Units set in series:  = ℝ
2
+
�
[
0, L1[×[0, L2

[
;

• Units set in parallel:  =
[
L1,∞[×[L2,∞

[
;

• Both components of 
(
Xt
)
t>0

 , standing for different wear 
indicators of a single system.

Since, the increments in a Levy Process are supposed 
to be independent, there is no specific closed-form that 
represents the interactivity. The wear indicators contribute 

(41)C
(
ui , uN

)
= C

(
Fi
(
Ti
)
, FN

(
TN
))
, Ti ≤ TN for i < N

(42)� = inf
{
t ≥ 0|Xt ∈ 

}
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collaboratively to the assessment of the system’s overall 
degradation. The studied system is assumed to be con-
tinuously monitored so that, upon failure, a signal is sent 
to trigger an instantaneous perfect repair. Based on this 
model, the authors propose a preventive maintenance 
policy assessed through a cost function on an infinite hori-
zon time. The determined policy performs better than a 
simple periodic replacement policy. Likewise, Li et al. [34] 
model the stochastic dependence between the degrada-
tion of two components due to common environment 
with the Clayton-Lévy copula. Yet, the lack of traceability 
and complexity in the Levy process is a limitation in terms 

of comprehending failure mechanisms and propose prag-
matic maintenance actions.

Furthermore, determining the relationship between 
maintenance and failure interaction is a work in progress. 
Yang et al. [64] establish a joint survival function for a 
repairable multicomponent system. The system is sub-
ject to partially perfect repair. It means that since only 
one component at a time fails and causes the system to 
fail, only the failed component is fully repaired, The latent 
age to failure of each component i  denoted by di is then 
critical in the calculation of the system’s survival function. 
The latter is defined as a multivariate Weibull distribution 

Table 4  Parameters of copula-based interaction models

Model Assumptions Crucial parameters Output Illustrative examples

Limbourg et al. [38] Multi-component
Gaussian copula
Voting system

Fi(x) ∶ the failure probabil-
ity of each component i

F(x) ∶ the failure probabil-
ity of the system

Numerical examples

Jiayin et al. [25] Multi-component
Gumbel copula
Series or parallel archi-

tecture

Ri(t) ∶ the survival func-
tion of each component 
i

R(t) : the survival function 
of the system

Case study
Drive shaft of a machine 

only subject to bending 
moment

Jia et al. [23], Eryilmaz [12] Multi-component
Gumbel-Hougaard, Clay-

ton copulas
k-out-of-n systems

Ri(t) : the survival function 
of each component i

R(t) : the survival function 
of the system

Numerical examples

Xu et al. [62] Multi-component
Grey system theory
Coherent systems

Pj(x) : the failure rate of 
each dependent com-
ponent j

P(x) : the failure rate of the 
system

Numerical examples
Cylinder engine manufac-

turing system
Guo et al. [17] Multi-component

2 degradation processes
Gaussian copulas
Series or parallel archi-

tecture

Ri(t) ∶ the survival func-
tion of each component 
i

R(t) : the survival function 
of the system

Numerical examples

Wang and Pham [60] Multi-component
degradation and random 

shocks
time-varying copulas
Series or parallel archi-

tecture

Ri(t) ∶ the survival func-
tion of each component 
i

N(t) : the number of prob-
able fatal shocks

R(t) : the survival function 
of the system

Numerical examples

Xi et al. [61] Multi-component
Bayesian approach

Ti : the failure times
TN : the degradation levels

RUL: the remaining-use-
ful-life of the system

Case study
Electric cooling fan

Mercier and Pham [42], Li 
et al. [34]

2 components
Deterioration following a 

Levy process
Components in series or 

in parallel, with different 
wear indicators collabo-
ratively accelerating the 
failure times

(
Xt =

(
X
(1)
t , X

(2)
t

))
t>0 : 

degradation of the sys-
tem with component 1 
and 2 as a Levy process

 ⊂ ℝ
2
+

 : Failure zone

� : the failure time of the 
system

Numerical examples

Yang et al. [64], Zhang 
and Yang [67], Yang 
et al. [63]

Multi-component
Gumbel-Hougaard, 

Clayton and Gaussian 
copulas

di : the latent age to failure 
of each component i

R(t) : the survival function 
of the system

Case studies
Cylinder head production 

system
Car body assembly process
Forklift vehicle system

Zhang et al. [68] Any architecture
Gumbel–Hougaard copula
Accelerated life tests

Rij(t) : the reliability con-
sidering failure mode j 
under Si

R(t) : the survival function 
of the system

Case study
Rolling ball bearings
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constructed via Archimedean (Gumbel–Hougaard copula) 
or Gaussian copulas. For a system with K  components, this 
joint distribution is denoted by S

(
d1,… , dK , �

)
 where � is 

the vector of parameters of the model estimated by Maxi-
mum Likelihood. Furthermore, the authors use hypothesis 
testing to test the statistical dependency of component 
failures. Yet, even though this paper offers some insight 
into a relationship between maintenance actions (partially 
perfect repair) and failure dependencies, it remains limited 
since maintenance operations can be quite diverse (mini-
mal repair, perfect repair, etc.). Zhang and Yang [67] and 
Yang et al. [63] rely on this previously proposed model to 
develop a maintenance approach that involves renewal 
theory. They specifically use Clayton and Gaussian copu-
las. But, the complexity of the obtained model requires 
the use of a simulation based optimization approach with 
stochastic approximation.

Zhang et  al. [68] focus their interest on Acceler-
ated Life Tests. Considering k different stress levels Si 
(i = 1,… , k) , they aim to define a joint survival function 
for a system with p failure modes by using a copula Ĉp . 
They do so by making the assumptions that the distribu-
tion families, the mechanism of each competing failure 
mode and the copula used to construct the joint survival 
function will not change under different stress levels. In 
reality, the interaction mechanisms might be affected 
by the difference of stress levels. The survival copula 
Ĉp

(
Ri1(t),… , Rip(t)|�C

)
 , where Rij(t) is the reliability con-

sidering failure mode j under Si and �C is the parameter 
vector, can be Archimedean as suggested by the authors. 
In fact, they use the Gumbel–Hougaard copula due to its 
relative simplicity.

The parameters pertaining to copula-based interac-
tion are summed up in Table 4.

3  Comparative study of failure interaction 
models

The above-mentioned approaches have the general 
advantage of presenting models that account for the 
phenomenon of failure interaction. Thus, they are more 
realistic than all classical techniques that consider failures 
as independent. There are other advantages and also limi-
tations. They are divided into three different aspects: con-
cepts, methods and applications.

3.1  Concepts

The conceptual differences between the models relate 
to the starting assumptions and the concept’s meaning 

established to validate the dependence failure hypothesis. 
These aspects are summed up in Table 5.

One can notice that reliability indexes’ interaction 
models rely on elaborate assumptions about the system’s 
structure. The dependence is one-sided and some entities 
are assumed to be dominant beforehand in most cases. 
Moreover, they are only applied to simple architectures 
(series, parallel, etc.). The main issue with state-based 
interaction models is that the interactivity within complex 
systems is rarely measureable by a finite set of state vari-
ables. The interactivity itself is rarely observable since only 
components critical to the system’s primary function will 
be monitored. In fact, the interactions could affect more 
than just the components with sensors or captors. Then, 
there is a risk of significant bias in the results interpreta-
tion. Copula-based interaction models are quite useful 
in cases when there is little prior information about the 
system. But, they rely on rigid and complex analytical 
functions selected from a finite set. The failure interaction 
might not respect the form of the preselected functions. 
Moreover, some specificities in the architecture can be dis-
tinguished through qualitative and experimental informa-
tion. This information would be left out if an approach that 
is solely analytical is used.

3.2  Methods

The differences in terms of methodology are related to 
the diverse techniques and the selected study process 
to develop the starting hypotheses. Table 6 sums up the 
issues related to methodology.

The methods used for copula-based interaction models 
have significant mathematical complexity in comparison 
to other methods. It is also difficult to associate a physi-
cal explanation to the parameters even though they use a 
large array of well-known statistical learning methods and 
tests. Reliability indexes’ interaction models are applicable 
to diverse preventive maintenance policies. State-based 
interaction models are limited to the domain of condi-
tional maintenance but have the best interpretability. 
Most models in the literature rely on experimental designs 
and simulated data when it is known that there could be 
higher variability in reality.

3.3  Applications

The applications are numerous when it comes to interac-
tive failures. But how efficient are they? The criteria to con-
sider include the performance of the methods employed 
in terms of financial savings or availability improvement, 
and the level of expertise and complexity required for 
the application. Research is often subject to less practical 
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constraints than in the field of application. Usually, indus-
trial companies are limited in terms of their capabilities 
for experimentation, expertise levels, and time constraints. 
It is therefore important to see which approaches can be 
applied in a general set with basic or generic tools. Table 7 
emphasizes the issue of applicability.

Copula-based interaction models are the least practical 
as standalone applications due to their analytical complex-
ity. Reliability indexes’ interaction models are less complex 
but still difficult to apply due to high computational com-
plexity. This issue is amplified by the lack of dedicated 
software for reliability models integrating the interactiv-
ity. State-based interaction models would provide the 
best results in the industry. Yet, they require the highest 
economic investment in order to be applied.

4  Conclusion

The interactivity of failure modes is a concept presented 
by the literature in the context of stochastic dependence. 
This failure interaction can be defined as a gradual, imme-
diate, unidirectional or bidirectional phenomenon. Diverse 
models are reviewed and classified into three distinctive 
categories: Reliability indexes’ interaction, state-based 
interaction, and copula-based interaction.

All of the models presented are more realistic than 
classical methods that overlook the interactivity or 
assume it to be negligible. Yet, they have a few limita-
tions. Copula-based interaction models are data-driven 
and based on a limited set of analytical functions. Their 
complexity makes them impractical for the industry, 
especially since interpretation of these models can be 
ambiguous. Reliability indexes’ interaction models can 
be paired with numerous classical statistical learning 
and preventive maintenance methods. But, they rely on 
restrictive hypotheses about a system’s structure. State-
based interaction models have the best interpretability. 
But, conditional maintenance can be costly and the state 
variables might capture only partial aspects of the phe-
nomenon studied.

Another general observation about all models is how 
they lack representation of the variability in the interactiv-
ity phenomenon. In most cases, the parameters, factors 
or coefficients used to account for the interactivity are 
defined as constant numbers or effects rather than ran-
dom variables. In future work, it would be useful to put 
forth an interaction model that could integrate this vari-
ability more comprehensively to the chosen coefficients 
or parameters of interaction.
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