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Abstract
In this article, a hybrid technique called homotopy perturbation Elzaki transform method has been applied to solve 
Navier–Stokes equation of fractional order. In the hybrid technique, homotopy perturbation method and Elzaki transform 
method are amalgamated. Three example problems are solved with a purpose to validate and demonstrate the efficacy 
of the present method. It is also demonstrated that the results obtained from the present method are in excellent agree-
ment with the results by other methods. It is shown that the proposed method is found to be reliable, efficient and easy 
to implement for various related problems of science and engineering.
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1 Introduction

Fractional calculus is an important branch of applied 
mathematics which deals with the differential and integral 
operators with non-integral powers. Fractional calculus 
has become popular due to its demonstrated wide range 
of application in rheology, viscoelasticity, electrochemis-
try, electromagnetism, fluid mechanics etc. For details, one 
may see the monographs of Kilbas et al. [1], some funda-
mental works on various aspects of fractional calculus are 
given by Kiryakova [2], Lakshmikantham and Vatsala [3], 
Miller and Ross [4] and the solutions method of differen-
tial equations of arbitrary real order and applications of 
the described methods in various fields are given by Pod-
lubny [5]. In recent years, many analytical and approximate 
methods for solving fractional differential equations have 
been developed such as differential transform method [6, 
7], finite difference method (FDM) [8], Adomian decom-
position method (ADM) [9, 10], homotopy perturbation 

method (HPM) [11–13], Haar wavelet method (HWM) 
[14, 15], differential transform method (DTM) [16–18], 
variational iteration method (VIM) [19] and many others. 
Among all the above-listed methods, homotopy pertur-
bation method which was first proposed by the Chinese 
researcher J.H. He in 1998 plays an important role. This is 
due to the fact that it addresses a problem directly with-
out the need for any form of transformation, linearization 
and discrimination. Elzaki Transform (ET) is a new integral 
transform which was introduced by Tarig ELzaki in 2010. 
ET is modified transform of Sumudu and Laplace trans-
forms. It is worth mentioning that there are some differen-
tial equations with variable coefficients which may not be 
solved by Sumudu and Laplace transforms but may easily 
be solved with the aid of ET. Fractional nonlinear differen-
tial equations have been solved by various authors [20] 
by means of the combination of ET and ADM. As regards, 
Klein-Gordon equations were solved by the authors [21] 
by amalgamation of ET and iterative method. Further, 
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non-linear partial differential equations are also solved by 
different authors [22, 23] using modified HPM.

The primary equation of movement of viscous fluid 
flow known as the NS equation has been presented in 
1822 [24]. This equation portrays a few projections which 
include sea streams, fluid stream in channels, bloodstream 
and wind current around the wings of an airship. The NS 
equation was first carried out in 2005 in the fractional form 
in [25] by El-Shahed and Salem. The classical NS equation 
was answered by El-Shahed and Salem [25] by means of 
laplace transform (LT), finite Hankel transforms (FHT) and 
Fourier sine transform. A nonlinear fractional NS equa-
tion was solved analytically by Kumar et al. [26] by the 
combination of HPM with LT algorithm. Also the same NS 
equation was resolved by Ragab et al. [27] and Ganji et al. 
[28] by adopting homotopy analysis method. ADM was 
adopted by Birajdar [29] and Momani et al. [30] for the 
solution of fractional NS equation. Sunil Kumar et al. [31] 
achieved the analytical result of fractional NS equation 
by means of ADM and LT algorithm while Chaurasia and 
Kumar [32] solved the similar equation by the pairing of LT 
with FHT. The present paper gives an exact or approximate 
solution for the proposed problem by using HPETM.

This article is planned as follows: some basic features 
of fractional calculus related to the titled problems have 
been presented in Sect. 2. Elzaki transform and elabo-
rated form of the HPETM have been included in Sects. 3 
and 4 respectively. In Sect. 5, three example problems are 
included to validate the effectiveness and exactness of the 
proposed method. Lastly, a conclusion is given in Sect. 6.

2  Basic features of fractional calculus

Definition 2.1 The operator D� of order � in Abel–Rie-
mann (A–R) sense is defined as [4, 5, 40]

where m ∈ Z+, � ∈ R+ and

Definition 2.2 The A–R fractional order integration opera-
tor J� is described as [4, 5]

(1)D𝛼u(x) =

⎧⎪⎨⎪⎩

dm

dxm
u(x), 𝛼 = m

1

𝛤 (m−𝛼)

d

dxm

x∫
0

u(t)

(x−t)𝛼−m+1
dt, m − 1 < 𝛼 < m

(2)D−𝛼u(x) =
1

𝛤 (𝛼)

x

�
0

(x − t)𝛼−1u(t) dt, 0 < 𝛼 ≤ 1

Following Podlubny [5] we may have

Definition 2.3 The operator D� of order � in Caputo sense 
is defined as [5, 33, 39]

Definition 2.4 [4, 5, 33, 34]:

(a) 

(b) 

3  Elzaki transform (ET)

The definition of modified Sumudu transform or ET of the 
function f (t) is defined as

The Elzaki transform is very effective and powerful 
method for solving integral equation which cannot be 
solved by the Sumudu transform method. For this, one 
may see the Ref. [35].

Integration by parts in Eq. (8) can be used in order to 
find ET of partial derivatives as follows [35].

1. 

2. 

3. 

(3)
J𝛼u(x) =

1

𝛤 (𝛼)

x

∫
0

(x − t)𝛼−1u(t) dt, t > 0 𝛼 > 0

(4)J�tn =
� (n + 1)

� (n + � + 1)
tn+�

(5)D�tn =
� (n + 1)

� (n − � + 1)
tn−�

(6)CD𝛼u(x) =

⎧
⎪⎨⎪⎩

1

Γ(m−𝛼)

x∫
0

um(t)

(x−t)𝛼−m+1
dt, m − 1 < 𝛼 < m,

dm

dtm
u(x), 𝛼 = m

D�

t
J�
t
f (t) = f (t)

(7)

J
𝛼

t
D
𝛼

t
f (t) = f (t) −

m∑
k=0

f
(k)
(
0+

) tk
k!
, for t > 0,

and m − 1 < 𝛼 ≤ m,m ∈ N.

(8)E
[
f (t)

]
= F(q) = q

∞

∫
0

f (t)e
−t

q dt, t > 0

E

[
�f (x, t)

�t

]
=

1

q
F(x, q) − q f (x, 0)

E

[
�2f (x, t)

�t2

]
=

1

q2
F(x, q) − f (x, 0) − q

�f (x, 0)

�t

E

[
�f (x, t)

�x

]
=

d

dx
F(x, q)
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4. 

3.1  ET of Caputo fractional derivative

Theorem 1 ([36]) If G(s) is the Laplace transform of f (t) then 
ET F(q) of f (t) is given by

Theorem 2 ([36]) If F(q) is the ET of the function f (t) then

4  Homotopy perturbation Elzaki transform 
method (HPETM)

In order to clarify the idea of HPETM, the fractional order 
nonlinear non-homogeneous partial differential equation 
with initial condition (IC) is consider as below

where D�
t
f (x, y, z, t) is the derivative of f (x, y, z, t) in Caputo 

sense, R,N are the linear and nonlinear differential opera-
tors and g(x, y, z, t) is the source term.

Now by taking ET on both sides of Eq. (11), we have

Using differentiation property of ET, we obtain

Applying inverse Elzaki transform on both sides of 
Eqs. (14) and (12), we find

where G(x, y, z, t) represents the term coming from initial 
condition and source term.

Now, by applying HPM to the Eq. (15), we get

E

[
�2f (x, t)

�x2

]
=

d2

dx2
F(x, q).

(9)F(q) = qG

(
1

q

)

(10)E
[
D𝛼f (t)

]
=

F(q)

q𝛼
−

n−1∑
k=0

qk−𝛼+2f (k)(0), n − 1 < 𝛼 ≤ n

(11)
D𝛼

t
f (x, y, z, t) + Rf (x, y, z, t) + Nf (x, y, z, t) = g(x, y, z, t,), 0 < 𝛼 ≤ 1

(12)f (x, y, z, 0) = h(x, y, z)

(13)

E
[
D�

t
f (x, y, z, t) + Rf (x, y, z, t) + Nf (x, y, z, t)

]
= E

[
g(x, y, z, t)

]

(14)

E{f (x, y, z, t)} =

n−1∑
k=0

qk+2f (k)(0)+q�
[
E{g(x, y, z, t)}

−E{Rf (x, y, z, t) + Nf (x, y, z, t)}
]

(15)
f (x, y, z, t) = G(x, y, z, t) − E−1

[
q�
[
E{Rf (x, y, z, t) + Nf (x, y, z, t)}

]]

(16)
f (x, y, z, t) = G(x, y, z, t)

− p
(
E−1

[
q�
[
E{Rf (x, y, z, t) + Nf (x, y, z, t)}

]])
.

The homotopy parameter p is used to expand the solu-
tion as

and the nonlinear term is decomposed as

where Hn(f ) is He’s polynomials and is given by

Substituting Eqs. (17) and (18) in Eq. (16), we get

Comparing the coefficient of equal powers of p from 
both sides of above equation, the following equations are 
obtained

Continuing in this manner we may find fn(x, y, z, t) and 
then the solution is written as

5  Application of HPETM on NS equation

The proposed method is implemented here and then the 
accuracy of the HPETM is investigated for NS equation. The 
time fractional NS equation with constant density � and 
kinematic viscosity v =

�

�
 is given as [24, 29] 

(17)f (x, y, z, t) =

∞∑
n=0

pnfn(x, y, z, t)

(18)Nf (x, y, z, t) =

∞∑
n=0

pnHn(f )

(19)Hn

(
f0, f1,… , fn

)
=

1

n!

�

�pn

[
N

(
∞∑
n=0

pnfn

)]
.

(20)

∞∑
n=0

pnfn(x, y, z, t) = G(x, y, z, t)

− p

(
E−1

[
q�

[
E

{
R

∞∑
n=0

pnfn(x, y, z, t) + N

∞∑
n=0

pnHn(f )

}]])

p0 ∶ f0(x, y, z, t) = G(x, y, z, t),

p1 ∶ f1(x, y, z, t) = E−1
[
q�
[
E
{
Rf0(x, y, z, t) + H0(f )

}]]
p2 ∶ f2(x, y, z, t) = E−1

[
q�
[
E
{
Rf1(x, y, z, t) + H1(f )

}]]

f (x, y, z, t) = f1(x, y, z, t) + f2(x, y, z, t) + f3(x, y, z, t) +⋯

(21)

⎧⎪⎨⎪⎩

D�
t
U + (U.∇)U = �0∇

2U −
1

�
∇�, Ω × (0, T )

∇.U = 0, Ω × (0, T )

U = 0, Ω × (0, T )
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where U = (u, v,w), t, � represent the fluid vector, time 
and pressure respectively. � is the dynamic viscosity while 
the ratio �0 =

�

�
 represents the kinematics viscosity. Here 

� = (−�,�) × (−�,�) is the domain with boundary �� . In 
Cartesian coordinate, Eq. (21) is written as

If the value of p is known then all the values of 
g1 = −

1

�

�p

�x
, g2 = −

1

�

�p

�y
 a n d  g3 = −

1

�

�p

�z
 c a n  b e 

determined.

5.1  Numerical examples

Example 1 From Eq. (22), 2-dimensional NS equation of 
fractional order with g1 = −g2 = g may be written as

with IC [37] 

Applying ET on both sides of Eq. (23) with IC (24), we get

The inverse Elzaki transform of Eqs. (25) and (26) implies 
that

(22)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

D�

t
u + u

�u

�x
+ v

�u

�y
+ w

�u

�z
= �0

�
�2u

�x2
+

�2u

�y2
+

�2u

�z2

�
−

1

�

�p

�x
,

D�

t
v + u

�v

�x
+ v

�v

�y
+ w

�v

�z
= �0

�
�2v

�x2
+

�2v

�y2
+

�2v

�z2

�
−

1

�

�p

�y
,

D�

t
w + u

�w

�x
+ v

�w

�y
+ w

�w

�z
= �0

�
�2w

�x2
+

�2w

�y2
+

�2w

�z2

�
−

1

�

�p

�z
,

(23)

D�

t
u + u

�u

�x
+ v

�u

�y
= �0

(
�2u

�x2
+

�2u

�y2

)
+ g,

D�

t
v + u

�v

�x
+ v

�v

�y
= �0

(
�2v

�x2
+

�2v

�y2

)
− g,

(24)u(x, y, 0) = − sin (x + y), v (x, y, 0) = sin (x + y).

(25)

E{u(x, y, t)} = −q2 sin (x + y)

+ q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
+ g − u

�u

�x
− v

�u

�y

]

(26)

E{v(x, y, t)} = q2 sin (x + y)

+ q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− g − u

�v

�x
− v

�v

�y

]

(27)

u(x, y, t) = − sin (x + y)

+ E−1
[
q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
+ g − u

�u

�x
− v

�u

�y

]]

Simplifying Eqs. (27) and (28), we get

Now applying the homotopy perturbation method, we 
have

where Hn(u) and Hn(v) are He’s polynomials which signifies 
the nonlinear terms.

where

The first few components of He’s polynomials are given 
as

(28)

v(x, y, t) = sin (x + y)

+ E−1
[
q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− g − u

�v

�x
− v

�v

�y

]]

(29)

u(x, y, t) = − sin (x + y) +
gt�

� (� + 1)

+ E−1
[
q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
− u

�u

�x
− v

�u

�y

]]

(30)

v(x, y, t) = sin (x + y) −
gt�

� (� + 1)

+ E−1
[
q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− u

�v

�x
− v

�v

�y

]]

(31)

∞∑
n=0

pnun(x, y, t)= − sin (x + y) +
gt�

� (� + 1)

+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(u)

]]}

(32)

∞∑
n=0

pnvn(x, y, t)= sin (x + y) −
gt�

� (� + 1)

+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(v)

]]}

⎧⎪⎪⎨⎪⎪⎩

Hn(u) = p

�
�0

�
�2u

�x2
+

�2u

�y2

�
− u

�u

�x
− v

�u

�y

�
= 0

Hn(v) = p

�
�0

�
�2v

�x2
+

�2v

�y2

�
− u

�v

�x
− v

�v

�y

�
= 0

u = u0 + pu1 + p2u2 +⋯ ,

v = v0 + pv1 + p2v2 +⋯ ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0(u) = �0
�
u0xx + u0yy

�
− u0u0x − v0u0y

H0(v) = �0
�
v0xx + v0yy

�
− u0v0x − v0v0y

H1(u) = �0
�
u1xx + u1yy

�
− u0u1x − u1u0x − v0u1y − v1u0y

H1(v) = �0
�
v1xx + v1yy

�
− u0v1x − u1v0x − v0v1y − v1v0y

⋮
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Using the above He’s polynomials and comparing the 
coefficients of same power of p in Eqs. (31) and (32) we 
have

So the solution u(x, y, t) and v(x, y, t) are written as

p0 ∶ u0(x, y, t) = − sin (x + y) +
gt�

� (� + 1)

v0(x, y, t) = sin (x + y) −
gt�

� (� + 1)

p1 ∶ u1(x, y, t) = E−1
[
q�E

[
H0(u)

]]
= 2�0 sin (x + y)

t�

� (� + 1)

v1(x, y, t) = E−1
[
q�E

[
H0(v)

]]
= −2�0 sin (x + y)

t�

� (� + 1)

p2 ∶ u2(x, y, t) = E−1
[
q�E

[
H1(u)

]]
= −4�2

0
sin (x + y)

t2�

� (2� + 1)

v2(x, y, t) = E−1
[
q�E

[
H1(v)

]]
= 4�2

0
sin (x + y)

t2�

� (2� + 1)

(33)

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) +⋯

= − sin (x + y)e−2�0t
�

+
gt�

� (� + 1)

(34)

v(x, y, t) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) +⋯

= sin (x + y)e−2�0t
�

−
gt�

� (� + 1)

For g = 0, � = 1 Eqs. (33) and (34) reduce to

This solution is in good agreement with [37]. The plots 
of Eq. (35) are depicted in Figs. 1, 2, 3 and 4, for different 
values of � = 1, 0.2, 0.4, 0.6 , �0 = 0.5 , t = 3 . The com-
parison plots of U0,U1,U2,U3,U4 and V0, V1, V2, V3, V4 with 
their exact solution (35) for � = 1 are depicted in Fig. 5 and 
solution plots of Example 1 are given in Fig. 6 for different 
values of �.

Example 2 Consider the NS Eq. (23) with IC [37]

Applying ET on both sides of Eq. (23) subject to IC (36), 
we get

The inverse Elzaki transform of Eqs. (37) and (38) implies 
that

(35)

{
u(x, y, t) = − sin (x + y)e−2�0t

v(x, y, t) = sin (x + y)e−2�0t

(36)u(x, y, 0) = −ex+y , v(x , y, 0) = ex+y

(37)

E{u(x, y, t)} = −q2ex+y + q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
+ g − u

�u

�x
− v

�u

�y

]

(38)

E{v(x, y, t)} = q2ex+y + q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− g − u

�v

�x
− v

�v

�y

]

Fig. 1  Solution plots of Eq. (35) 
for �0 = 0.5, t = 3, � = 1 and 
g = 0

Fig. 2  Solution plots of Eq. (35) 
for �0 = 0.5, t = 3, � = 0.2 and 
g = 0 (Example 1)
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(39)

u(x, y, t) = −ex+y + E−1
[
q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
+ g − u

�u

�x
− v

�u

�y

]]

(40)

v(x, y, t) = ex+y + E−1
[
q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− g − u

�v

�x
− v

�v

�y

]]

Simplifying Eqs. (39) and (40), we get

(41)

u(x, y, t) = −ex+y +
gt�

� (� + 1)

+ E−1
[
q�E

[
�0

(
�2u

�x2
+

�2u

�y2

)
− u

�u

�x
− v

�u

�y

]]

Fig. 3  Solution plots of Eq. (35) 
for �0 = 0.5, t = 3, � = 0.4 and 
g = 0 (Example 1)

Fig. 4  Solution plots of Eq. (35) 
for �0 = 0.5, t = 3, � = 0.6 and 
g = 0 (Example 1)

Fig. 5  Comparison of the approximate solution U0,U1,U2,U3,U4 and V0, V1, V2, V3, V4 with their exact solution (35) for �0 = 0.5, x =
�

4
, y =

�

4
 

(Example 1)
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Now applying HPM, we have

where Hn(u) and Hn(v) are He’s polynomials that denotes 
the nonlinear terms and are given as

where

(42)

v(x, y, t) = ex+y −
gt�

� (� + 1)

+ E−1
[
q�E

[
�0

(
�2v

�x2
+

�2v

�y2

)
− u

�v

�x
− v

�v

�y

]]

(43)

∞∑
n=0

pnun(x, y, t)= −ex+y +
gt�

� (� + 1)

+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(u)

]]}

(44)

∞∑
n=0

pnvn(x, y, t) = ex+y −
gt�

� (� + 1)
+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(v)

]]}

⎧⎪⎪⎨⎪⎪⎩

Hn(u) = p

�
�0

�
�2u

�x2
+

�2u

�y2

�
− u

�u

�x
− v

�u

�y

�
= 0

Hn(v) = p

�
�0

�
�2v

�x2
+

�2v

�y2

�
− u

�v

�x
− v

�v

�y

�
= 0

u = u0 + pu1 + p2u2 +⋯ ,

v = v0 + pv1 + p2v2 +⋯ ,

The first few components of He’s polynomials are given 
by

Using the above He’s polynomials and comparing the 
coefficients of same power of p in Eqs. (43) and (44) we 
have

Then the solution u(x, y, t) and v(x, y, t) are given as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0(u) = �0
�
u0xx + u0yy

�
− u0u0x − v0u0y

H0(v) = �0
�
v0xx + v0yy

�
− u0v0x − v0v0y

H1(u) = �0
�
u1xx + u1yy

�
− u0u1x − u1u0x − v0u1y − v1u0y

H1(v) = �0
�
v1xx + v1yy

�
− u0v1x − u1v0x − v0v1y − v1v0y

⋮

p0 ∶ u0(x, y, t) = − ex+y +
gt�

� (� + 1)

v0(x, y, t) = ex+y −
gt�

� (� + 1)

p1 ∶ u1(x, y, t) = E−1
[
q�E

[
H0(u)

]]
= −2�0e

x+y t�

� (� + 1)

v1(x, y, t) = E−1
[
q�E

[
H0(v)

]]
= 2�0e

x+y t�

� (� + 1)

p2 ∶ u2(x, y, t) = E−1
[
q�E

[
H1(u)

]]
= −4�2

0
ex+y

t2�

� (2� + 1)

v2(x, y, t) = E−1
[
q�E

[
H1(v)

]]
= 4�2

0
ex+y

t2�

� (2� + 1)

Fig. 6  Solution plots of Eq. (35) for different values of � (Example 1)
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For g = 0, � = 1 Eqs. (45) and (46) reduce to

This solution is same as the solution solved in [29]. The 
behavior of the solution (47) are depicted in Figs. 7, 8 and 9 
for different values of � = 1, 0.4, 0.8 , �0 = 0.5 , t = 0.05 . The 
comparison plots of U0,U1,U2,U3,U4 and V0, V1, V2, V3, V4 

(45)

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) +⋯

= −ex+ye2�0t
�

+
gt�

� (� + 1)

(46)

v(x, y, t) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) +⋯

= ex+ye2�0t
�

−
gt�

� (� + 1)

(47)

{
u(x, y, t) = − ex+y+2�0t

v(x, y, t) = ex+y+2�0t

with their exact solution (47) for � = 1 are depicted in 
Fig. 10 and solution of plots of Example 2 for different val-
ues of � are illustrated in Fig. 11

Example 3 Finally let us consider 3-dimensional NS Eq. (22) 
with g1 = g2 = g3 = 0 with IC [37]

Applying ET on both sides of Eq. (22) subject to IC (48), 
we have

(48)

u(x, y, z, 0) = − 0.5x + y + z, v(x, y, z, 0)

= x − 0.5y + z, w(x, y, z, 0)

= x + y − 0.5z

(49)

E{u(x, y, z, t)} = q2(−0.5x + y + z)

+ q�E

[
�0

(
�2u

�x2
+

�2u

�y2
+

�2u

�z2

)
− u

�u

�x
− v

�u

�y
− w

�u

�z

]

Fig. 7  Solution plots of Eq. (47) 
for �0 = 0.5, t = 0.05, � = 1 
and g = 0 (Example 2)

Fig. 8  Solution plots of Eq. (47) 
for �0 = 0.5, t = 0.05, � = 0.4 
and g = 0 (Example 2)

Fig. 9  Solution plots of Eq. (47) 
for �0 = 0.5, t = 0.05, � = 0.8 
and g = 0 (Example 2)
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(50)

E{v(x, y, z, t)} = q2(x − 0.5y + z)

+ q�E

[
�0

(
�2v

�x2
+

�2v

�y2
+

�2v

�z2

)
− u

�v

�x
− v

�v

�y
− w

�v

�z

]

(51)

E{w(x, y, z, t)} = q2(x + y − 0.5z)

+ q�E

[
�0

(
�2w

�x2
+

�2w

�y2
+

�2w

�z2

)
− u

�w

�x
− v

�w

�y
− w

�w

�z

]

The inverse Elzaki transform of Eqs. (49)–(51) implies 
that

(52)

u(x, y, z, t) = (−0.5x + y + z)

+ E−1
[
q�E

[
�0

(
�2u

�x2
+

�2u

�y2
+

�2u

�z2

)
− u

�u

�x
− v

�u

�y
− w

�u

�z

]]

(53)

v(x, y, z, t) = (x − 0.5y + z)

+ E−1
[
q�E

[
�0

(
�2v

�x2
+

�2v

�y2
+

�2v

�z2

)
− u

�v

�x
− v

�v

�y
− w

�v

�z

]]

Fig. 10  Comparison of the approximate solution U0,U1,U2,U3,U4 and V0, V1, V2, V3, V4 with their exact solution (47) for �0 = 0.5, x =
�

4
, y =

�

4
 

(Example 2)

Fig. 11  Solution plots of Eq. (47) for different values of � (Example 2)
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Now applying the homotopy perturbation method we 
obtain

where Hn(u) , Hn(v) and Hn(w) are He’s polynomials that 
represents the nonlinear terms as

where

The first few components of He’s polynomials are given 
as

(54)

w(x, y, z, t) = (x + y − 0.5z)

+ E−1
[
q�E

[
�0

(
�2w

�x2
+

�2w

�y2
+

�2w

�z2

)
− u

�w

�x
− v

�w

�y
− w

�w

�z

]]

(55)

∞∑
n=0

pnun(x, y, z, t) = (−0.5x + y + z)

+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(u)

]]}

(56)

∞∑
n=0

pnvn(x, y, z, t) = (x − 0.5y + z) + p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(v)

]]}

(57)

∞∑
n=0

pnwn(x, y, z, t) = (x + y − 0.5z)

+ p

{
E−1

[
q�E

[
∞∑
n=0

pnHn(w)

]]}

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hn(u) = p

�
�0

�
�2u

�x2
+

�2u

�y2
+

�2u

�z2

�
− u

�u

�x
− v

�u

�y
− w

�u

�z

�
= 0

Hn(v) = p

�
�0

�
�2v

�x2
+

�2v

�y2
+

�2v

�z2

�
− u

�v

�x
− v

�v

�y
− w

�v

�z

�
= 0

Hn(w) = p

�
�0

�
�2w

�x2
+

�2w

�y2
+

�2w

�z2

�
− u

�w

�x
− v

�w

�y
− w

�w

�z

�
= 0

u = u0 + pu1 + p2u2 +⋯ ,

v = v0 + pv1 + p2v2 +⋯ ,

w =w0 + pw1 + p2w2 +⋯ ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H0(u) = �0
�
u0xx + u0yy + u0zz

�
− u0u0x − v0u0y − w0u0z

H0(v) = �0
�
v0xx + v0yy + v0zz

�
− u0v0x − v0v0y − w0v0z

H0(w) = �0
�
w0xx + w0yy + w0zz

�
− u0w0x − v0w0y − w0w0z

H1(u) = �0
�
u1xx + u1yy + u1zz

�
− u0u1x − u1u0x − v0u1y − v1u0y − w0u1z − w1u0z

H1(v) = �0
�
v1xx + v1yy + v1zz

�
− u0v1x − u1v0x − v0v1y − v1v0y − w0v1z − w1v0z

H1(w) = �0
�
w1xx + w1yy + w1zz

�
− u0w1x − u1w0x − v0w1y − v1w0y − w0w1z − w1w0z

⋮

Using the above He’s polynomials and comparing the 
coefficients of same power of p in Eqs. (55)–(57) we have

p0 ∶ u0(x, y, z, t) = (−0.5x + y + z)

v0(x, y, z, t) = (x − 0.5y + z)

w0(x, y, z, t) = (x + y − 0.5z)

p1 ∶ u1(x, y, z, t) = E−1
[
q�E

[
H0(u)

]]
= − (2.25x)

t�

� (� + 1)

v1(x, y, z, t) = E−1
[
q�E

[
H0(v)

]]
= − (2.25y)

t�

� (� + 1)

w1(x, y, z, t) = E−1
[
q�E

[
H0(w)

]]
= − (2.25z)

t�

� (� + 1)

p2 ∶ u2(x, y, z, t) = E−1
[
q�E

[
H1(u)

]]

=(− 2.25x + 4.5y + 4.5z)
t2�

� (2� + 1)

v2(x, y, z, t) = E−1
[
q�E

[
H1(v)

]]

=(4.5x − 2.25y + 4.5z)
t2�

� (2� + 1)

w2(x, y, z, t) = E−1
[
q�E

[
H1(w)

]]

=(4.5x + 4.5y − 2.25z)
t2�

� (2� + 1)

p3 ∶ u3(x, y, z, t) = E−1
[
q�E

[
H2(u)

]]

= −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))2

)
xt3�

� (3� + 1)

v3(x, y, z, t) = E−1
[
q�E

[
H2(v)

]]

= −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))
2

)
yt3�

� (3� + 1)

w3(x, y, z, t) = E−1
[
q�E

[
H21(w)

]]

= −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))2

)
zt3�

� (3� + 1)
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So the solutions u(x, y, z, t) , v(x, y, z, t) and w(x, y, z, t) are 
given as

For � = 1 Eqs. (58)–(60) reduce to

(58)
u(x, y, z, t) = u0(x, y, z, t) + u1(x, y, z, t) + u2(x, y, z, t) + u3(x, y, z, t)⋯ = (−0.5x + y + z) + −(2.25x)

t�

� (� + 1)
+

(−2.25x + 4.5y + 4.5z)
t2�

� (2� + 1)
+ −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))
2

)
xt3�

� (3� + 1)
+⋯

(59)
v(x, y, z, t) = v0(x, y, z, t) + v1(x, y, z, t) + v2(x, y, z, t) + v3(x, y, z, t)⋯ = (x − 0.5y + z) + −(2.25y)

t�

� (� + 1)
+

(4.5x − 2.25y + 4.5z)
t2�

� (2� + 1)
+ −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))
2

)
yt3�

� (3� + 1)
+⋯

(60)
w(x, y, z, t) = w0(x, y, z, t) + w1(x, y, z, t) + w2(x, y, z, t) + w3(x, y, z, t)⋯ = (x + y − 0.5z) + −(2.25z)

t�

� (� + 1)
+

(4.5x + 4.5y − 2.25z)
t2�

� (2� + 1)
+ −

(
20.25 + 5.0625

� (2� + 1)

(� (� + 1))
2

)
zt3�

� (3� + 1)
+⋯

(61)

u(x, y, z, t) = (−0.5x + y + z)
(
1 + 2.25t2 + 2.252t4 +⋯

)
− 2.25xt

(
1 + 2.25t2 +⋯

)
=

−0.5x + y + z − 2.25xt

1 − 2.25t2

v(x, y, z, t) = (x − 0.5y + z)
(
1 + 2.25t2 + 2.252t4 +⋯

)
− 2.25yt

(
1 + 2.25t2 +⋯

)
=

x − 0.5y + z − 2.25yt

1 − 2.25t2

w(x, y, z, t) = (x + y − 0.5z)
(
1 + 2.25t2 + 2.252t4 +⋯

)
− 2.25zt

(
1 + 2.25t2 +⋯

)
=

x + y − 0.5z − 2.25zt

1 − 2.25t2

This solution is same as solution solved in [38]. The plots 
of Eq. (61) are depicted in Fig. 12 for � = 1, �0 = 0.5 , t = 0.1 

and the comparison plots of U0, U1, U2,U3 , V0, V1, V2, V3 

Fig. 12  Solution plots of 
Eq. (61) for t = 0.1 and � = 1 
(Example 3)



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:16 | https://doi.org/10.1007/s42452-018-0016-9

and W0, W1, W2,W3 with their exact solution (61) for � = 1 
are depicted in Fig. 13.

6  Conclusion

In this paper, HPETM is applied for solution of time-frac-
tional NS equations with IC. HPETM provides the solution 
in term of convergent series. Three example problems are 
addressed in order to validate and test the efficacy of the 
proposed method. One may see that the obtained results 
are in excellent agreement with HPM [28] and ADM [29]. 
The major benefit of this method over HPM and ADM is 
that this is a powerful and effective method in finding the 

analytical and approximate solutions for fractional order 
nonlinear partial differential equations in place of Ado-
mian’s polynomials.
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