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Abstract
In this paper, a range of matrix materials from polymer to metal matrix were considered which have extensive applica-
tions in various industries. The effective mechanical properties of CNT-based composites were evaluated using a 3-D 
cylindrical representative volume element (RVE). Continuum mechanics model was used for estimating the effective 
Young’s modulus in the axial direction of the RVE. The load transfer conditions between carbon nanotubes and matrix 
were modeled using a separated interfacial region. Numerical examples using FEM are presented which demonstrated 
that load carrying capacities of CNTs in a matrix were significant. With the addition of CNTs into a matrix at volume frac-
tions of only about 2% and 5%, the stiffness of the composite was increase as high as 0.7 and 9.7 times for short and long 
CNTs, respectively. Also the effect of CNT addition to polyethylene matrix was studied. These simulation was performed 
using ABAQUS software and the obtained results were consistent with the experimental results reported in the literature.

Keywords  Polymer based-nanocomposites · Polyethylene · Carbon nanotube · Elastic modulus · Continuum mechanic 
model

1  Introduction

Regarding the rapid popularity of polymers reinforced with 
carbon nanotubes (CNTs) in different industries like automo-
tive, aerospace, packaging and wind turbines, calculating 
their mechanical properties and modeling their behavior 
have attracted the attention of many researchers. Stud-
ies have shown that increasing 1% carbon nanotube to a 
matrix increases its hardness o by 36% to 42% and its tensile 
strength by 25% [1]. Also, experimental studies and atomic 
modeling have indicated that carbon nanotubes have very 
high modulus and strength in the range of 300–1000 GPa 
which is obviously higher than that of carbon fibers [2]. 
Among other characteristics of these materials are high 
geometrical ratio and high hardness to weight and strength 
to weight ratios. By using carbon nanotubes in some matri-
ces, special nanocomposites with above characteristics can 

be obtained and optimally utilized [3]. Recently, polymer 
bases have been more commonly used but other materi-
als like ceramic and metal are also used. Carbon nanotubes 
are used for producing nanocomposite materials because 
of their homogeneous distribution characteristic. Improve-
ment of composites’ mechanical characteristics depends on 
load transmission mechanism between matrix and fiber. If 
the cohesion between fiber and matrix is not strong enough 
for tolerating high loads, advantage of high tensile strength 
of carbon nanotubes becomes useless. Very high surface 
cohesion has been reported for some polymers. Andrews 
et al. produced multi-walled carbon nanotube composites 
by shear mixing method such that 15% increase in tensile 
modulus was obtained by adding 5% multi-walled car-
bon nanotube [4]. Calculation of mechanical, thermal and 
electrical characteristics of the material is an important 
issue in manufacturing processes and designing modern 
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nanocomposites. Calculation methods can be categorized 
into two groups: molecular dynamics (MD) and continuum 
mechanics methods. Molecular dynamics method provides 
many modeling results for studying and understanding 
the behavior of carbon nanotubes individually or in group; 
although calculation strengthens and numerical algorithms 
of this method have rapidly developed, they are limited to 
very short time and length scales. So, molecular dynamics 
modeling is not efficient in the analysis of nanocompos-
ites with long length and long time scale and continuum 
mechanics method is preferred for analyzing such prob-
lems. This method was successfully used for the mechani-
cal modeling of carbon nanotubes which could exist in 
the form of beam, thin shell or solid cylinders [5–7]. Lia & 
Chen developed a solid 3D model for carbon nanotube 
reinforced composite which completely provided accuracy 
and compatibility between carbon nanotubes and matrix 
in the composite [8]. Some researchers have analyzed the 
mechanical properties of nanocomposites using repre-
sentative volume element (RVE) and continuum mechan-
ics methods [9–12]. Various factors affect the efficiency of 
these nanocomposites and the main factor determining the 
efficiency of nanotube reinforcement is the mechanism of 
load transfer from matrix to carbon nanotube. Thus, before 
understanding the mechanical behavior of nanocompos-
ites at macro level, their corresponding physical efficiencies 
should be evaluated. To do so, a good simulation method 
with relevant details was applied. The interface adhesion 
between nanotube and its neighboring polymer is one of 
the important issues in load transfer and reinforcement 
phenomena. The atomic structure of carbon nanotubes 
is composed of SP2 hybridized carbon atoms which pre-
vent strong covalent bonds with the surrounding polymer 
matrix. Although chemical functionalization can improve 
load transfer in the interphase by covalent bonds between 
carbon nanotube and polymer molecules, this method has 
the great drawback of making some defects in the nano 
structure of carbon nanotubes due to the formation of SP3 
hybridized sites. Carbon nanotubes naturally interact with 
polymer chains of the matrix with weak van der Waals and 
electrostatic interactions.

Mechanical interlocking, which improves the adhesion 
between fiber and matrix in fibrous composites, was not 
used due to the smooth surface of carbon nanotubes. 
Various methods have been used to evaluate the interac-
tion between nanotube and neighboring matrix including 
experimental methods, atomic modeling and continuum 
modeling. In this study, by systematic studies and consid-
ering the advantages and disadvantages of continuum 
methods, it was attempted to present the best solution to 
evaluate the behavior of interaction between nanotube 
and polymer matrix. The presented method should have 
high precision, be simple and could be done with minimum 

costs. More recently, several theoretical and experimental 
research works with CNTs as reinforcing fibers have been 
conducted to determine mechanical and electrical proper-
ties of nanotube-based composites [13–27].

This study aimed to evaluate the mechanical properties 
of single walled carbon nanotube reinforced composite 
using 3-D representative volume element (RVE). Then, 
RVE was created by finite element method and its elastic 
behavior was simulated. Also, the longitudinal elastic mod-
ule of Polyethylene/ CNT nanocomposite was computed 
and compared with experimental results.

2 � Problem statement and assumptions

Various studies have been conducted on the effect of add-
ing carbon nanotube on different matrices including poly-
mer and various analytical and numerical methods have 
been developed to study the behavior of nanocomposites 
among which finite element method has received much 
attention. The main purpose of this study was to introduce 
a proper modeling technique to obtain the properties of 
nanocomposites and present the required formulas to 
extract the results from the finite element software. Also, the 
evaluation and extraction of interface properties of carbon 
nanotube were among other purposes of this study. The 
effect of adding carbon nanotube to four types of matrices 
with different elastic modules was examined by modeling. 
Then, the effect of the reinforcer added to polyethylene 
matrix was examined by elastic nanocomposite model. In 
this study, it was assumed that the nanotube and matrix 
within the representative volume element were both elastic 
continuum, homogenous and isotropic and their Young’s 
modulus and Poisson’s ratio were known. Also, to simulate 
the interface between nanotube and matrix, a separate 
section was created and its properties were extracted from 
the atomic simulations [13]. The results were compared and 
validated with experimental results [14].

3 � Representative volume elements 
to achieve elastic module

The results of atomic simulations or molecular dynam-
ics of carbon nanotubes are used mostly to perceive the 
mechanical and electronic behaviors. However, these 
simulations are restricted to very small lengths, short-time 
scales and based on calculation limitations (e.g. a cubic 
volume 10 × 10 × 10 μm3 is composed of 1012 atoms) the 
atomic methods cannot analyze bigger longitudinal scales 
in nanocomposites. In engineering applications, nanocom-
posites being used with micro scale and even longitudinal 
macro scales, should be evaluated using a combination of 
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molecular dynamic methods. Continuum mechanic meth-
ods are used in the analysis of cases where single walled 
carbon nanotubes act as beam, thin shell or cylindrical solid 
volume. Also, the researchers have shown that continuum 
methods are suitable to evaluate carbon nanotubes with 
100 nm or higher lengths. The best methods to simulate 
carbon nanotube reinforced composites are multi-scale 
methods in which molecular dynamics and continuum 
methods are combined; these are also the best methods 
for nanoscopic physics presenting correct responses for 
big longitudinal scales. In this research, the interaction of 
carbon nanotube and matrix and the transfer capability of 
stress of nanotubes were investigated by 3-D elastic models. 
The researches have shown that these models had higher 
precision compared to beam or shell models. In contin-
uum-based 3-D models, representative volume elements 
have been widely used. Nanotubes are dispersed in differ-
ent sizes and forms in matrix to make the nanocomposite 
material. They can also be in the form of single-walled or 
multi-walled and from some nm to micrometer as well as 
being straight, wrapped, wavy or rope-shaped. The disper-
sion and orientation of nanotubes in matrix can be uniform, 
unidirectional or random. All the mentioned issues can make 
simulation of carbon nanotube reinforced composites more 
complex. Thus, the concept of unit cell or representative vol-
ume element of carbon nanotube reinforced composites at 
micro-scale were modified to be used at nano-scale, as was 
applied in the study. In representative volume element, a 
unit nanotube (or some nanotubes) with the surrounding 
matrix material are modeled as a unit cell. Different meth-
ods including finite element method, boundary element 
and mesh-free methods are used for numerical analysis of 
representative volume elements under different loading 
conditions. Representative volume elements, as shown in 
Fig. 1, can be circular, square and hexagonal. The cylindrical 

volume elements are used to model nanotubes with differ-
ent diameters or when the nanotube is embedded in an 
ordinary carbon fiber. Also, for symmetrical and non-sym-
metrical loadings, 2-D symmetrical model for cylindrical 
volume elements can considerably reduce computer calcu-
lation volume. Volume elements with square or hexagonal 
sections are suitable when nanotubes are inside a matrix 
with square or hexagonal arrays. This study applied a cylin-
drical representative volume element to achieve longitudi-
nal elastic module.

4 � The required calculation formulas 
to achieve longitudinal elastic modulus

It was assumed that both CNTs and matrix in a RVE were 
continua of linear elastic, isotropic and homogenous materi-
als, with given young’s modulus and Poisson ratios. The vol-
ume element consisted of a carbon nanotube, as shown in 
Fig. 2. The geometry of a hollow cylinder model with length 
L, inner radius ri and outer radius R.

As the materials are isotropic, 3-D strain-stress relations 
are as follows:

The above Equation was used for cylinderical coordinate 
( r, θ, z ). To find four above unknowns, γzx, γyx, Ex = Ey, Ez , we 
need four equations based on elasticity theory as obtained 
by different loading states.

It is worth mentioning that other unknown variables 
depend on four main parameters:
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Fig. 1   Three nanoscale representative volume elements Fig. 2   Cross-sectional view of a cylindrical RVE
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In axial loading, stress and strain components in each 
point of lateral surface are:

In above equation, ΔRa is radius displacement and 
θ and r are radius and tangent components in cylindrical 
system.

Based on the third equation in Eq. (1), we can write:

σave is obtained from Eq. (5):

Where, A is the area of the end surface and σave is obtained 
from FEM results.

Also, based on Eq.  (1) in cylindrical coordinate and 
above results, we can write:

Thus,

As it was said, Eqs. (4) and (6) were applied to obtain 
longitudinal young’s modulus (E z) and Poisson ratio 
γzx

(
= γzy

)
 and ΔRa and σave were achieved from FEM results 

under axial loading conditions. Ex and γxy coefficients were 
computed by extensive lateral load or torsional load.

5 � The analytic results based on materials 
strength theory

Some simple analytical equations or rule of mixtures which 
were achieved based on materials strength theory were 
summarized to compute longitudinal elastic modulus (Ez). 
These equations could be used to compare and verify the 
results obtained from finite element with those obtained 
based on formulas of Sect. 4. It can be said that materials 
strength theory is not an exact method to compute the 
stress including the stress of interface in nanocomposites 
but the results obtained from the rule of mixture can be 
used under axial loading.
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5.1 � Carbon nanotube along representative volume 
element (Fig. 3a)

If carbon nanotube was relatively long (high geometry 
ratio), the model is created by a representative volume 
element and the volume ratio of carbon nanotube:

By materials strength theory, we assumed that matrix 
and carbon nanotube deformation were not related under 
the displacement of ΔL (Fig. 3a).

By compatibility of strains and stress equilibrium equa-
tions, Eq. (8) was achieved to compute the longitudinal 
elastic modulus:

E
m and Et are elastic moduli of matrix and carbon nano-

tube respectively. Equation  (8) is the rule of mixtures 
as applied to compute the effective Young’s modulus 
along the fiber for fiber-reinforced composites with 
good approximation for equality of Poisson coefficient of 
matrix and fiber and is consistent with the results of elastic 
equations.

5.2 � Nanotube inside the representative volume 
element (Fig. 3b)

If a short carbon nanotube is inside the representa-
tive volume element, the volume element is divided 
into two parts. One part is associated to two ends with 
length Le and elastic modulus �� , the other part is used 
for central part with length �

�
 and young’s modulus 

�
� . In this case, two hemispherical caps at two ends 
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(8)Ez = EtVt + Em(1 − Vt)

Fig. 3   Nanocomposite with long and short fiber under axial load-
ing
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of the nanotubes were not considered since the core 
part was similar to the previous state and Fig. 3a, its 
young’s modulus was obtained based on the following 
equation:

By Eq. (8) in which Vt was achieved from Eq. (7), elas-
tic modulus for the central part was computed. From 
compatibility equation of strains and stress equilibrium 
equations, Eq. (10) was obtained to compute the elastic 
modulus of the two end parts:

Or simply:

I n  E q s .   ( 8 )  a n d  ( 9 ) ,  w e  h a v e : 
Ac = π

(
R2
0
− r2

i

)
and A = πR2 . Equations (10) and (11) are 

extended Equations of the rules of mixture being used 
to calculate Young’s modulus of nanocomposites with 
short carbon nanotubes (Fig. 3b).

For example, if we consider a representative volume 
element with the following specifications:

As shown, elastic modulus of the composite was 
lower in comparison to matrix modulus. This showed 
that if the stiffness of carbon nanotube was not high 
compared to the matrix, it could not compensate the 
shortage of the lost material of matrix in which carbon 
nanotube was used. Thus, with similar items, if we have 
Et = 10Em, the results are as follows:

Thus, composite modulus was increased by 6.28%. If 
the length of carbon nanotube was equal to the length 
of volume element (Fig. 3a) or Le = 0 and LC = L = 100 nm, 
then E

z
 = ��  = 1.4384Em. In other words, the effec-

tive Young’s modulus of composite was increased by 
43.84%. More parametric studies by Eqs. (8) and (10) can 
be applied for rapid prediction of axial Young’s modu-
lus of carbon nanotube reinforced nanocomposites with 
different materials and sizes. The mentioned equations 
can be easily and directly generalized to the elements 
with more than one carbon nanotube or with square 
and hexagonal area.
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(12a)L = 100 nm, Le = Lc = 50 nm

(12b)R = 10 nm, ro = 5 nm, ri = 4.6 nm, Et = 5Em

(12c)V
t = 0.04871, Ec = 1.1948Em, Ez = 0.9701Em

(13)Ez = 1.0628Em

6 � Numerical results

In this section, a 3-D modeling was performed for short 
and long carbon nanotube. Abaqus version 6.12-3 soft-
ware and second order elements with good results in 
stress analyses were used in the analysis.

6.1 � Long carbon nanotube fiber 
along the representative volume element

In this section, a representative volume element with a 
long nanotube was studied as shown in Fig. 3a. The sizes 
of fiber, matrix and interphase are shown in Table 1.

The selected values for Young’s modulus show the 
matrices in the range of polymer to steel. One of the most 
important sections of modeling is the property being 
used for the cohesive zone and in this study, the results of 
atomic simulation [13] were used to determine interface 
properties. Figure 4 shows traction-displacement plot in 
the mentioned study.

The slope of the initial section of the plot showed the 
stiffness on length unit for the interface.

LCNT is the length of the element of the nanotube. As in 
the molecular dynamics analysis of Namilae, s. and Chan-
dra [11], the length of nanotube was 122A◦ and by the 
multiplication of this value by the slope, the stiffness of the 
interface was obtained as embedded direclty in ABAQUS 
software.

The properties of the interface of the initial section of 
the chart were extracted for displamcent 5A◦ . This selec-
tion was logical based on the maximum displacement 
of 0.5 nm as applied on all models of this project. Pois-
son ratio for the interface was 0.3 and its thickness was 
0.4 nm. The applied load was the displacement applied to 

(14)M =
(0.1 − 0)

(3 − 0)
= 0.03333GPa/A◦, LCNT = 122A◦

(15a)Eint = m × LCNT

(15b)Eint = 0.03333 × 122 = 4.06Gpa

Table 1   Dimension and Properties of RVE

Parameters Carbon 
nanotube 
fiber

Matrix Interphase

Length (nm) 100 100 100
Inner radius (nm) 4.6 10 5
Outer radius (nm) 5 5.4
Elastic modulus (GPa) 1000 5, 20, 100, 200 4.06
Poisson ratio 0.3 0.3 0.3
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the free end of the volume element. By Eq. (6), the longi-
tudinal elastic modulus of nanocomposite was obtained 
and compared with the results of the rules of mixture. The 
results of finite element method and rules of mixture are 
shown in Table 2. Due to simple geometry and loading, 
the results of finite element method were similar to those 
of the rule of mixtures. Generally, due to the nano-scale 
and complexities of the interface in carbon nanotube rein-
forced composite, the rules of materials strength did not 
present accurate results in the evaluation of the properties 
of these materials. The results showed that with carbon 
nanotube volume fraction of 5%, the elastic modulus of 

nanocomposte was is increased more than 9 times (for Et/
Em = 200).

6.2 � short carbon nanotube 
inside the representative volume element

The model of short carbon nanotube inside the matrix was 
similar to that of Fig. 3b. All sizes were similar to the pre-
vious section except carbon nanotube length which was 
reduced to 50 nm. The mechanical properties of matrix, 
carbon nanotube and interface were considered to be 
similar to the previous section. The results of finite element 
method and rule of mixtures (Eq. 8) are shown in Table 3. 
We found Et/Em = 5. The elastic modulus of nanocomposite 
was reduced because of the low percent of carbon nano-
tube and its high strengths could not compensate the 
shortage of carbon nanotube material in this state. Thus, 
these results showed that reinforcement of short carbon 
nanotube fibers was not as effective as long fibers.

6.3 � Calculation of elastic modulus 
of polyethylene‑carbon nanotube 
nanocomposites and its validation 
with experimental results

In this section, the reinforcement effect of carbon nano-
tube in polyethylene matrix with the dimensions shown in 
Table 4 and different weight fraction was examined.

In order to change the parameter of weight fraction, 
a symmetrical model as shown in Fig. 5 showed that by 
changing parameter x, different volume fraction and 
weight fractions were achieved and the effect of the addi-
tion of carbon nanotubes was studied.

Fig. 4   Traction-displacement plot obtained from atomic simulation

Table 2   Computed effective 
elastic modulus for long CNT

Em Ef∕Em Ez∕Em

Rule of mixture Finite element method/
complete contact

Finite element method, 
cohesive zone model

200 5 1.1948 1.1985 1.1456
100 10 1.4384 1.4421 1.3891
20 50 3.3866 3.3849 3.3353
5 200 10.6925 10.6575 10.6275

Table 3   Computed effective 
elastic modulus for short CNT

Em Ef∕Em Ez∕Em

Rule of mixture Finite element method/
complete contact

Finite element method, 
cohesive zone model

200 5 0.9701 0.9617 0.9386
100 10 1.0628 1.0471 1.0258
20 50 1.4550 1.3561 1.3329
5 200 1.7879 1.5287 1.5287
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The volume of nanotube and representative volume ele-
ment were calculated as:

Volume fraction was obtained by the following Equation:

where ρf  = 1.68  g/cm3 is the density of nanotube, 
�m = 0.94 g/cm3 is the matrix density and wf  is weight 

(16)VCNT = π
(
(5)2 − (4.6)2

)
× (150)

(17)VRVE = π
((

2x + 10

2

))2

× (2x + 150)

(18a)Vf =
VCNT

VRVE
× 100

(18b)Vf =
VCNT

VRVE
=

wf

wf +
(

ρf

ρm

)(
1 − wf

)

fraction of fibers. For each volume fraction, we could 
obtain x simply by solving the cubic Eq. (19b):

The length and diameter of the representative volume 
element are obtained based on Fig. 5 and Eqs. 13 and 14 
in terms of nm:

The volume fraction consistent with experimental 
results [14] was considered based on weights fractions 
0.5, 1 and 1.5 by solving Eq. (19b) and the value of x was 
obtained and by having x value for each volume fraction, 
the dimensions of representative volume elements were 
obtained. The results are shown in Table 5.

The elastic modulus of this modeling method is shown 
in Table 6 and is compared with the experimental results 
[11]:

Based on the modeling results, the increase of weight 
fraction of nanotubes was equal to the increase of elastic 
modulus of nanocomposites.

In this study, the effect of thickness and strength of 
interface zone on longitudinal elastic modulus of poly-
ethylene/carbon nanotube nanocomposite was evaluated 
(Fig. 6). 

(19b)VRVE =
VCNT

vf
× 100

(19b)

π
(
2x + 10

2

)2

× (2x + 150) =

π

((
10

2

)2

−
(

9.2

2

)2
)
× 150

vf
× 100

(20)DRVE = 2x + 20

(21)LRVE = 2x + 150

Table 4   Dimension and Properties of RVE with polyethylene matrix

Parameters CNT Matrix Interphase

Length (nm) 150 Variable with x 150
Inner radius (nm) 4.6 5
Outer radius (nm) 5 5.4
Elastic modulus (GPa) 1000 2.020 4.06
Poisson ratio 0.3 0.3 0.3
Density 1.68 0.94 –

Fig. 5   Polyethylene/ CNT nanocomposite

Table 5   RVE’s dimension for 
various weight factors

Weight fraction 
(%)

Volume fraction Parameter x (nm) Volume diameter 
element (nm)

Volume 
length ele-
ment (nm)

0.5 0.280 26.78 63.56 203.56
1 0.562 18.4 46.8 186.8
1.5 0.845 14.54 39.08 179.08

Table 6   Computed effective elastic modulus for Polyethylene/CNT 
nanocomposite (MPa)

Weight fraction Experimental results [14] Finite element 
method/cohesive 
zone

0.5 2375.7 3050.73
1 3240.9 3990.80
1.5 2642.1 4857.17
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As the thickness of carbon nanotube was equal to the 
thickness of graphene or 3.4 Angstrom meter (Am), it was 
assumed that carbon atoms were located in the middle 
circle of this thickness. Also, resin could not penetrate into 
the nanotube and the innermost resin layer was equal to 
external surface of nanotube. Thus, the minimum thick-
ness of interphase was equal to 1.7Am. Depending on the 
quality of the bonding of nanotube to resin, this value was 
increased. Figure 7 shows the effect of interface thickness 
on longitudinal elastic modulus of polyethylene/carbon 
nanotube nanocomposite (1% weight). As shown, by the 
increase of the thickness of the interphase, the stiffness 
and the longitudinal Young’s modulus were increased. 
Indeed, by reduction of the thickness of the interphase, 
the effective forces between nanotube atoms and resin 
were weakened and by weak bonds, load transfer from 
resin to nanotube was not performed well.

Two states of full transfer of stress from interphase and 
lack of transfer of stress between the matrix and fiber are 
boundary conditions of the load transfer from the inter-
phase. In other words, if no load transfer was occurred, 
elastic modulus of nanocomposite was equal to the elas-
tic modulus of matrix. The stiffness of the composite was 
increased with the increase of strength of interphase and 
increase of transferability of stress. In maximum load trans-
fer or full transfer of load, elastic modulus of the interphase 
had the highest value. This is shown in Fig. 8 for differ-
ent weight fraction. If the chemical bonds between the 
matrix and carbon nanotube were high, the elastic mod-
ulus of interphase was about 5Gpa and this was associ-
ated with the ideal state of load transfer from the matrix 

to the carbon nanotube. If the elasticity modulus of the 
interphase was about 5Mpa, the elastic modulus of the 
composite was close to the elastic modulus of the matrix.

7 � Summary and conclusion

The experimental study of the mechanical behavior of 
carbon nanotube reinforced polyethylene requires con-
siderable time and cost. Thus, various researchers have 
attempted to use theoretical methods and present a good 
model to study the mechanical behavior of nanocompos-
ites. This study evaluated the modeling of representative 
volume element. The interface between carbon nanotube 
and matrix as the most important zone in the evaluation 

Fig. 6   Variation of elastic modulus with weight fraction of CNT

Fig. 7   The effect of interface thickness on the elastic modulus of 
polyethylene/carbon nanotube nanocomposite

Fig. 8   The effect of interphase strength on elastic modulus of poly-
ethylene/carbon nanotube nanocomposite



Vol.:(0123456789)

SN Applied Sciences (2019) 1:17 | https://doi.org/10.1007/s42452-018-0022-y	 Research Article

of stress transfer and other properties of nanocomposites 
was used as an interphase with low thickness and to deter-
mine its properties, the results of atomic modeling were 
used.

Based on the modeling results, the increase of weight 
fraction of nanotubes led to the increase of equal elastic 
modulus of nanocomposite. By increasing the volume ratio 
of carbon nanotube in the experiments, the dispersion of 
particles was much difficult and the empirical results of 
elastic modulus were lower than the results predicted by 
the finite element software.
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