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Abstract
The statistical mathematical models are developed to investigate the influence of cutting parameters on surface rough-
ness, tool wear, cutting force, tangential force and the work piece vibration in boring of AISI 4340 steels. A full factorial 
design of experiments is used to conduct 27 experiments on AISI 4340 as the work piece material and TiCN–Al2O3–TiN 
multi-layered coated carbide inserts. Online data acquisition of cutting forces on the cutting tool and the work piece 
vibrations are measured by using piezo-electric dynamometer and laser Doppler vibrometer, respectively. This paper 
proposes optimization method using grey relational analysis (GRA) and predictive models like support vector machine 
and response surface method are used to predict the GRG values and optimize the machining parameters. The GRA is 
used for converting multi response optimization problem into optimization of single objective of grey relational grade 
(GRG). Finally confirmation test was performed and also optimized the machining parameters to minimize the surface 
roughness (Ra), tool wear (VB), cutting force (Fx), tangential force (Fz) and work piece vibration (VA).

Keywords  Surface roughness · Tool wear · Cutting forces · Tangential force · Work piece vibration · GRG​ · SVM · RSM

1  Introduction

Boring operation is one of the critical machining opera-
tions, and moreover handling chatter in internal turn-
ing operations is a difficult part of the manufacturing 
process. In boring operation, boring bar plays a vital role 
and it affects the surface roughness, tool wear and influ-
ences the cutting forces due to the boring bar vibrations 
or deflections. In boring operation, vibration is the main 
factor, which effects the surface roughness, tool wear and 
cutting forces [1]. Mourad et al. [2] indicated that identifi-
cation of chatter in machining processes is critical part for 
enhancing the surface quality and eliminating the noise 
and cutting tool wear. It is important to choose appropri-
ate boring bar in order to reduce or minimize the chatter 

in boring process Ihsan et al. [3] specified that the size of 
the boring bar and assessed based on L/D ratio (length 
diameter ratio) of boring bar. They performed experiments 
with different ratios and shown the best L/D ratio as 3, and 
the results indicated that there is less chatter in boring 
operation. In the present work has given preference to the 
L/D ratio as 3 to reduce the vibrations.

In metal cutting operations, one of the foremost impor-
tant requirement of precision machining parts is surface 
quality. Surface finish is one of the important quality fac-
tors of many bored work pieces. Different aspects that is 
tool and work piece materials, machining forces, cutting 
tool materials and cutting conditions are influence the sur-
face roughness [4]. In aircraft and aerospace industries to 
design the machine components toughness and strength 
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are the requirements for fundamental design. AISI 4340 
high strength low alloy steels are generally used in both 
the industries and also automobile industries for manu-
facturing machine components such as spindles, axle 
and main shafts, gears, power transmission gears and 
couplings. Suresh et al. [5] investigate the influence of 
cutting parameters and machining time on machinability 
characteristics using RSM on AISI 4340 high strength low 
alloy steel using coated carbide inserts and they reported 
that the combinations of low machining parameters and 
machining time to minimize the machining characteristics.

In metal cutting operations, direct measurement of 
online cutting forces, work piece vibration, cutter vibration 
signals are not easy and it is a complex setup. In present 
applications researchers used laser doppler vibrometers 
(LDV) [6, 7] to measure the vibrations on rotating work 
pieces and cutters. The usage of LDV is comfortable and 
non-contact type of measuring device, setting up of LDV is 
stress-free and it is used to measure the work piece vibra-
tion as well as cutter vibration in very less time, when com-
pared with other vibration measuring devices like accel-
erometers [8]. The LDV measures the vibration in the form 
of acousto-optic emission (AOE) signals and a fast Fourier 
transformer (FFT) was used to generate features from AOE 
signals changed to frequency domain [6].

The machining of various hard materials the three 
major factors to be considered such as cutting forces, sur-
face roughness and tool wear. Controlling the machining 
process, cutting forces is one of the significant character-
istic and it influence the machining system stability. The 
cutting force depends on the complex arrangements of 
the machining parameters such as cutting speed, feed 
rate, depth of cut and geometrical parameters such as tool 
rake angle, inclination angle, side and end cutting edge 
angles, nose radius, cutting tool and work piece materi-
als [9]. Lalwani et al. [10] studies and optimized the effect 
of machining process variables on cutting forces during 
hard turning operation. They observed that feed rate and 
depth of cut have the significant contributions on cutting 
and thrust forces and cutting speed not significantly influ-
ence the forces, and moreover depth of cut was the most 
influenced then feed and cutting velocity.

The manufacturing industries are monitored and 
focused continuously to enhance the effective ness and 
efficiency of their production goals. Development of 
statistical and mathematical models are important to 
optimal cutting conditions in order to achieve quality 
products with minimal production cost, time. Machin-
ing variables optimization and evolution of the statistical 
models are vital role in production process [1]. Hosseini 
et al. [11] made a review on optimization methods and 
techniques, they reported the use of optimization prob-
lems in the field of manufacturing and also they concluded 

that many of the authors are extensively used optimization 
of input processing variables. Munish et al. [12] investi-
gated the influence the process parameters on machining 
characteristics such as cutting forces, tool wear, surface 
finish and cryogenic conditions (dry and wet) during the 
machining 0f AISI 4340. The GRA is executed to study the 
significant and optimum settings of process parameters 
and they reported that using GRA and ANOVA machin-
ing performance was enhanced. Mohammad et al. [13] 
adopted the support vector machine (SVM) approach to 
predict blast-induced ground vibration. They studied in 
two limestone quarries and therefore the observational 
data was employed to train the SVM. They compared the 
experimental data with predicted the values. They found 
that SVM is predicted the blast-induced ground vibration 
levels with coefficient error of 0.944 which means that 
predicted values are closed to experimental results. RSM, 
Taguchi methods are the statistical modelling methods 
are extensively used by researchers to prepare design of 
experiments and optimization. RSM is performing a vital 
role for optimization of process variables in studies of the 
machinability [14]. Mandal et al. [14] investigate the effect 
of cutting parameters on machining forces in finish hard 
turning of AISI 4340 steel using developed Zirconia Tough-
ened Alumina (ZTA) insert prepared by powder metallurgy 
technique. They performed RSM to identify significant 
parameters on machining forces. They revealed that cut-
ting speed and depth of cut have predominant effect on 
feed force whereas feed and depth of cut influencing the 
thrust force and all the cutting parameters are significant 
effect on cutting force. Neseli et al. [15] used the RSM tech-
nique for the effect of cutting tool geometry parameters 
on surface roughness. The indicated results shows that 
tool nose is the dominant factor to effect the surface finish.

According to author’s knowledge, very few literature 
is presented on machining with multi-layered cutting 
inserts as well as the effect of machining parameters on 
over all significant machining characteristics such as sur-
face roughness, tool flank wear, cutting forces and work 
piece vibrations using statistic and predicted models. In 
this present study, boring experiments were conducted 
on AISI 4340 steels with multi-layered cutting tool inserts 
in dry cutting condition. Mathematical models such as 
GRA and prediction methods such as SVM and RSM are 
established in between process variables and machining 
process variables to optimize and prediction. Analysis of 
Variance (ANOVA) is also used to identify the influencing 
factors that affect the surface roughness, tool flank wear, 
cutting force, tangential force and work piece vibration 
and performed the overall performance to identify the 
optimal machining parameters.
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2 � Multi‑objective optimization method

2.1 � Grey relational analysis and data 
pre‑processing

It has been identified that if the GRA alone was used for 
experimental investigations, a unique optimal solution was 
not obtained for all the performance characteristics. Grey 
relational analysis based on the grey system is a statistical 
technique to solve multi response optimization [16].

GRA converts the multi response optimization problem 
into the single response optimization. In general to evaluate 
the sequence characteristics GRA is used. GRG is the quantita-
tive index in the GRA [17]. In the present study pre-process-
ing raw data was used as the“smaller is better” for expected 
sequence data, to normalize the surface roughness, cutting 
tool flank wear, cutting force, tangential force and work piece 
vibration which were performed in the range between 0 and 
1. The original sequence is normalized in Eq. (1) [17–19].

where p = 1,…,m; q = 1,….,n. ‘m’ is the number of experi-
mental data items and ‘n’ is the number of machining 
parameters. x∗

p
(q) is the sequence after the data pre-pro-

cessing, xo
p
(q) is the original sequence. maxxo

p
(q) is the larg-

est value of xo
p
(q) and minxo

p
(q) is the lowest value of xo

p
(q).

2.2 � Calculation of grey relation coefficient (GRC) 
and grey relation grade (GRG)

To represent the correlation between the required 
response and the experimental data, the grey relation 
coefficient (GRC) is to be used and it is calculated from 
the normalized data by the following Eq. (2) [17–19].

where �p(k) is the GRC, the Δ0p(q) is the offset in the abso-
lute values of the reference sequence xo

p
(q) and compara-

bility sequence x∗
p
(q) . Δmin and Δmax are the minimum 

and maximum values of Δ0p(q) . �  is the distinguish-
ing coefficient. The value can be adjusted to the range 
between 0 and 1 [17].

After the grey relational coefficient (GRC) acquired the 
average values of the grey relational coefficients are consid-
ered as a grey relational grade (GRG). To calculate grey rela-
tion grade by using Eq. (3) to assess the multiple response 
into a single response [18].

(1)x∗
p
(q) =

max xo
p
(q) − xo

p
(q)

max xo
p
(q) −min xo

p
(q)

.

(2)�p(k) =
Δmin + �Δmax

Δ0p(q) + �Δmax

3 � Support vector machine (SVM)

Support vector machine was initially proposed by Vapnik 
[19] to classify the regression concerns of appropriate gener-
alization. In ANN approach, large quantity of samples or facts 
is essential to get expected responses or results. But using 
the SVM approach, much to a lesser extent variety of sam-
ples or records is sufficient to get the expected responses 
with much lesser errors [20]. They used the SVM method-
ology to predict processing time and electrode wear, they 
used with less number of experimental data. SVM is supe-
rior to conventional experimental risk minimization princi-
ple and the advantage of SVM is its structure risk minimiza-
tion principle. The linear function is formulated in the high 
dimensional feature space, with the form following by Eq. (4) 
[20, 21].

where �(x) is the high dimensional feature space, which 
is nonlinearly mapped from the input space x. The weight 
vector w and bias b are estimated by minimizing.

where

L (d, y) is called the �-intensive loss function. This func-
tion indicates that errors below � are not penalized. The 
term C 1

n

∑n

i=1
L(di , yi) is the empirical error. 1

2
w2 measures 

the smoothness of the function. Both C and � are prescribed 
parameters, � is called the tube size of SVM, and C is the regu-
larization constant determining the trade-off between the 
empirical error and the regularized term. The SVM method-
ology was also used in estimating the surface roughness in 
turning process [22]. In this study SVM used to train the GRG 
values from experimental data to predict the GRG values.

4 � Response surface methodology (RSM)

RSM is enumerates the relationships between the control-
lable input process parameters and the obtained output 
response variables [15]. RSM was execute to identify the 
effect and influence of process parameter variables such 
as surface roughness, cutting tool flank wear, cutting force, 
tangential force and work piece vibrations and also used 

(3)
� =

1

n

n∑

q=1

�p(q), � ∈ (0 − 1)

(4)y(x) = wt�(x) + b

(5)R(c) = C
1

n

n∑

i=1

L(di , yi) +
1

2

‖‖‖w
2‖‖‖

(6)L�(d, y) =

{
|d − y| − �, |d − y(x)| ≥ �

0, otherwise
.
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to predict the GRG values obtained from the experimental 
data. The RSM is one of the effective tool to identify the 
significant parameters and optimizing the responses by 
using mathematical and statistical procedures for model-
ling and analysis of experimental results [21]. Jeyakumar 
et al. [23] performed the experimental investigation and 
RSM methodology for modelling on the machinability 
of aluminium (Al6061) silicon carbide particulate (SiCp) 
metal matrix composite (MMC) during end milling opera-
tion. The prediction model RSM was used to determine the 
combined effect of machining parameters such as cutting 
speed, feed rate, depth of cut and nose radius on the cut-
ting force, cutting tool wear and surface finish. Hessainia 
et al. [24] used response surface methodology (RSM) to 
optimize the cutting parameters based on surface rough-
ness and tool vibrations in the hard turning of 42CrMo4 
hardened steel by Al2O3/TiC mixed ceramic cutting tool 
under different cutting conditions. The results observed 
that the feed rate is the dominant factor affecting the sur-
face roughness, whereas vibrations on radial and in main 
cutting force directions have a low effect on it. Bhardwaj 
et al. [25] also performed RSM methodology with centre 
composite rotatable design on AISI 1091 steel during the 
turning operation to observed influenced parameter on 
surface roughness. The agreement of the results revealed 
that the feed and depth of cut was found as significant 
parameter on surface roughness. In RSM the quantitative 
relationship between input and output variables is in the 
following Eq. (7) [26].

where x is the desired response and f  is the function, 
dependent variable and a1, a2, a3,… , an are independent 
variables and ef is fitting error. In the present study, RSM 
was used according to central composite design (CCD) for 
the prediction of GRG values obtained from experimental 
data.

5 � Experimental procedure

5.1 � Work piece material, cutting tool 
and experimental method

In the present experiments AISI 4340 high strength low 
alloy steel of hardness 228 HV was chosen as a work 
piece material. The length, outer and inner diameters of 

(7)x = f (a1, a2, a3,… , an) ± ef

the work piece are 100 mm, 90 mm and 40 mm, respec-
tively. These steels are generally used in automobile 
industries for manufacturing machine components such 
as spindles, axle, main shafts, gears, power transmission 
gears and couplings. The chemical composition of AISI 
4340 steel with all the percentages of elements is pre-
sented in Table 1. Multi-layered (TiCN, Al2O3, TiN) chemi-
cal vapour deposition (CVD)-coated tungsten carbide 
cutting tool inserts (DCMT11T304GP) were used in this 
experiment with the nose radii of 0.8 mm as shown in 
Fig. 1. Cutting tool geometry is shown in Table 2. Stand-
ard boring bar (S25RSDUCR 11) with insert attached to 
dynamometer is shown in Fig. 2. The experiments are 
planned in dry cutting condition using design of experi-
ment with three levels of spindle speed (SS), feed rate (F) 
and depth of cut (DOC) as a control factors which con-
sist of 27 runs of experiments and it is shown in Table 3. 
Experimental setup is prepared as shown in Fig. 3. Each 
and every experiment was stared with a fresh cutting 
edge and the machining was continued for the length of 
100 mm. In order to minimize the influence of vibrations 
on the tool and work piece a recommended L/D ratio 
of 3 for boring operations [3] was used in the present 
experiments. Surface finish (Ra) of the machined sur-
faces at end of the each cut is measured along the feed 

Table 1   Chemical composition of AISI 4340

Element Fe Ni Cr Mn C Mo Si S P

Content (%) 95.195–96.33 1.65–2.00 0.700–0.900 0.600–0.800 0.370–0.430 0.200–0.300 0.150–0.300 0.0400 0.0350

Fig. 1   Tool inserts

Table 2   Cutting parameters with their levels

Cutting parameters Units Level 1 Level 2 Level 3

Spindle speed (SS) rpm 360 460 560
Feed rate (F) mm/rev 0.12 0.16 0.2
Depth of cut (DOC) mm 0.2 0.4 0.6
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direction using surftest SJ 301 over the sampling length 
of 0.8 mm. Cutting tool flank wear (VB) maximum was 
observed by using olympus metallurgical microscope. 
Cutting force (Fx) and Tangential force (Fz) were meas-
ured for each cut using by piezo-electric dynamometer 
(Make: Kistler, Model: 9272). The rotating work piece 

vibration signals are measured by using LDV for each 
trail cut in the machining process. According to the Ploy-
Tec 100 V Laser Doppler vibrometer manual optimum 
measuring distance from the rotating object is 3 m. In 
the present study LDV is placed 1.5 m distance from 
the rotating spindle. Vibration is measured in the feed 
direction. Vibration data is acquired during the 2nd cut 
in every test condition. Cutting tool rejection criteria or 
tool failure is made based on flank wear reaches 0.6 mm 
(ISO 3685:1993). Experimental measured variables data 
are listed in Table 3.

6 � Results and discussion

Experimental results of the output responses such as 
surface roughness (Ra), tool wear (VB), cutting force (Fx), 
tangential force (Fz) and work piece vibration (VA) are 
shown in Table 3. These responses are used to develop sta-
tistical and predictive methods to identify the significant 

Fig. 2   Boring bar with attached to dynamometer

Table 3   Experimental 
results based on design of 
experiments and measured 
responses

Experi-
mental 
run

Design of experiments Ra (µm) VB (mm) Fx (N) Fz (N) VA (µm)

SS (rpm) F (mm/rev) DOC (mm)

1 360 0.12 0.2 2.13 0.149 137.00 95.12 56.53
2 460 0.16 0.2 3.18 0.136 109.23 68.88 89.54
3 460 0.2 0.4 2.84 0.338 246.28 146.91 68.46
4 360 0.12 0.6 1.23 0.245 377.40 40.21 35.87
5 460 0.2 0.2 3.88 0.134 118.51 65.45 45.82
6 360 0.2 0.4 4.43 0.134 208.00 152.5 41.33
7 560 0.16 0.4 2.75 0.222 220.40 127.4 65.45
8 360 0.16 0.4 2.19 0.278 146.50 115.8 54.74
9 560 0.2 0.4 2.67 0.228 256.00 156.1 41.33
10 360 0.16 0.2 3.18 0.145 73.53 41.44 50.83
11 560 0.12 0.6 2.19 0.187 190.80 89.59 40.42
12 560 0.12 0.2 3.29 0.164 110.80 87.56 29.73
13 460 0.12 0.4 1.94 0.14 232.12 59.85 31.8
14 560 0.16 0.2 4.36 0.151 133.90 110.1 80.56
15 560 0.2 0.6 3.54 0.421 286.00 129 47.8
16 360 0.2 0.2 3.87 0.163 113.90 58.9 67.61
17 460 0.12 0.2 2.43 0.137 100.51 85 51.86
18 460 0.16 0.4 2.82 0.342 213.47 109.1 72.84
19 560 0.16 0.6 1.42 0.219 232.80 92.97 50.46
20 560 0.2 0.2 2.48 0.178 121.60 82.3 60.6
21 360 0.16 0.6 3.72 0.281 378.30 94.94 42.2
22 360 0.12 0.4 2.49 0.276 120.80 108.3 39.23
23 360 0.2 0.6 1.95 0.581 243.90 170 112
24 560 0.12 0.4 1.86 0.303 257.20 105.2 108.7
25 460 0.16 0.6 2.41 0.283 309.34 89.43 49.57
26 460 0.2 0.6 2.54 0.519 253.51 154.42 88.6
27 460 0.12 0.6 2.12 0.15 365.68 51.68 31.22
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parameters. The maximum flank wear was measured by 
using optical microscope. These images are used to promi-
nent tool wear occurred during machining process. Cra-
ter wear and flank wear of the multi-layered cemented 
carbide inserts are presented in Fig. 4. Better magnifica-
tion and study of the wear patterns scanning electronic 
microscopy (SEM) images were used, and nose wear and 
flank wear on the cutting tool insert are illustrated in Fig. 5. 
The time domain and frequency domain spectrographs 
of work piece vibrations were measured with LDV. The 
acousto-optic emission (AOE) signals acquired during 
machining and fast Fourier transform (FFT) analyser are 
used to process the AOE signals into different frequency 
domains, and it is presented in Fig. 6. The machining force 
signals were measured with piezo-electric dynamometer. 
The DynoWare software was used to analyse the machin-
ing forces signals as shown in Fig. 7. All the images are pre-
sented for the experimental test run of 360 rpm, 0.12 mm/
rev of feed, 0.2 mm of DOC.   

Fig. 3   Experimental setup for boring operation and measurement 
of cutting forces and work piece vibrations with data acquisition 
(DAQ) systems

Fig. 4   a Flank wear and b 
crater wear of multi-layered 
cutting tool insert

Fig. 5   Scanning electronic microscopy (SEM) images of (a) nose wear and (b) flank wears
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7 � Grey relational analysis

7.1 � Normalizing the experimental data

In the present study performance characteristics such as 
surface roughness, tool wear, cutting force, tangential 
force and work piece vibrations with lower or smaller 
value indicated better functioning. To execute data 
pre-processing in the grey relational analysis process, 
performance characteristics are taken as “lower is the 
better.” The GRA is used to study the relation between 
degree of the factor sequence and performance 
sequence, since the GRG represents the correlation 
degree of two data sequences. Firstly raw data is pre-
processed which was called grey relational generation. 
The raw data is changed to dimensionless sequences 
in Eq. (1). The factors and performance sequences are 
set to be x∗

p
(q) . The normalized data sequences x∗

p
(q) 

can be calculated by using Eq. (1) and values are listed 
in Table 4. It is shows the results of the pre-processes 
data. The normalized data range is between 0 and 1. 

The preeminent normalized experimental result should 
be equal to 1. 

7.2 � Calculation grey relational coefficient

After normalizing the experimental results, the normalized 
performance reference and comparability sequences are 
substituted into Eq. (2) and the deviation sequence Δ0p(q) 
was calculated. Then the calculation of grey relation coef-
ficient for each experiment was done by using Eq. (2). In the 
present study, the distinguishing coefficient � is aimed as 
0.5 for calculating the grey relational coefficients [17] and 
the results of the deviation sequence are shown in Table 4. 
The grey relation coefficient values are presented in Table 4.

7.3 � Calculation of grey relational grade

Finally to determine the grey relational grade (GRG), the 
mean value of the grey relational coefficients was acquired. 
To calculate each grey relational grade for experiment 
Eq. (3) was used in the same method. Grey relational grade 

Fig. 6   Work piece vibration signals in (a) time domain (b) frequency domain spectrographs

Fig. 7   Sample cutting force 
signal from dynamom-
eter (make: kristler) using 
DynoWare software
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was generally executed to assess the multiple responses as 
a single response [18]. The grey relational coefficients and 
grey relational grades are presented in Table 4. It is clearly 
identified the experimental number 10 has the highest 
GRG value. Therefore the experimental run number 10, i.e. 
360 rpm spindle speed, 0.16 mm/rev feed rate and 0.2 mm 
depth of cut is indicated that the optimal cutting param-
eters setting for minimum surface roughness, flank wear, 
cutting force and tangential force and work piece vibra-
tion, simultaneously which is the best multi-performance 
characteristics among the 27 experiments. Grey Relational 
Grade (GRG) signifies the correlation between the compa-
rability sequence and the reference sequence. Grater val-
ues of GRG represent that compare sequence incorporates 
a stronger correlation to the reference sequence [27].

8 � Prediction of grey relational grade (GRG) 
values with SVM

In the Present study GRG values are established as an indi-
vidual for SVM model. For SVM model a nonlinear kernel 
was taken because of the machining operation is nonlinear 
and also for the better concert [20]. Then dot function ker-
nel was selected as kernel function for the model. In rapid-
minner 5.0 software SVM coefficients C and ε are optimized 
using optimization of SVM parameters. The optimized val-
ues of C and ε are 1000 and 0.001 for grey relational grade 
values and then for experimental data separate SVM model 
was trained. Predicted grey relational grade (GRG) values 
are presented in Table 5. It is identified that there is no sig-
nificant deviations between predicted responses of GRG 
values as well as experimental GRG values. The obtained 
value of the root mean square error (RMS) was 0.056 which 
shows that means the SVM model method predicted the 
results are close or near to the experimental GRG results 
as illustrated in Fig. 8. Prediction models like ANN requires 
large number of sample data whereas SVM model needs 
less range of samples data for training. Amit kumar [28] 
also used RSM, ANN, SVR methods to develop the empirical 
relation methods to predict the surface finish, cutting tool 
wear and required power in turning operation. The results 
indicated that ANN and SVM models were higher than RSM 
model within the prediction of cutting parameters.

9 � ANOVA results for grey relational grade 
(GRG) predicted values

In the present study, effect and significance of spindle 
speed, feed rate and depth of cut on GRG-predicted values 
were studied. Analysis of variance (ANOVA) was executed 

to determine the predicted responses of GRG statistically 
and also to find out significant machining parameters and 
significant interaction of machining parameters on the 
GRG-predicted values. The ANOVA was executed at the 
confidence level of 95%, and the machining parameters 
which are aiming P value less than 0.05 are recognized as 
significant [23]. ANOVA results for GRG-predicted values 
are presented in Table 6. According to the p values, it was 
identified that the feed rate and the interactions of the 
feed rate and depth of cut are to be significant parameters 
on GRG-predicted values. Regression or empirical equa-
tion for GRG-predicted values in terms of spindle speed, 
depth of cut and feed rate are shown in Eq. (8).

with using the above regression equation, the RSM meth-
odology had predicted the GRG-predicted values for all 
the experiments and are presented in Table 5. The RMS 
was executed using MINITAB 18 software. Before applying 
the two methods, the experimental data was divided into 
two parts such as 22 samples for training and 5 samples 
for the validation. The RSM and SVM models were trained 
with the 22 samples and tested with remaining 5 samples. 
Error between the experimental data and predicted results 
was found to be less than 5% for the two methods. It was 
observed that there is no significant deviations between 
the GRG-predicted responses of SVM and RSM. The GRG-
predicted responses by both the methods SVM and RSM 
are precise and close to experimental values as illustrated 
in Fig. 8; however, SVM model exhibit better predicted 
responses. This is in good agreement with the previous 
literature [21, 28].

10 � Overall performance of machining 
parameters

A multi response optimization method was used to opti-
mize machining parameters for maximizing the grey rela-
tional grade prediction value. This method works on the 
concept of desirability function. Hung-Chun Lin et al. [29] 
used a mathematical transformation methods to design 
the desirability function and the application of desir-
ability function which is characterized by the gradient 
algorithm that indicates to the best optimal solution than 
other similar methods for optimizing of multi responses. 
The desirability function value is calculated using gra-
dient algorithm between 0 and 1 [30]. Acceptance of 

(8)

GRG predicted = 2.246 − 0.00280 SS − 5.62 F − 2.018 DOC

+ 0.000003 SS ∗ SS + 13.7 F ∗ F

+ 2.079 DOC ∗ DOC + 0.00171 SS ∗ F

− 0.000022 SS ∗ DOC − 2.02 F ∗ DOC
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Table 5   Experimental and 
predicted responses of GRG​

Experimental 
run

SS (rpm) F (mm/rev) DOC (mm) Experimental SVM RSM

1 360 0.12 0.2 0.686 0.739 0.757
2 460 0.16 0.2 0.671 0.695 0.685
3 460 0.2 0.4 0.477 0.564 0.565
4 360 0.12 0.6 0.774 0.756 0.662
5 460 0.2 0.2 0.717 0.656 0.663
6 360 0.2 0.4 0.602 0.569 0.564
7 560 0.16 0.4 0.54 0.598 0.589
8 360 0.16 0.4 0.599 0.608 0.620
9 560 0.2 0.4 0.565 0.559 0.566
10 360 0.16 0.2 0.809 0.70 0.684
11 560 0.12 0.6 0.672 0.546 0.565
12 560 0.12 0.2 0.74 0.729 0.726
13 460 0.12 0.4 0.775 0.743 0.677
14 560 0.16 0.2 0.583 0.69 0.686
15 560 0.2 0.6 0.476 0.467 0.452
16 360 0.2 0.2 0.67 0.661 0.645
17 460 0.12 0.2 0.73 0.734 0.741
18 460 0.16 0.4 0.503 0.603 0.605
19 560 0.16 0.6 0.665 0.507 0.492
20 560 0.2 0.2 0.667 0.651 0.680
21 360 0.16 0.6 0.528 0.517 0.556
22 360 0.12 0.4 0.647 0.648 0.710
23 360 0.2 0.6 0.432 0.477 0.483
24 560 0.12 0.4 0.516 0.638 0.645
25 460 0.16 0.6 0.562 0.512 0.524
26 460 0.2 0.6 0.43 0.472 0.468
27 460 0.12 0.6 0.747 0.551 0.613

0 5 10 15 20 25 30

Experimentation Run

 GRG- Experimental
 GRG Predicted - SVM
 GRG Predicted - RSM

Fig. 8   Variation of GRG-experimental, GRG-predicted RSM and 
GRG-predicted SVM

Table 6   ANOVA for GRG-predicted values

Source DF Adj SS Adj MS F value P value

Model 9 0.189645 0.021072 14.00 0.000
Linear 3 0.177977 0.059326 39.43 0.000
SS 1 0.004722 0.004722 3.14 0.094
F 1 0.056450 0.056450 37.52 0.000
DOC 1 0.116805 0.116805 77.63 0.001
Square 3 0.001658 0.000553 0.37 0.777
SS * SS 1 0.000000 0.0000000 0.00 0.998
F * F 1 0.001658 0.001658 1.10 0.309
DOC * DOC 1 0.000000 0.000000 0.00 0.997
2-Way interaction 3 0.010010 0.003337 2.22 0.123
SS*F 1 0.003335 0.003335 2.22 0.155
SS * DOC 1 0.003331 0.003331 2.21 0.155
F * DOC 1 0.003344 0.003344 2.22 0.054
Error 17 0.025580 0.001505
Total 26 0.215225
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optimization is decided with desirability function. There 
are two types of desirability functions such as individual 
desirability function for individual responses and a com-
posite desirability function for over all responses [31]. If 
the desirability response value is to be 1 or near to 1 only 
then the response is adequate. If the desirability values are 
close to 0 then the response is not accepted. In this work 
machining variables were optimized for maximizing the 
GRG prediction value as illustrated in Fig. 9. Desirability 
value of experimental GRG prediction values was found as 
0.9147. In this work, optimization and calculation of desir-
ability function MINITAB 17 software was used. Optimum 
machining parameters were found with a spindle speed 
360 rpm, with feed rate of 0.12 mm/rev and depth of cut 
0.2 mm. The results revealed that, in the machining pro-
cess, feed rate is one of the critical parameter among the 
process parameters. When the feed rate and depth of cut 
is increased, the cutting tool has to remove more mate-
rial from the work piece and the removed material flows 
over the tool in the form of chip. This results in generation 
of heat and higher stresses, therefore tool damage takes 
place through thermal softening, cracks and diffusion. Due 
to this surface quality might be affected and also tool life 
decreases and this is a good agreement with other litera-
tures [32]. Figure 5a, b shows the prominent tool wear for 
the spindle speed 360 rpm, with feed rate of 0.12 mm/
rev and depth of cut 0.2 mm. Figures 6 and 7 show that 
in the machining process, when feed rate and depth of 
cut are increased, it is required to remove high amount 
of material. Obviously, high cutting forces and vibrations 
are induced in the cutting process, it might be because 
of the more contact area developed between the work 
piece and cutting tool. It is good agreement with previous 
experimental works [33].

11 � Conclusions

In this present work, the experiments were accomplished 
on AISI 4340 high strength low alloy steel using multi-lay-
ered coated carbide insert to assessment of the surface 
roughness, flank wear, cutting force, tangential force and 
work piece vibration. Multi-objective optimization meth-
ods and predictive techniques such as GRA, SVM and RSM 
were used and found to be effective techniques for per-
form analysis and prediction of responses. The Conclusions 
drawn based on this study can be summarized as follows:

1.	 Use of accelerometers, radioactive sensors and piezo-
electric actuators is not possible to measure rotating 
objects vibrations. But the LDV’s are found to be capa-
ble to measure rotating objectives vibrations in less 
time with simple experimental arrangement.

2.	 From the average GRG, the greatest value of grey rela-
tional coefficient for the processing parameters was 
found. These values are suggested as controllable lev-
els of processing parameters to maximize machining 
performance.

3.	 SVM and RSM methods were used for predicted GRG 
values. SVM method was found to be better than RSM 
model in the prediction of machining parameters. The 
Predicted GRG values obtained a minimal root mean 
square error of 0.039.

4.	 In the ANOVA for GRG prediction values, it was indi-
cated that the feed rate and interaction of feed rate 
and depth of cut are found to be significant param-
eters.

5.	 A multi response optimization technique for overall 
performance was conducted to identify the machin-
ing parameter for minimum surface roughness, flank 

Fig. 9   Multi response opti-
mization for GRG prediction 
values
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wear, cutting force, tangential force and vibration of 
the work piece. Optimum machining parameters were 
found as 360 rpm of spindle speed, 0.12 mm/rev of 
feed and 0.2 mm of depth of cut.
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