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Abstract
This paper presents arbitrary-order Hilbert spectral analysis (AOHSA) and multifractal detrended fluctuation analysis (MF-
DFA) approaches to describe the multifractality of daily streamflows from four stations, namely Tilga, Jeraikela, Gomlai 
and Jenapur of Brahmani river basin in India. In the former method, the spectral slopes of Hilbert spectra for different 
moment orders depict the multifractality, and in this study, AOHSA method detected the scale invariance between 
synoptic to intra-seasonal scales (3 days–3 months approximately) in the daily streamflows of all the four stations. The 
MF-DFA method detected a crossover within 80–110 days (~ 3 months) in the four time series in addition to the crossover 
at annual scale. The robust estimates of Hurst exponents made by following the adaptive detrending method of pre-
processing detrending operation ranged between 0.7 and 0.73 for the four time series which confirmed the universal 
multifractal properties within Brahmani river basin. The behaviour of spectral slope plot of AOHSA, the characteristics 
of scaling exponent plot, mass exponent plot and multifractal spectra confirmed that the highest multifractal degree 
is for the streamflow records of Tilga station which is having the smallest drainage area, and it may be attributed to the 
faster response of this sub-catchment to local precipitation events. The multifractality of all the four streamflow time 
series is found to be due to the dominant influence of correlation properties than due to the broadness of probability 
density function.
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1 Introduction

Hydrological system is a complex and dynamical system 
characterized by non-stationary input (precipitation) and 
output (runoff/streamflow). Streamflow time series records 
often possess multiscaling behaviour, and it may display 
self-similar and exhibit self-affine fractal behaviours over 
a certain range of timescales. At small scales, turbulence 
induces stochastic fluctuations, and at larger scales (from 
days to years) the streamflow fluctuations are the result of 
complex nonlinear interactions between rainfall processes 
and global climate system. There exists similarity between 
large-scale and small-scale streamflow characteristics. The 

information on long-range correlation in streamflow time 
series is helpful for its prediction. The procedure of estima-
tion of such long-term correlations was first introduced 
by Hurst [23], and finding of that research can be consid-
ered as the first example referring to the self-affine and 
fractal behaviour. The science behind the runoff processes 
in the catchment will be reflected in the time series, and 
hence the fractal (or multifractal) characterization and 
scaling analysis can be considered as the fingerprint of 
the field observations. In the past, researchers have tried 
different methods to characterize the scaling properties in 
river flows, which include rescaled range analysis [22, 23], 
double trace moments [50], Fourier spectral analysis, [44], 

Received: 12 June 2018 / Accepted: 12 November 2018 / Published online: 26 November 2018

 * S. Adarsh, adarsh_lce@yahoo.co.in | 1TKM College of Engineering, Kollam 691005, India.

http://orcid.org/0000-0001-8223-043X


Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:58 | https://doi.org/10.1007/s42452-018-0056-1

extended self-similarity principles [6] and wavelet analy-
sis [29]. The hydrological variables possess nonlinear and 
non-stationary characteristics, and the periodic cycles are 
inherent in them in most of the cases. Peng et al. [45] pro-
posed an efficient method, namely detrended fluctuation 
analysis (DFA) to perform the fractal analysis based on a 
detrending procedure. Kantelhardt et al. [28] proposed the 
multifractal extension of DFA procedure popularly known 
as MF-DFA method. Multifractal analysis is an appropriate 
framework for detecting the scaling fields of time series 
and eventually it may help for modelling various geophysi-
cal processes [44]. For hydrological time series, the multi-
fractal description serves as an efficient nontrivial test bed 
for the performance of state-of-the-art precipitation–run-
off models [30]. These researches provided a broader 
framework in modelling the rainfall–runoff processes, 
such as topography and river network, that generate and 
modify the streamflow processes through the basin [10, 
39]. Therefore, the DFA and MF-DFA methods have been 
applied for a wide range of studies in hydrology.

Kantelhardt et al. [29] applied the MF-DFA procedure to 
the global river runoff datasets and compared the results 
with that by wavelet transform modulus maxima (WTMM) 
method and reported good agreement between the 
results by the two techniques. They found that the mul-
tifractal properties of runoff and precipitation are non-
universal and beyond crossover scales to several weeks, 
there exists noticeable difference in scaling exponents 
of runoff records in particular. They further reported that 
for all runoff records, a modified version of the binomial 
multifractal model fits best, while several precipitation 
records require different models to describe the processes. 
Koscielny-Bunde et al. [31] applied DFA, MF-DFA and wave-
let analysis to the discharge records from 41 hydrological 
stations around the globe for investigating their temporal 
correlations and multifractal properties. The study found 
that the daily runoff records are long-term correlated with 
crossover time in the order of weeks, and they are charac-
terized by a correlation function which follow a power law 
behaviour with exponents varying between 0.1 and 0.9. 
Kantelhardt et al. [30] studied the multifractal behaviour 
of 99 long-term daily precipitation records and 42 long-
term daily runoff records from different parts of the world. 
They found that the precipitation records generally show 
short-term persistence and runoff records show long-term 
persistence with a mean scaling exponent of ~ 0.73 for run-
off records globally. Zhang et al. [51] applied the MF-DFA 
procedure to analyse the multifractal characteristics of 
streamflow from four gauging stations of Yangtze river in 
China. Their study detected the non-stationarity of differ-
ent time series and analysed the differences in multifrac-
tality among the records from stations at upper and lower 
Yangtze basin. Zhang et al. [52] applied MF-DFA method to 

study the scaling behaviours of the long daily streamflow 
series of four hydrological stations in the mainstream of 
East River in China. The results indicated that streamflow 
series of the East River basin are characterized by anti-per-
sistence and showed similar scaling behaviour at different 
shorter timescales. Further, they used the MF-DFA method 
to investigate the effect of water storage structures on 
streamflow records, and it was found that the streamflow 
magnitude is mainly influenced by the precipitation mag-
nitude, while the fluctuations of the streamflow records 
are affected by the human interventions like construc-
tion of control structures. Labat et al. [32] applied DFA to 
investigate streamflow series of two Karstic watersheds 
in the southern France, suggesting that the correlation 
properties exist in small scales and anti-correlated prop-
erties exist in large scales. Hirpa et al. [12] analysed and 
compared the long-range correlations of river flow fluctua-
tions from 14 stations in the Flint River basin in the state 
of Georgia in the south-eastern USA. Their study investi-
gated the effect of basin area on the multifractal charac-
teristics of streamflow time series at different locations, 
and it was found that, in general, the higher the basin area, 
the lower will be the degree of multifractality. Rego et al. 
[46] applied the MF-DFA to analyse the multifractality of 
water level records of 12 principal Brazilian rivers, and the 
results indicated the presence of multifractality and long-
range correlations for all the stations after eliminating 
the climatic periodicity. Li et al. [34] applied the MF-DFA 
method to the streamflow time series of four stations of 
Yellow river in China. They detected the crossover point at 
annual scale in all the time series. After removing the trend 
by the seasonal trend decomposition, it was found that all 
decomposed series were characterized by the long-term 
persistence. Also it was found that the multifractality of 
streamflow series was due to both correlation properties 
and the broadness of probability density function of the 
series. Recently, Tan and Gan [49] used MF-DFA for detect-
ing long-term persistence (LTP) and multifractal behaviour 
of 100 stations of daily precipitation and 145 stations of 
streamflow time series of Canada. They reported that all 
precipitation time series showed LTP at both small and 
large timescales, while streamflow time series generally 
showed non-stationary behaviour at small timescales and 
LTP at large timescales. The multifractal behaviour of Cana-
dian precipitation and streamflow data can be accurately 
described by the universal multifractal model and with the 
modified version of multiplicative cascade model. They 
suggested that the persistence of Canadian streamflow 
was not only because streamflow is more autocorrelated 
than precipitation but also due to human interventions 
such as streamflow regulations.

Since most of the hydrological time series are pos-
sessing turbulence at smaller scales and are linked with 
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climatic oscillations at smaller scale, the detection of scal-
ing range using an appropriate technique is of paramount 
importance in the modelling process. Intermittency and 
frequency modulations are two dominant properties of 
turbulent flows, and the influence of flow turbulence is 
emphasized from high-frequency part (show the intermit-
tence) and low-frequency part (frequency modulations). 
The time–frequency analysis of such time series based 
on appropriate multiscale decomposition technique is 
capable of detecting the intermittency properties and 
ranges in which scale invariance is present. Hilbert Huang 
transform (HHT) is one of the popular techniques used for 
analysing nonlinear and non-stationary time series pro-
posed by Huang et al. [18]. It comprises a data adaptive 
decomposition method, namely empirical mode decom-
position (EMD) as its first phase. The decomposition gives 
a set of high- and low-frequency oscillatory modes (called 
intrinsic mode functions or IMFs) and a reminder series 
(called ‘residue’ which indicates the long-term trend of 
the dataset) each associated with specific timescales. It is 
well proven that the different modes obtained by the EMD 
show filter bank property [8]. Existence of the multiple 
timescales in the hydrological time series resembles the 
hierarchy of scales charactering the turbulent flow. Hence, 
some researchers believe that the hydrological process is 
an analogy with the stochastic cascade models in a fully 
developed turbulent flow that generally yield fractals [47]. 
Hence, one can argue that varying timescales in hydro-
logical time series may display the self-similarity and it is a 
signature of fractals. As a second phase of HHT, the modes 
obtained can be subjected to the Hilbert transform (HT) to 
get the instantaneous frequencies and amplitudes (which 
form the Hilbert spectrum in time-frequency space). The 
HHT is hence a useful method for time–frequency char-
acterization of nonlinear and non-stationary time series 
signals, and the scaling information derived from spectra 
can be used for a wide range of applications in hydrology 
like prediction of hydrological variables, teleconnection 
studies and derivation of intensity–duration–frequency 
relationships [1, 2, 27]. The integration of Hilbert spec-
trum in the time domain will help to construct the Hilbert 
energy spectrum which is often prepared by considering 
the second-order moment of amplitudes. The energy spec-
trum is a useful mean to identify the timescale in which 
the scale invariance is present. As the geophysical time 
series generally comprises a wide variety of fluctuations, 
it is logical to assume multifractality of such series. In this 
circumstance, Huang et al. [19, 17] proposed a modified 
version of HHT, namely arbitrary-order Hilbert spectral 
analysis (AOHSA) in which the Hilbert spectra are obtained 
for specified arbitrary-order moments of amplitudes. This 
technique was presented as one of the latest additions to 
the family of techniques to detect multifractality of the 

time series. In this technique, the multifractal property 
can be described by evaluating the slope of energy spec-
trum for different moment orders in the scale-invariant 
frequency range. The AOHSA method has been applied 
for assessing the multifractality of passive scalar (tempera-
ture) data obtained from a jet experiment [21], wind power 
fluctuations [3], sunspot time series [53] and financial time 
series [33]. The method was successfully applied for esti-
mating the multifractality of daily river flow time series 
Seine River and Wimereux river in France, pertaining to 
catchments of distinctly different sizes [20]. Also Huang 
et al. [20] emphasized the comparison of the results of 
this technique with the more popular methods such as 
MF-DFA to understand the robustness of the method by 
applying it for real-field hydrological signals from other 
part of the world. Motivated from this, the present study 
(1) applies AOHSA procedure to investigate the multifrac-
tality of time series from four hydrological stations Tilga, 
Jaraikela, Gomlai and Jenapur in Brahmani basin, India; (2) 
applies MF-DFA procedure for the above set of time series 
to get useful inferences on multifractality of time series; 
(3) compares the inferences drawn from the study to com-
ment on the relative merits and demerits of the methods.

Section  2 presents the theoretical description of 
methodologies used in this study. Section  3 presents 
the description on datasets used. Section 4 presents the 
results of multifractal analysis of different time series by 
both methods supported by relevant discussions. Then, 
the important observations from the study are concluded.

2  Materials and methods

This section presents the theory of AOHSA method and 
MF-DFA method along with the respective steps to detect 
the multifractality of streamflow time series.

2.1  Arbitrary‑order Hilbert spectral analysis 
(AOHSA)

Hilbert Huang transform (HHT) is a recently developed 
computational paradigm for spectral analysis of nonlinear 
and non-stationary time series data. The EMD step in HHT 
is purely a data adaptive process, and hence it decomposes 
the time series to certain number of oscillatory modes of 
specific frequency. This method does not involve ‘a priori’ 
selection of functions, but instead it decomposes the sig-
nal into intrinsic oscillation modes derived from the suc-
cession of extrema. The original data can be reconstructed 
by summing each of the modes which are independent of 
each other. Each IMF must meet the following conditions:
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(a) The number of extreme values in the overall data 
must match the number of zero crossings or differ 
by only one

  Nmax where Nmax = total number of maxima; 
Nmin = total number of minima; and Nzero = total num-
ber of zero crossings; and

(b) At any point of time, the mean value of the envelope 
of local maxima and envelope of local minima (m(t)) 
must be zero

where Emax(t) is the envelope of the local maxima and 
Emin(t) is the envelope of the local minima, which are 
often obtained by spline interpolation procedures. The 
EMD operation primarily involves (1) identification of all 
extrema (maxima and minima) of the signal X(t), (2) inter-
polation and construction of upper envelope (Emax(t)) and 
lower envelope (Emin (t)), (3) computation of the mean of 
the upper and lower envelope, m(t), (4) finding a difference 
series by subtraction of mean from the original series, etc. 
The above process is known as ‘sifting’, and the process 
is to be repeated iteratively till a zero-mean mode with 
no riding waves (i.e. there are no negative local maxima 
and positive local minima) gets evolved. The sifting can be 
stopped by adopting suitable sifting criteria as proposed 
by Huang and Wu [17]. Subtraction of a mode from the 
signal enables us to proceed with the generation of the 
second mode, and the orthogonality property of modes 
will enable to proceed with the generation of subsequent 
modes. The EMD operation will be stopped when the last 
mode evolved is monotonic or with a single peak. This 
component is known as residue which represents a low-
frequency component representing the long-term trend 
of the data. More details on EMD operation can be found 
in Huang et al. [18]. The IMFs of the time series signal X(t) 
obtained in the first phase (say IMF(t)) are suitable candi-
dates to perform Hilbert transform (HT), to yield instan-
taneous frequency and amplitudes. Hilbert transform is 
the convolution of IMF(t) with the function g(t) = 1

�t
 . Then, 

an analytic signal (Z(t)) can be represented by combining 
IMF(t) and Y(t) as follows :

where Y(t) is the Hilbert transform of the signal; i =
√

− 1 ; 
A(t) is the amplitude, �(t) is the phase angle, which are 
defined as:

and

Nmax + Nmin = Nzero ± 1

m(t) =
Emax(t) + Emin(t)

2
≈ 0

(1)Z(t) = IMF(t) + iY(t) = A(t)ei�(t)

(2)A(t) =

√

IMF2(t) + Y2(t)

The instantaneous frequency is given by

Thus HHT can distribute the amplitudes on the 
time–frequency plane, and the Hilbert energy spectrum 
can be defined by considering second-order amplitudes 
as follows:

The Hi lber t  spec trum is  representing the 
energy–time–frequency information at local level, and 
its integration over the time gives the marginal Hilbert 
spectrum

An alternative way to define the marginal Hilbert spec-
trum is to define the joint pdf p(�,A) of instantaneous fre-
quency � and amplitude A [19]. Then, the marginal Hilbert 
spectrum can also be written as the second-order statisti-
cal moment

The above equation can be expressed as a generalized 
one by defining arbitrary-order moments, and Huang et al. 
[19] proposed the arbitrary-order Hilbert spectral analysis

The AOHSA method can be used to detect the multi-
fractality of the time series. In this process, the Hilbert mar-
ginal spectrum is constructed for different q orders. Theo-
retically, Huang et al. [21] defined the spectrum for q = − 1 
onwards, but for stream flow analysis it is recommended 
to select q in the range 0–5 [18, 44]. The arbitrary-order 
spectra can be expressed in such a way that it follows scal-
ing law within certain scale range

i.e. the slope of the log–log plot of Hilbert spectra within 
the chosen scale range corresponding to different q-order 

(3)�(t) = tan−1
(

Y(t)

IMF(t)

)

(4)�(t) =
1

2�

(

d�(t)

dt

)

H(�, t) = A2(�, t).

(5)h(�) =

∞

∫
0

H(�, t)dt

(6)h(�) =

∞

∫
0

p(�,A)A2dA

(7)Lq(�) =

∞

�
0

p(�,A)AqdA where q ≥ 0

Lq(�) = �− �(q) where �(q) is the scaling exponent

in theHilbert space.
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moments gives the scaling exponent. If the plot of scaling 
exponents (corresponding to different q orders) follows a 
concave shape, it can be concluded that the series is muli-
fractal in the range chosen. The scaling exponent �(q) can 
be linked to scaling exponent �(q) of structure functions 
[19] as follows:

Further, �(q) the scaling exponent can be related to the 
classical Hurst exponent (H) by the following relation

More mathematical details of the method can be found in 
Huang et al. [19], and proof for the above relations can be 
found in Zhou et al. [53].

2.2  Multifractal detrended fluctuation analysis 
(MF‑DFA)

The different steps involved in MF-DFA computational pro-
cedure can be described as follows [29, 33, 52].

Consider a streamflow time series X (x1, x2, … xN), N 
is the length of the time series. The accumulated devia-
tion of the series (known as ‘profile’) is calculated. As 
Y(i) =

∑i

k=1

�

xk − x̄
�

 , where i = 1, 2,…., N, k = 1,2…,N, x̄ is the 
mean of the series xk

Divide the profile Y(i) into Ns = int(N∕s) non-overlapping 
segments of length, where s is the segment sample size (so-
called as scale in MF literature) chosen for the analysis and 
int(N/s) is the integer part of (N/s). Here, while considering 
multiple of scales, sometimes a small portion of the time 
series at the end may remain, as N need not be a multiple 
of s always. To retain this part of the series, the same pro-
cedure is repeated starting from the opposite end, thereby 
2Ns segments.

Calculate the local trend for each of the 2Ns segments by 
a least squares fit of the series as:

and

Here, y�(i) is the fitting polynomial in segment � . Linear, 
quadratic, cubic, etc., different types of fitting, can be 
made, and accordingly DFA procedure is named as DFA1, 
DFA2,…..DFAm, etc.

Determine the q-order fluctuation function by averaging 
over all segments

(8)�(q) = �(q) + 1

�(q) = qH + 1, where H = �(1) − 1

(9)

F2(s, �) =
1

s

s
∑

i=1

{

Y[(� − 1)s + i] − y�(i)
}2

for � = 1, 2,… ,Ns

(10)
F2(s, �) =

1

s

s
∑

i=1

{

Y[N − (� − Ns)s + i] − y�(i)
}2

for � = Ns + 1,… , 2Ns

Here, the index variable q can take any real value except 
zero.

For the zeroth-order, fluctuation function can be com-
puted by following a logarithmic averaging procedure 
defined as [28]

Determine the scaling behaviour of the fluctuation func-
tions by analysing the log–log plots of Fq(s) versus s for 
each values of q. If the time series is long-range power law 
correlated, Fq(s) increases as Fq(s) ~ sh(q) and h(q) is the slope 
of log Fq(s) and log s plot, called as generalized Hurst expo-
nent (GHE).The value of Hurst exponent (H) is reported for 
h(2) and H is considered as (h(2) − 1)/2, if it is found to be 
greater than unity.

For an uncorrelated series, the value of Hurst exponent is 
0.5. If the Hurst exponent falls between 0.5 and 1, it indicates 
the long-term persistence (long memory process), and if it 
falls between 0 and 0.5, it indicates a short-term persistence 
(short memory process). Long-term persistence implies a 
positive auto correlation in the time series (i.e. the effect of 
an observation on future observations remains significant 
for a long period of time). For example, in an extreme event 
would have higher probability being followed by another 
extreme of same character (i.e. a flood followed by another 
flood). The selection of scale (s), the type of polynomial cho-
sen, etc., are some of the key issues while applying the MF-
DFA method. Generally, the minimum scale can be chosen 
in such way that it is sufficiently larger than the polynomial 
order chosen to prevent error in computation of local fluc-
tuations and maximum scale can be chosen below 1/2 of 
the data length. Also the polynomial order can be chosen 
1–3 probably sufficient to avoid overfitting problems within 
small segment sizes [24].

The generalized Hurst exponent (h(q)) is only one of the 
several types of scaling exponents used to parameterize the 
multifractal structure of the time series. The q-order mass 
exponent (τ(q)) and singularity exponent (α) are other use-
ful means for describing the scaling characteristics of time 
series.

(11)Fq(s) =

{

1

2Ns

2Ns
∑

�=1

[

F2(s, �)
]q∕2

}1∕q

(12)F0(s) = exp

{

1

4Ns

2Ns
∑

�=1

ln[F2(s, �)]

}

(13)�(q) = qh(q) − 1

(14)� =
d�(q)

dq
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and f (�) = q� − �(q) where f(α) denotes the dimension of 
the subset of the series characterized by α. In a multifractal 
case, different parts of the series are characterized by dif-
ferent values of α, which leads to a spectrum namely sin-
gularity spectrum. In short, it is a plot of f(α) versus α. The 
dependency of h(q) on q infers multifractality of the time 
series, and the difference in the slopes of the segments 
before and after (0, τ(0)) in a plot between τ(q) and q will 
help to comment on the strength of the multifractality. The 
base width of the spectrum Δα = (αmax − αmin) also reflects 
the strength of multifractality in the time series.

For each order of q, the scaling behaviour of the fluc-
tuation functions can be determined by the logarithmic 
plot of Fq(s) versus s. The plot between log Fq(s) and log 
(s) enable to detect a crossover point which divides the 
smaller- and larger-scale ranges and useful to detect the 
dominant cycle in the time series. Also the slope of the 
segments before and after the crossover point provides 
useful information on non-stationarity of the series, while 
the corresponding intercepts provide useful information 
on the influence of storage structures [52].

3  Study area and datasets

The Brahmani river basin (lies between latitudes 20°30′10″ 
and 23°36′42″N and longitudes 83°52′55″ and 87°00′38″E) 
is located in the eastern part of India. The basin is embed-
ded between Mahanadi basin (at the right side) and 
Baitarani basin (at the left side). It has a total catchment 
area of ~ 39,315 km2, and it comprises the regions from 
three states in India—Orissa (~ 57% of the basin area), 
Jharkhand (~ 39% of the basin area) and Chhattisgarh 
(~ 3.5% of the basin area). The basin is composed of four 
distinct sub-basins, namely Tilga, Jaraikela, Gomlai and 
Jenapur, and since the sub-basins are distinctly different 

in size, more insights into the multifractality can be drawn 
while comparing the results by a recently developed pro-
cedure (AOHSA) and a widely accepted procedure (MF-
DFA). Moreover, the lower reaches of this basin near the 
deltaic area are subject to frequent floods [26]; since Maha-
nadi, Brahmani and Baitarani are interconnected near 
their delta, worst flood occurs when there are simultane-
ous heavy rains in all the three catchments. Breaching of 
embankments and prolonged submergence are common 
occurrences during floods. In this context, the information 
on multifractality may provide valuable inputs to develop 
robust flood frequency estimation models for the basin. 
A map showing the location of Brahmani basin and its 
sub-basin is shown in Fig. 1. The Brahmani river rises near 
Nagri village in Ranchi district of Jharkhand at an eleva-
tion of about 600 m and travels a total length of 799 km 
before it joins with the Bay of Bengal. The basin has a sub-
humid tropical climate with an average annual rainfall of 
1305 mm, and southwest monsoon season (June–Sep-
tember/October) is the major contributor of rainfall in the 
region. Daily streamflow and rainfall data for long periods 
of four stream gauging stations, namely Tilga, Jaraikela, 
Gomlai and Jenapur, were collected from Water Resources 
Information System (WRIS) operated by the Central Water 
Commission, India (http://www.india -wris.nrsc.gov.in/
wris.html). The drainage area corresponding to the four 
stations along with data span chosen for the study is pro-
vided in Table 1.

For most of the stations of the database system, the 
data during an overall span 1970s to 2016 are present 
with long and short breaks in some of the stations. It is 
worth mentioning that for Tilga station, data up to 2009 
only are available in continuous form and thereafter 
many breaks are there in the database. Also for the rest 
of the stations, the data up to 2014 only are available 
in continuous form, which are chosen for this study. In 

Fig. 1  Location map of 
Brahmani basin

http://www.india-wris.nrsc.gov.in/wris.html
http://www.india-wris.nrsc.gov.in/wris.html
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the time series of Tilga and Jerailkela, both smaller and 
larger fluctuations are present with many intermittent 
values (characterized by zero values), while in the data 
from other stations, the larger magnitude fluctuations 
are dominant, which indicates that the chances of exist-
ence of cycles of a diverse range of frequencies ranging 
from smaller to larger scales are more in Tilga and Jerai-
kela stations (Fig. 2). 

4  Results and discussion

4.1  Application of AOHSA method for multifractal 
description

The daily streamflow time series from the four stations 
are first decomposed adaptively by the EMD method. 
The decomposition resulted in 21, 19, 20 and 21, respec-
tively, for Tilga, Jeraikela, Gomlai and Jenapur stations. 
From Table 1, it is noticed that the data length is the high-
est for Jerailkela station and the least for Tilga station. It 
is a well-known fact that both the length of the dataset 
and the complexity of the dataset play a role in deciding 
the number of modes from the decomposition [8, 17]. For 
brevity, the modes of decomposition results are not pre-
sented here as the multifractality detection is completely 
based on the final marginal Hilbert spectra estimated by 
the AOHSA procedure. Now, the modes are subjected to 
Hilbert transformation and first the Hilbert energy spec-
trum (for order 2) and Fourier spectrum of different time 

Table 1  Datasets used for the study and drainage area of stations

Station Drain-
age area 
 (km2)

Latitude Longi-
tude

Streamflow data

From To

Tilga 3160 20°59′00″ 83°32′22″ 15-6-
1979

31-3-2009

Jerai-
kela

9160 20°11′51″ 83°13′30″ 1-8-1972 31-5-2014

Gomlai 21,950 20°39′00″ 83°43′55″ 1-2-1979 31-5-2014
Jenapur 33,955 20°38′00″ 84°37′08″ 1-8-1979 29-5-2014

Fig. 2  Time series plots of 
daily streamflows of different 
stations of Brahmani basin. a 
Tilga; b Jeriakela; c Gomlai; d 
Jenapur
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series is prepared. The spectra of streamflow of different 
stations are presented in Fig. 3.

The visual examination of the spectra clearly shows 
that both the Fourier and AOHSA methods detect a 
prominent peak at frequency of (roughly) ~ 0.028 (i.e. a 
period of ~ 400 days). Thus, it could be ascertained that 
the annual periodicity is clearly detected by the Fourier 
and AOHSA methods in the time series from all the sta-
tions. It is further noticed that the nature of evolution 
of both the spectra at inter-annual scales is similar. This 
suggests the possible link of different climatic oscillations 
(operating at inter-annual scales) with the streamflow data 
of the Brahmani river basin. This inference can be logi-
cal, as some of the previous studies established the link 
between Indian monsoon rainfall and large-scale climatic 
oscillations such as ElNiño Southern Oscillation (ENSO) 

and Equatorial Indian Ocean Oscillations (EQUINOO) [9]. 
Moreover, Maity and Nagesh kumar [36] established the 
linkage of basin scale streamflow with the above large-
scale atmospheric circulation patterns at the Mahanadi 
basin, located adjacent to the study area. Hence, it is logi-
cal to ascertain such a linkage of Brahmani river flow with 
the climatic indices ENSO and EQUINOO which operate 
at inter-annual scales. The detection of the range of fre-
quency in which the scale invariance holds is the first step 
in the multifractal detection of streamflow using AOHSA 
method. The scale invariance is detected for each spec-
trum, and the vertical bars marked in Fig. 3 indicate the 
scale invariance range. From the careful perusal of Fig. 3, 
it is noticed that the scale invariance persists in scale 
range between 0.4 < ω < 0.01 day−1 approximately (cor-
responding to a timescale of 2.5–100 days) for different 
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Fig. 3  Scaling ranges of daily streamflow series of different stations of Brahmani basin. a Tilga; b Jaraikela; c Gomlai; d Jenapur. The blue line 
(lower plot) of each panel shows Fourier spectra and red line (upper plot) shows the spectra by HSA method
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time series. Even though highest frequency is nearly equal 
(corresponding to 2.5 days), the lowest frequency is vary-
ing between 30 days to 100 days (1–3 months) in differ-
ent stations (frequency values 0.025, 0.035, 0.022, 0.01 
for different stations). Hence, it can be concluded that in 
general the scale invariance is observed between synoptic 
to intra-seasonal timescales in the Brahmani basin. Fur-
ther, within the observed scale range, the slope of Hilbert 
energy spectrum and Fourier spectrum of different time 
series is computed and marked in the same figure (Fig. 3).

The slopes are also similar for all the time series except 
that for Jeraikela station. This may be due to inconsist-
ent fluctuations, non-stationarity and high intermit-
tency property of the time series of Jaraikela station. 
Now, after identifying the scale ranges the plots of the 
marginal spectra are considered for the moment orders 
q = 0,1,…,5. The marginal spectra of the time series of 
four stations for different moment orders are presented 
in Fig. 4. The large fluctuations of spectral amplitudes 
for the spectra of higher orders (say q > 3) may introduce 
error in estimation of scaling exponent, accordingly 
Lombardo et al. [35] suggested that up to moment order 

3 is sufficient to describe the multifractality of hydro-
logical time series. A comparison of different marginal 
spectra shows that the spectra corresponding to the first 
three moment orders are stable in all stations. But for the 
higher-order moments, the spectra show high fluctua-
tion of amplitudes (with lesser fluctuations in Jenapur 
station) and subsequently this may introduce errors in 
computation of slope of the spectra for higher-order 
moments. This also supports the conclusions of Pandey 
et al. [44] about the consideration of moment orders. 

The slopes of the spectra for different moment order 
q give the scale exponent �(q) which enables us to make 
a plot of �(q) versus q. Finally, the slopes of marginal 
spectra for different moment orders are computed to 
comment on the multifractality of different time series. 
The plot between spectral slope and moment order for 
different stations is presented in Fig. 5.

The spectral slopes for the four series are 1.769 1.886, 
1.942 and 1.951, respectively, for the datasets from Tilga, 
Jeraikela, Gomlai and Jenapur stations. This infers that 
�(1) − 1 values are 0.77, 0.87, 0.94 and 0.95 for different 
stations.
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Fig. 4  Marginal spectra of different streamflow time series of different moment orders. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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4.2  MF‑DFA of daily streamflow

In this section, the results of MF-DF analysis of daily 
streamflow from Brahmani river basin are discussed. The 
MF-DFA method is applied to daily streamflow data to 
evaluate the multifractal properties of the time series: the 
plots between scale (segment sample size) and fluctuation 
function for q = 2 (in log scale), the plot between general-
ized exponent and q order, plot of the mass exponent τ(q) 
versus q order and the spectral width. The plots between 
scale and fluctuation function for q = 2 (in log scale) is pre-
pared by considering the maximum scale as half of the 
data length [11] and presented in Fig. 6.

From Fig. 6, the possibility of multiple crossovers is 
very much evident in the time series of different time 
series. Also by AOHSA method, it is found that in addi-
tion to annual scales, intra-seasonal cycles play a role in 

controlling the variability of streamflows of Brahmani 
basin. In such cases, it is quite difficult to report a unique 
scaling exponent from the raw data as a signature of mul-
tifracatlity; instead, it is quite essential to apply additional 
pre-processing detrending methods [4, 7, 14, 25]. Many 
pre-processing methods for denoising are reported in 
the literature, which include the EMD [18], the Fourier-
detrended (Fourier-based filtering) method [5, 40], the sin-
gular value decomposition (SVD) method [41, 42] and the 
adaptive detrending (AD) method [15]. In this paper, we 
utilize the AD method for the pre-processing detrending 
operation. A briefing on AD method is provided in “Appen-
dix 1”. After applying the AD method, the dominant trend 
output data can be subjected to MF-DFA [7]. In this study, 
a polynomial order of 2 and the number of segmentation 
101 are chosen while invoking the AD method, based on 
past studies [25].
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Fig. 5  Scaling exponents of streamflow time series from Brahmani for different moment orders. Here, �(q) is the scaling exponent in Hilbert 
space. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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In all the four time series, a crossover point is noticed at 
between 354 days to 398 days (log10(2.55) to log10(2.65)) 
which is corresponding to annual scale. In all the cases, 
the slope of the plot before the annual crossover point is 
slightly above unity, which indicates the non-staionarity of 
the series. In all of the series, one crossover point is noticed 
at intra-seasonal scale ranges. It is noticed that the slope of 
the two segments before ‘annual’ crossover point is similar 
and the intra-seasonal scale is least perceptible in the data 
of Jenapur station. The plots of q-order fluctuation func-
tion of different streamflow series are presented in Fig. 7.

The plot between h(q) versus q is helpful to assess 
the multifractality [13]. To represent the scaling expo-
nent, one unit addition is necessary by the relation 
�(q) = h(q) + 1 , where the behaviour of the plot remains 
the same. The scaling exponent plot is presented in 
Fig. 8, which shows the strong nonlinear dependency 
of �(q) on q which suggests that the streamflow time 
series of all stations possesses multifractality. The 
strength of multifractality can also be ascertained by 

GHE plots. Considering the generalized Hurst exponent 
plot, the difference between GHE for q = − 5 and q = 5 
(i.e. h(− 5)–h(5)) gives a value of 4.487, 1.506, 1.547 and 
1.339, respectively, for streamflows of Tilga, Jeraikela, 
Gomali and Jenapur stations. That is, the steeper vari-
ation in GHE plots also confirms the highest degree of 
multifractality of streamflow records of Tilga station.

The higher the value of total spread of GHE plot (∆h), 
the greater will be the degree of multifractality. The total 
spread (∆h), left and right spread (∆hL and ∆hR), of the 
time series of four stations is summarized in Table 2. The 
Hurst exponent (H) for the q order 2 (i.e. h(2)) for the 
four time series is found out to be 0.718, 0.703, 0.727 
and 0.731, respectively, for Tilga, Jeraikela, Gomlai and 
Jenapur stations. It is to be recalled that these are the 
values for generalized Hurst exponent for q = 2 and the 
values of GHE for q = 1 are equivalent to the classical 
Hurst exponent (H) by rescaled range analysis [30]. The 
h(1) values of the four stations are found to be 0.865, 
0.854, 0.871, 0.876.
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Now, the relation between τ(q) and q also is considered 
to investigate multifractality of different time series. Fig-
ure 9 shows that the behaviour is different for q < 0 and 
q > 0. The slopes of τ(q) and q are also indicated in Fig. 9, 
which shows that the difference of between the slopes of 
the two segments is 4.68, 1.605, 1.645 and 1.442, respec-
tively, for streamflows of Tilga, Jeraikela, Gomali and 
Jenapur stations. The higher slope difference also refers 
to a higher degree of multifractality; the streamflows of 
Tilga station show the highest degree, and that of Jenapur 
display the lowest degree.

The multifractal spectra for the streamflow of the four sta-
tions are presented in Fig. 10. A wider singularity spectrum 
indicates a higher degree of multifractality, and a narrow 
width indicates lesser degree of multifractality. For a multi-
fractal time series, the shape of singularity spectrum will be 
an inverted parabola whose left- and right-hand wings cor-
respond to positive and negative q. The width of the spec-
trum f(�) reflects the strength of multifractality. The shape 
and extent of the singularity spectrum f(�) curve contain sig-
nificant information about the distribution characteristics of 
the examined dataset and describe the singularity content of 
the time series. The degree of multifractality of a time series 
is characterized by the difference between the maximum 
and minimum values of α, Δ� = �max − �min . This param-
eter is identical to the width of the singularity spectrum f (�) 
at f = 0. Figure 10 shows that different multifractal spectra 
exhibit parabolic shape, indicating the multifractal structure 

of the time series. Spectra of streamflow series show right 
fluctuation, which indicates that multifractal structure of 
daily streamflow time series is insensitive to large magni-
tudes of local fluctuations [24]. The base width of multifractal 
spectra (αmax − αmin) indicates that the width is largest (4.88) 
for the spectra of streamflows of Tilga station and minimum 
for Jenapur station (1.69). This shows that the streamflows 
of Tilga show the highest degree of multifractality and 
indicate the faster variation of streamflow to precipitation 
events in this sub-catchment for which the drainage area is 
the least (3160 km2). These results support the findings of 
Hirpa et al. [12] that multifractality degree reduces with an 
increase in catchment size, and those obtained by AOHSA 
method, even though it obviously need not be the single 
factor deciding the degree of multifractality and persistence 
[48]. The higher multifractal degree of the series indicates 
more heterogeneity of streamflow records, which is charac-
terized by sudden bursts of high frequency, irregularities or 
intermittencies. In other words, singularities are highest for 
the streamflow records of Tilga, in which the changes are 
more extreme and prediction is more difficult for this station.

Asymmetric index (R) is a useful parameter for multifrac-
tal analysis [13], which can be derived from the multifractal 
spectrum. It is obtained by following relation:

(15)R =
Δ�L − Δ�R

Δ�L + Δ�R
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Fig. 7  q-Order fluctuation function and corresponding regression computed by MF-DFA. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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where Δ� = �max − �min ; Δ�L and Δ�R are, respectively, 
the width of left- and right-hand branches of the mul-
tifractal spectrum curve; and their values describe the 
distribution patterns of high and low fluctuations. The 
value of R ranges from − 1 to 1. It quantifies the devia-
tions of the multifractal spectrum curve. R > 0 suggests a 
left-hand deviation of the multifractal spectrum, likely to 
have resulted from some degree of local high fluctuations; 
R < 0 suggests a right-hand deviation with local low fluc-
tuations, and R = 0 represents a symmetrical multifractal 
spectrum. ∆f(α) is the difference between the maximum 
and minimum values of f(α).The difference ∆f(α) between 

maximum and minimum values of the singularity provides 
an estimate of the spread in changes in fractal patterns. 
Since ∆f(α) denotes the frequency ratio of the largest to 
the smallest fluctuation, ∆f(α) > 0 means that the largest 
fluctuations are more frequent than smallest fluctuations, 
while ∆f(α) < 0 is the reverse. Values of multifractal param-
eters are presented in Table 2. It is noticed that the R is 
negative for streamflows of Tilga and Jenapur, while it is 
positive for that of Jeraikela and Gomali stations. The nega-
tive value of R indicates that the spectra are right deviant, 
i.e. singularity of low streamflow values is larger than high 
values. Table 2 shows that in the streamflow series of all 
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Fig. 8  The scale exponent plots ( �(q) vs q) of daily streamflow data from four stations in Brahmani basin. a Tilga; b Jaraikela; c Gomlai; d 
Jenapur

Table 2  Multifractal parameters of daily streamflow series of four stations

Station ∆h(q)L ∆h(q)R ∆h(q) ∆αL ∆αR R ∆f(α)

Tilga 3.779 ± 0.016 0.707 ± 0.018 4.487 ± 0.017 − 2.759 ± 0.012 − 2.123 ± 0.011 0.13 ± 0.01 0.332 ± 0.021
Jeraikela 0.8 ± 0.012 0.706 ± 0.014 1.506 ± 0.02 − 0.884 ± 0.014 − 1.00 ± 0.015 − 0.062 ± 0.02 0.134 ± 0.018
Gomlai 0.827 ± 0.015 0.719 ± 0.018 1.547 ± 0.018 − 0.877 ± 0.01 − 1.00 ± 0.011 − 0.067 ± 0.01 0.239 ± 0.015
Jenapur 0.761 ± 0.012 0.577 ± 0.015 1.339 ± 0.018 − 0.883 ± 0.01 − 0.809 ± 0.012 0.038 ± 0.01 0.226 ± 0.018
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Fig. 9  τ(q) versus q curves of daily streamflows of four stations in Brahmani basin. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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Fig. 10  Multifractal spectra of daily streamflow time series of four stations in Brahmani basin. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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stations ∆f(α) value is positive, which shows that the larg-
est fluctuations are more frequent than smallest fluctua-
tions in the streamflow series of all stations.

Determination of the cause of multifractality is one 
of the key steps in multifractal analysis. It is popularly 
known that the two major causes of multifractality are: 
(1) due to different long-term temporal correlations for 
small and large fluctuations and (2) due to the broad-
ness (fatness) of probability density function (PDF), 
which indicate the variations. In this study, the popu-
lar approaches of shuffling and use of surrogate data 
are adopted to detect the cause of multifractality. The 
shuffling procedure destroys any temporal correlations 
in the data, but by retaining the distributions the same. 
To quantify the influence of the fatness of PDF, the sur-
rogate time series generated from the original can be 
used. The surrogate series are generated by randomiz-
ing their phases in Fourier space so that the surrogate 
series are Gaussian. If the multifractality is derived from 
temporal correlations, the generalized Hurst exponent 

h(q) obtained for shuffled the data is expected to be 
0.5. If multifractality is due to broadness of PDF, h(q) 
obtained for surrogate series will be independent of q 
[39]. If both long-range correlation and broadness of 
PDFs are responsible for multifractality, the shuffled and 
surrogated series will show lower multifractality than the 
original series. The details of shuffling and the procedure 
for generating surrogate series through phase randomi-
zation can be found elsewhere [13, 37, 38, 43]. The plots 
of shuffled surrogated and original estimates of general-
ized Hurst exponent are provided in Fig. 11.

Figure  11 shows that on shuffling the series, the 
Hurst exponents are practically brought down to 0.5 in 
all cases, which clearly shows the dominant influence of 
correlation properties on the multifractality of the series. 
The changes in Hurst exponents are statistically quanti-
fied by reduced Chi-square estimate [39] given by

(16)�r♢2 =
1

N

N
∑

i=1

[h(qi) − h
♢
(qi)]

2

[�o(q)
2 + �♢(q)

2]
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Fig. 11  Generalized Hurst exponent as a function of moment order (q) for original, shuffled and surrogate streamflow time series of four sta-
tions in Brahmani basin. a Tilga; b Jaraikela; c Gomlai; d Jenapur
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where the symbol ♢ stands for shuffled or surrogate cases 
and N is the number of degrees of freedom. The values of 
reduced Chi-square along with the variance of the gen-
eralized Hurst exponent estimates of the three cases are 
provided in Table 3. Also the basic multifractal properties 
for original, shuffled and surrogate series are provided in 
Table 4. Results of Table 4 show a significant reduction in 
these properties for the shuffled series when compared 
to original and surrogate series. In short, it can be inferred 
that the multifractality of different series is due to domi-
nant effect of correlation properties, and the effect of 
broadness of PDF is rather marginal in all the four records.

This study demonstrated an alternate approach for 
multifractal characterization of daily streamflow, which 
may eventually help in developing appropriate multifrac-
tal models, regional flood frequency analysis and water 
resources management in different parts of Brahmani 
basin. AOHSA is applied as an alternative method for 
explain the science behind the runoff processes of a basin 
and compared with the popular MF-DFA to examine its 
competency. However, owing to the infant stage of its 
theoretical development, more mathematical investiga-
tions are to be performed to use it as a tool alternative to 
MF-DFA for comprehensive multifractal analysis.

5  Conclusions

This paper presents the application of arbitrary-order Hil-
bert spectral analysis (AOHSA) and MF-DFA methods for 
describing the scaling characteristics and explaining the 
scientific reasoning of runoff processes of streamflows of 
Brahmani basin India. The major conclusions drawn from 
this study are:

• The daily streamflows of Brahmani basin river basin, 
India, displayed strong long-term persistence

• AOHSA method clearly detected that the scaling 
ranges between synoptic to intra-seasonal timescales 
(3 days–3 months approximately) in the daily stream-
flow time series of four stations of Brahmani basin

• AOHSA is an efficient alternative to assess the mul-
tifractality of daily streamflows which avoid the pre-
detrending operation and detect the scaling ranges 
even under the presence of strong periodic compo-
nents superposed to scaling regimes which may lead 
to multiple crossovers in the fluctuation function plots 
of MF-DFA analysis

• Multiple evaluation properties of the two methods of 
analysis confirmed that the highest degree of multifrac-
tality is for the streamflow of Tilga station, which may 
be due to the faster response of this sub-catchment to 
the precipitation events

• The multifractality of all the four streamflow time series 
is found to be due to the dominant influence of cor-
relation properties than due to the broadness of prob-
ability density function.
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Table 3  Statistical properties 
of original, shuffled and 
surrogate series of streamflow 
of different stations

Statistical property Tilga Jeraikela Gomlai Jenapur

Variance of h(q) (original) 0.1504 0.1447 0.0312 0.1448
Variance of h(q) (shuffled) 1.13 × 10−05 0.000101 0.000826 7.08 × 10−05

Variance of h(q) (surrogate) 0.0370 0.0158 0.0169 0.0469
Reduced Chi-square (shuffled) 3.207 3.413 5.697 3.863
Reduced Chi-square (shuffled) 1.828 1.500 2.487 1.099

Table 4  Multifractal properties of original, shuffled and surrogate 
series of streamflow of different stations

Station Property Original Shuffled Surrogate

Tilga Width of 
spectra

1.396 ± 0.021 0.12 ± 0.01 0.872 ± 0.011

H(h(q = 2)) 0.783 ± 0.019 0.547 ± 0.01 0.416 ± 0.013
τ(q = 2) 0.567 ± 0.02 0.094 ± 0.01 0.16 ± 0.01

Jeraikela Width of 
spectra

1.369 ± 0.02 0.065 ± 0.01 0.558 ± 0.01

H(h(q = 2)) 0.789 ± 0.02 0.504 ± 0.012 0.588 ± 0.011
τ(q = 2) 0.577 ± 0.018 0.008 ± 0.01 0.177 ± 0.01

Gomlai Width of 
spectra

0.776 ± 0.02 0.155 ± 0.01 0.644 ± 0.01

H(h(q = 2)) 0.797 ± 0.02 0.519 ± 0.011 0.495 ± 0.012
τ(q = 2) 0.595 ± 0.024 0.04 ± 0.01 0.01 ± 0.01

Jenapur Width of 
spectra

1.36 ± 0.02 0.071 ± 0.01 0.955 ± 0.12

H(h(q = 2)) 0.789 ± 0.02 0.458 ± 0.01 0.51 ± 0.01
τ(q = 2) 0.577 ± 0.02 0.08 ± 0.011 0.02 ± 0.01
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Appendix 1

Adaptive detrending (AD) method

A discrete series, X(i) with i = 1,2,….,N, is partitioned with 
overlapping windows of length (2n + 1). An arbitrary poly-
nomial Y is constructed in each window of length (2n + 1). 
In order to get a continuous trend function (and to avoid 
sharp jumps), the following weighted function for the 
overlapping part of the � th segment can be used [15]:

J = 1,2,3,…,n + 1, recollecting that there will be (n + 1) over-
lapping segment for each neighbouring point.

The size of each segment was calculated by 
2n + 1 = 2 × int

[

N−1

wadaptive+1

]

+ 1 . It leads to an increase in the 

value of the adaptive weight wadaptive and the order of the 
polynomial. The fluctuations that disappear get sup-
pressed. For the non-overlapping segments, the adaptive 
detrended data are given by Xd(i) = (X (i) − Y�(i)) , while 
those for overlapping segments are given by 
Xd(i) = (X (i) − Y

overlap
� (i)) . The order of the polynomial and 

the adaptive weight (number of segmentations, wadaptive ) 
are the two control parameters which are to be chosen 
appropriately during the implementation of AD 
algorithm.
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