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Abstract
Fractures and fracture networks determine the permeability of many natural rocks. In this study, new solutions are devel-
oped to calculate the effective permeability of fractal fracture network with non-universal scaling of fracture aperture 
and trace length. One component of the permeability tensor is derived by assuming that the hydraulic gradient is per-
pendicular to the trace direction. A new solution is also derived to examine the reduction in the effective permeability of 
fracture network due to the influence of random fracture orientation. The fracture lengths in the network are assumed 
to follow the fractal scaling law. The orientation dispersion of factures in the fracture network varies according to the 
Fisher distribution. The effective permeability is derived by treating the fractal fracture network as a porous medium 
and using Darcy’s law. Results demonstrate that the effective permeability decreases with the scaling exponent before 
the break when the scaling break occurs early. However, the effective permeability increases with the scaling exponent 
before the break if the scaling break occurs late. The effective permeability increases with the scaling exponent after the 
break. The extent of increase varies with the location of the scaling break. If the scaling break occurs early, the increase 
in the effective permeability is more significant. The effective permeability of fractal fracture network increases with the 
location of scaling break. The reduction in the effective permeability due to fracture orientation dispersion varies from 
2/3 to 0 depending on the degree of orientation dispersion as quantified by the precision parameter.
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1  Introduction

The presence of natural fractures controls groundwater 
flow because water can flow more quickly and much 
greater distances along these fractures than it could flow 
through matrix in subsurface fractured rocks. Fractures 
and fracture networks determine the permeability of many 
natural rocks [2]. For characterization of disorder and irreg-
ular media, fractal geometry and technique are believed 
to be effective tools [5, 7, 33, 38]. Studies illustrated that 
porous media can be described by fractal geometry theory 
(e.g., [12, 29]). Fractures have also been shown to dem-
onstrate fractal characteristics [8, 28]. There have been 
many studies of flow characteristics in porous media using 

fractal geometry theory (e.g., [6, 21, 34, 37, 39]). There have 
also been many investigations of flow and conduction in 
fractal fracture network (e.g., [16, 17, 22, 35, 36]). Xu et al. 
[35] derived the expression for the equivalent permeabil-
ity based on the fractal-like tree network model. Recently, 
Miao et al. [22] used fractal geometry theory and tech-
nique to study seepage characteristics and obtained the 
analytical expression for permeability of fracture networks. 
The model includes microstructure parameters of fractures 
and does not contain any empirical constant. Liu et al. [17] 
proposed the fractal scaling law for the fracture length in 
the flow direction and determined the average equiva-
lent permeability in relation to the fractal dimension 
using numerical simulations. Miao et al. [23] derived an 
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analytical model based on the fractal geometry theory and 
technique for porous media with the length distribution of 
fractures obeying the fractal scaling law in dual-porosity 
porous media where the porous matrix was assumed to 
consist of a bundle of tortuous capillaries whose size distri-
bution follows the fractal scaling law. Li et al. [16] derived 
the permeability of fracture networks by assuming that 
each fracture cuts through the model domain from the 
left inlet boundary to the right outlet boundary when the 
aperture distribution follows the fractal scaling law. For 
more compressive summary of recent studies on the rela-
tionship between fractal characteristics and permeability, 
refer to several recent reviews (e.g., [18, 19, 32]).

Studies at various scales have shown that the distribu-
tion of length and displacement (aperture) often follows 
a power law [3, 15, 30]

where a is the fracture aperture (displacement), l is the 
length of fracture, β is a proportionality coefficient related 
to the rock properties, and n is the scaling exponent.

However, it has been suggested that there are separate 
regions of behavior in the form of Eq. (1) that necessitate 
two separate equations [1, 10]

This illustrates that there is a scaling break at some 
length lb. If this relationship is plotted in a log–log plot, 
two straight lines don’t have the same slope, in which the 
slope change occurs at the critical length lb. The critical 
length and the slope vary with rock formations. The scaling 
is not consistent of a universal scaling law. At 90% confi-
dence level, a distinct change in scaling from n ≈ 2 to n ≈ 1 
at fracture length of about 10 times the mechanical grain 
size provided by the cooling joints [10].

The orientations of each fracture can be defined by two 
angles, the fracture azimuth and fracture dip. The orienta-
tions of fractures in the medium are not uniform, but usu-
ally with a preferred orientation. It has been shown that 
the averaged/mean angle, the fracture azimuth and frac-
ture dip of all fractures are constant (e.g., [14]). In practical 
applications the mean dip of fractures between fracture 
orientations and fluid flow direction has been generally 
assumed and used [23]. However, the fracture orientation 
distribution in real-world networks is of a great interest 
and should be considered in more general context [24].

Therefore, the objective of this study is twofold. First we 
develop analytical solutions of effective permeability for a 
fractal fracture network where there is a scaling break to 
examine the significance of the scaling break on the effec-
tive permeability of a fractal fracture network. Then we 
derive expression to quantify reduction in the effective 

(1)a = �ln

(2)a =

{
𝛽1l

n1 l ≤ lb
𝛽2l

n2 l > lb

permeability of fracture network and investigate the effect of 
dispersion in individual fracture orientation from the mean 
orientation on the effective permeability. The fractal fracture 
domain is two-dimensional with variable trace length in the 
cutting plane. The fracture sides that cross the boundaries 
form the traces, which have lengths and apertures that fol-
low a power law relationship with a scaling break. The flow 
through the fracture domain is due to a hydraulic gradient 
imposed perpendicularly to the domain boundaries. We 
develop analytical expressions for the corresponding com-
ponent of the permeability tensor. The overall flow direction 
is assumed to take place in the one-dimensional direction of 
decreasing hydraulic head. Although the flow is not strictly 
one-dimensional due to the orientation dispersion of frac-
tures, we conceptualize the flow as one-dimensional by 
taking the orientation dispersion into account through the 
idea of effective permeability. In other words, the effective 
permeability is fracture orientation dependent.

2 � Methods

2.1 � Effect of fractal scaling break on effective 
permeability

The fracture network is often statistically self-similar [3, 11, 
31]. In this study, it is assumed that the area distribution of 
fractures in a fractal fracture network can be described by 
[20]

where N represents the total number of fractures with area 
greater than al, amaxlmax represents the maximum fracture 
area with amax and lmax being the maximum aperture and 
maximum trace length, respectively, and Df is the fractal 
dimension for fracture length, 0 < Df < 2 in the two dimen-
sion fracture network. For the facture network considered 
in the study, the total number of fractures, N, is distributed 
over the domain in which the total fracture area, A, can be 
expressed in Eq. (19) below.

It is further assumed that the fractured domain behaves 
like a porous medium where Darcy’s law applies. Then, the 
fractal dimension Df can be related to the porosity and mini-
mum and maximum fracture lengths in the fractal fracture 
network as [22]

where lmax and lmin are the minimum and maximum 
lengths, respectively, and ϕ is the effective porosity 

(3)N(S ≥ s) =

(
amax lmax

al

)Df ∕2

(4)Df = dE +
ln�

ln
(
lmax∕lmin

)
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of fractures in a rock. From Eq. (4), the porosity can be 
expressed in terms of the lengths and fractal dimension 
for a two-dimensional fractal fracture network (i.e., dE = 2) 
as follows

As discussed earlier, the scaling exponent expressed in 
Eq. (2) changes from a larger value of about 2 to a smaller 
value of about 1 [10]. In this study, the aperture of fracture 
is assumed to follow the scaling relationship with the trace 
length having a scaling break as expressed in Eq. (2). Based 
on numerous observations [10], the ratio of n1/n2 should be 
generally larger than 1. The influences of different values of 
n1 and n2 are examined in this study.

From Eq. (2), the relation between the aperture a and 
trace length l can be expressed as

At l = lb, a (or log(a)) should have a same value, which 
leads to

It can then be obtained that

If the scaling break occurs at a trace length between the 
minimum and maximum lengths in a fractal fracture net-
work (i.e., lmax > lb > lmin) for the fractal network length, then 
the following expressions can be developed by substituting 
Eq. (8) into (3)

which can be further simplified as

Then the number of fractures that is in the range from 
l to l + dl can be determined as

(5)� =

(
lmax

lmin

)(Df−2)
=

(
lmin

lmax

)(2−Df )

(6)log(a) =

{
log

(
𝛽1
)
+ n1log(l) l ≤ lb

log
(
𝛽2
)
+ n2log(l) l > lb

(7)log
(
�2
)
= log

(
�1
)
+
(
n1 − n2

)
log

(
lb
)

(8)a =

{
𝛽1l

n1 l ≤ lb

𝛽1l
(n1−n2)
b

ln2 l > lb

(9)N(L ≥ l) =

⎧
⎪⎪⎨⎪⎪⎩

�
𝛽1 l

(n1−n2)
b

l
n2
max lmax

𝛽1 l
n1 l

�Df ∕2

l ≤ lb
�
𝛽1 l

(n1−n2)
b

l
n2
max lmax

𝛽1 l
(n1−n2)
b

ln2 l

�Df ∕2

l > lb

(10)N(L ≥ l) =

⎧⎪⎨⎪⎩

l
(n1−n2)Df

2

b
l
(n2+1)Df

2

max l−
(n1+1)Df

2 l ≤ lb

l
(n2+1)Df

2

max l−
(n2+1)Df

2 l > lb

By definition the effective porosity can be expressed as

where A is the area that is represented by the effective 
permeability, and Af is the total area of all fractures, which 
can be related to the fractal characteristics from the fol-
lowing integration

which means the integration has two portions depending 
on the location of scaling break, lb.

The fracture area related to the fracture length smaller 
than the scaling break lb is

which leads to

The fracture area related to the fracture length larger than 
the scaling break lb can be determined similarly

(11)

−dN(l) =

⎧
⎪⎨⎪⎩

�
(n1+1)Df

2

�
l
(n1−n2)Df

2

b
⋅ l

(n2+1)Df
2

max ⋅ l−
(n1+1)Df +2

2 dl l ≤ lb�
(n2+1)Df

2

�
l
(n2+1)Df

2

max ⋅ l−
(n2+1)Df +2

2 dl l > lb

(12)� =
Af

A

(13)

Af = −

lmax

∫
lmin

a ⋅ l ⋅ dN(l) = −

lb

∫
lmin

a ⋅ l ⋅ dN(l) −

lmax

∫
lb

a ⋅ l ⋅ dN(l)

(14)Af = Af1 + Af2

(15)

Af1 = −

lb

∫
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lb
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Df

2
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l
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2

b
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2
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(n1+1)Df +2

2 dl

(16)
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�
Df

2 − Df

�
l
(n1+1)
b

�
lmax

lb

� (n2+1)Df
2
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1 −

�
lmin

lb

� 2n1+2−(n1+1)Df
2
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(17)

Af2 = −

lmax

∫
lb

a ⋅ l ⋅ dN(l)

=

lmax

∫
lb

�1l
(n1−n2)
b

ln2 ⋅ l ⋅

[(
n2 + 1

)
Df

2
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l
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2
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(n2+1)Df +2
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which leads to

The total area of the fractal fracture network A is then 
related to the fracture area Af by the following relationship

In each fracture with aperture a and trace length l, the 
flowrate q is related to the hydraulic gradient ∇h by the 
following cubic law (e.g., [25]

In this study, we assume that the rock matrix is assumed 
to be impermeable. Therefore, the total flowrate Q in the 
fracture network can be determined by the following 
integrations

which indicates the total flowrate is contributed from two 
portions

which leads to

(18)

Af2 = �1

�
Df

2 − Df

�
l
(n1+1)
b

�
lmax

lb

�(n2+1)⎡⎢⎢⎣
1 −

�
lb

lmax

� 2n2+2−(n2+1)Df
2

⎤⎥⎥⎦

(19)
A =

Af

�
=

Af1 + Af2(
lmin

lmax

)(2−Df )

(20)q =
�ga3l

12�
⋅ ∇h

(21)Q = −

lmax

∫
lmin

q(l)dN(l) = −

lb

∫
lmin

q(l)dN(l) −

lmax

∫
lb

q(l)dN(l)

(22)Q = Q1 + Q2

(23)

Q1 = −

lb

∫
lmin

q(l)dN(l)

=

lb

∫
lmin

�ga3l

12�
⋅ ∇h

[(
n1 + 1

)
Df

2

]
l
(n1−n2)Df

2

b
⋅ l

(n2+1)Df
2

max ⋅ l−
(n1+1)Df +2

2 dl

(24)

Q1 =
�g�3

1
∇h

12�

� �
n1 + 1

�
Df

6n1 + 2 −
�
n1 + 1

�
Df

�
l
(3n1+1)
b

⋅

�
lmax

lb

� (n2+1)Df
2

⎡⎢⎢⎣
1 −

�
lmin

lb

� 6n1+2−(n1+1)Df
2

⎤⎥⎥⎦

which results in

In performing the integrations (15), (17), (23) and (25), it 
is assumed that the fractures do not intersect, which means 
they do not overlap.

In this study, it is assumed that the fractal fracture net-
work behaves similarly to a porous medium with an effec-
tive permeability k. We also assume that each fracture cuts 
through the model domain from the inlet boundary to the 
outlet boundary [16]. Then Darcy’s law for groundwater flow 
can be written as

where ρ is the water density, μ is the viscosity, and g is 
the gravitational acceleration. Equation (27) can be re-
arranged to obtain the effective permeability of the fractal 
fracture network k

Then similar to the flowrate, the effective permeability 
can also be expressed in two parts

(25)

Q2 = −

lmax

∫
lb

q(l)dN(l)

=

lmax

∫
lb

�ga3l

12�
⋅ ∇h
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)
Df

2

]
l
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2

max ⋅ l−
(n2+1)Df +2

2 dl

(26)
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1
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�
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�
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�
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�
l
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b

�
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⎡
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�
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2
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(27)Q =
k�gA

�
∇h

(28)k =
Q�

A�g∇h

(29)k =
�
(
Q1 + Q2

)
A�g∇h

= k1 + k2

(30)

k1 =
�Q1
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=
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12�
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�
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�
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�
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which can be further simplified as,

which can be further simplified as,

While Eqs. (21) through (26) indicate that the flowrate in 
the domain only depends on the total number of fractures, 
the resulting effective permeability in Eqs. (29) through 
(33) is directly related to the total fracture area. This is a 
direct result from the fact that the total area, density, and 
number of fractures are all related for the considered frac-
ture domain in this study.

2.2 � Fracture orientation effect on effective 
permeability

The distribution of orientation about a mean set orienta-
tion is typically modeled using a Fisher distribution. The 
Fisher distribution function gives the probability of finding 
a direction within an angular area centered at an angle 
θ from the true mean. The angular area is expressed in 
steradians with the total angular area of a sphere being 
4π steradians. Orientations are distributed according to 
the probability density function [4, 9, 27]

where θ is the angle between the mean flow direction 
and the fracture orientation. The mean flow occurs in the 
direction of θ = 0, which is also the orientation of the Fish-
er’s pole. t is the precision parameter in Eq. (34). This is a 
symmetric distribution about the mean orientation, and 

(31)

k1 =
�3
1

12
�
Af1 + Af2

�
� �

n1 + 1
�
Df

6n1 + 2 −
�
n1 + 1

�
Df

�
l
(3n1+1)
b

⋅

�
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�(2−Df )� lmax

lb

� (n2+1)Df
2

⎡⎢⎢⎣
1 −

�
lmin

lb

� 6n1+2−(n1+1)Df
2

⎤⎥⎥⎦

(32)

k2 =
�Q2

A�g∇h
=

�

A�g∇h

�g�3
1

12�

⋅ ∇h

� �
n2 + 1

�
Df

6n2 + 2 −
�
n2 + 1

�
Df

�
l
(3n1+1)
b

�
lmax

lb

�(3n2+1)⎡⎢⎢⎣
1 −

�
lb

lmax

� 6n2+2−(n2+1)Df
2

⎤
⎥⎥⎦

(33)

k2 =
�3
1

12
�
Af1 + Af2

� ⋅

� �
n2 + 1

�
Df

6n2 + 2 −
�
n2 + 1

�
Df

�
l
(3n1+1)
b

⋅

�
lmin

lmax

�(2−Df )� lmax

lb

�(3n2+1)⎡⎢⎢⎣
1 −

�
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lmax

� 6n2+2−(n2+1)Df
2

⎤⎥⎥⎦

(34)fA(�) =
t ⋅ et⋅cos�

2�(et − e−t)

as expected, the distribution has a maximum at the true 
mean (θ = 0).

If ζ is taken as the azimuthal angle about the true mean 
direction, the probability of a direction with an angular 
area dA, fA(θ), can be expressed as

The sin(θ) term appears because the area of a band 
width dθ varies as sin(θ). The Fisher distribution is normal-

ized so that ∫ 2�

ζ=0
∫ �

�=0
fA(�)sin(�)d�dζ = 1.

Then the probability of finding a direction in a band of 
width dθ between θ and θ + dθ, f(θ)dθ, is then given by

Therefore, the probability density function of fracture 
deviation angle from the mean direction can be expressed 
as

With the Fisher distribution, the angle from the true 
mean within which a given percentage of directions lie can 
be determined, which is related to t. The angle with which 
50% of directions lie is �50 = 67.5◦∕

√
t . The critical angle 

that contains 95% of directions is given by �95 = 140◦∕
√
t.

(35)fA(�)dA = fA(�)sin(�)d�dζ

(36)

f (�)d� =

2�

∫
ζ=0

fA(�)sin(�)d�dζ = 2�fA(�)sin(�)d� =
tsin(�)et⋅cos�

(et − e−t)
d�

(37)f (�) =
tsin�et⋅cos�

et − e−t

Fig. 1   Fisher probability density function of fracture deviation 
angles from the mean angle
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A large t predicts a distribution more strongly concen-
trated about the true mean [13]. Figure 1 shows the effect 
of precision parameter t on the orientation distribution. It 
can be seen that the orientation distribution is more clus-
tered and moves toward zero with a larger t value. In the 
extreme case of infinite t, the orientation deviation angle 
is zero, which means that the all fractures would have the 
same orientation angle of zero in relation to the hydraulic 
gradient. Under this condition, the effective permeability 
would be the largest.

If a fracture has the azimuth of zero and dip angles of θ, 
respectively, the actual flowrate in the fracture is reduced by 
a factor of cos2θ [23, 26]

Since fracture area and total area are not affected by the 
angle as long as the aperture and length don’t change, a 
simple reduction factor (RF) can be defined to measure the 
overall effect of fracture orientation distribution (dispersion) 
on the effective permeability

where kθ denotes the effective permeability when frac-
tures are not parallel to the hydraulic gradient direction. 
The RF can be determined as

which can be integrated as

Note that in the extreme case of orientation dispersion 
(t → 0), it can be shown that

which means

In the other extreme case of no orientation dispersion 
(t → ∞), it can be shown that

which leads to

(38)q =
�ga3l

12�
⋅ ∇h ⋅ cos

2�

(39)RF =
k�

k

(40)RF =

�

∫
0

cos
2θ f (�)d� =

�

∫
0

cos
2θ

tsin�et⋅cos�

et − e−t
d�

(41)RF = 1 − 2

[
tcosh(t) − sinh(t)

t2sinh(t)

]

(42)lim
t→0

[
tcosh(t) − sinh(t)

t2sinh(t)

]
=

1

3

(43)lim
t→0

RF = 1 − 2

(
1

3

)
=

1

3

(44)lim
t→∞

[
tcosh(t) − sinh(t)

t2sinh(t)

]
= 0

(45)lim
t→∞

RF = 1

Therefore, the reduction factor of effective permeabil-
ity due to orientation variations of fractures varies in the 
range from 1/3 for the most extreme orientation disper-
sion to 1 for no orientation dispersion.

3 � Results and discussion

Figure  2 shows the influence of the scaling exponent 
before the break, n1, on the effective permeability of frac-
tal fracture network. Since n2 is set to be 1, the change of 
n1 from 1 to 2 means that the scaling relationship changes 
from no break to a strong break. The influence from this 
break change can be explained by Eq. (8). When the scaling 
break occurs at the minimum length in the fractal frac-
ture network, the bottom relationship in Eq. (8) (i.e., l > lb) 
applies for all fractures in the network. When lb is at the 
smallest length lmin, the aperture would always be reduced 
by a factor l(

n1−n2)
b

 , which becomes smaller as n1 increases. 
This scaling relationship explains why the effective perme-
ability of fractal fracture network decreases with increasing 
n1 while keeping n2 a constant. The flows in the fracture 
network are mainly dominated by the fractures with large 
aperture as is evident from Eq. (20), which are mostly those 
with l > vlb. Further analysis indicates that when lb/lmax is 
equal to 0.2 under otherwise same conditions in Fig. 2, 
the network effective permeability does not change with 
n1. Since lb = 0.2lmax = 1 m for this particular parameter 
combination, the value of n1 does not affect the effective 
permeability of fractal fracture network. When lb > 0.2lmax, 
the aperture increases with n1 for a given length fracture, 
and as a result the effective permeability also increases 
with n1 as seen from the results in Fig. 2.

Fig. 2   The impact of scaling exponent n1 before the break on the 
effective permeability of a fractal fracture network. The other 
parameters are: Df = 1.5, β1 = 0.002, lmin/lmax = 0.001, lmax = 5.0 m, 
and n2 = 1.0
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The significance of the scaling exponent after the break 
n2 is shown in Fig. 3. The flow is mainly controlled by frac-
tures with large fractures. When lb/lmax = lmin/lmax, the aper-
ture for a given length fracture is totally controlled by the 
bottom formula in Eq. (8), which can be re-arranged as 
a = �1l

n1
b

(
l∕lb

)n2 . Since l/lb is always larger than 1 when the 
scaling break occurs at the minimum length in the net-
work, the aperture at any given length increases with n2. As 
a result, both the flowrate and effective permeability in the 
network also increase with the scaling exponent after the 
break n2. When lb/lmax = 1, since all the fracture apertures 
follow the top formula in the scaling relationship (Eq. 8), 
the n2 value is irrelevant. Therefore the effective perme-
ability of fractal fracture network does not change with the 
scaling exponent after the break n2. In this case, the scaling 
relationship does not have a break for the entire range of 

lengths in the fractal fracture network. For any other lb/lmax 
between lmin/lmax and 1, the aperture increases especially 
for the long fractures as n2 increases. Therefore, the flow 
capacity under the same hydraulic gradient also increases, 
which explains why the effective permeability increases 
with the scaling exponent n2 after the scaling break. When 
lb/lmax becomes larger, the rate of increase of effective per-
meability with n2 becomes smaller, as seen from the results 
in Fig. 3. Eventually in the extreme case of lb/lmax = 1, the 
effective permeability does not change with n2.

In Fig. 4, the effective permeability of fractal fracture 
network is plotted in relation to the scaling break length 
ratio lb/lmax at a few selected values of the scaling expo-
nent before the break n1. It can be seen that the effective 
permeability increases with the scaling break length ratio 
for all n1 values which are > 1. When the scaling exponent 
before the break n1 is larger, the increase of effective per-
meability is more significant. Since the scaling exponent 
after the break n2 is set to 1, the sharpest contrast of the 
break occurs when the scaling exponent before the break 
n1 is equal to 2 and the effect of the scaling break length 
ratio lb/lmax on the effective permeability is largest, which 
manifests as the most dramatic increase seen in Fig. 4.

It is interesting to notice that all the effective permeabil-
ity results converge to the same value at lb/lmax = 0.2, which 
means lb = 1 m. In this case the factor l(

n1−n2)
b

 is the same 
for all the n1 and n2 values, and as a result the effective 
permeability of fractal fracture network with different n1 
values is the same. When lb/lmax is below 0.2, the effective 
permeability is larger for smaller n1, while for lb/lmax above 
0.2, this trend is reversed.

The influence of the scaling break length ratio lb/lmax 
at a few selected values of the scaling exponent after the 
break n2 is shown in Fig. 5. In calculating the results shown 
in Fig. 5, the value of scaling exponent before the break 

Fig. 3   The impact of scaling exponent n2 after the break on the 
effective permeability of a fractal fracture network. The other 
parameters are: Df = 1.5, β1 = 0.002, lmin/lmax = 0.001, lmax = 5.0 m, 
and n1 = 2.0

Fig. 4   The effective permeability of a fractal fracture network as a 
function of the scaling break length ratio lb/lmax at a few selected 
values of n1. The other parameters are: Df  =  1.5, β1  =  0.002, lmin/
lmax = 0.001, lmax = 5.0 m, and n2 = 1.0

Fig. 5   The effect of the scaling break length ratio lb/lmax on the 
effective permeability of a fractal fracture network at a few selected 
values of n2. The other parameters are: Df  =  1.5, β1  =  0.002, lmin/
lmax = 0.001, lmax = 5.0 m, and n1 = 1.5
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n1 is set at 1.5. When n2 is also 1.5, which means there is 
not scaling break, the value of the scaling break length 
ratio lb/lmax is no longer relevant, which is reflected in the 
constant value of effective permeability with the changing 
value of lb/lmax shown in Fig. 5.

Overall, the effective permeability of fractal fracture 
network always increases with increasing lb/lmax. Since 
the scaling exponent n2 after the break is smaller than n1 
before the break, an increasing lb/lmax means that the effect 
of smaller n2 in decreasing flow is reduced. The net result is 
that the effective permeability of fractal fracture network 
increases with increasing lb/lmax. Increasing n2 while keep-
ing n1 at a fixed value at any value of lb/lmax means that the 
aperture of a fracture becomes larger. Therefore, the flow 
capacity becomes larger, which is reflected by the fact that 
the effective permeability of fractal fracture network also 
becomes larger, as demonstrated in Fig. 5.

The impact of fractal dimension Df on the effective per-
meability of fractal fracture network is plotted in Fig. 6, 
which shows that the effective permeability increases with 
Df. The increase in the effective permeability is mainly due 
to the increase of the fracture area with Df. For the extreme 
case when Df = dE, the porosity is 1 and the entire network 
is fractures. In other words, the interaction between the 
porosity and fracture area of the fracture network dictates 
the effective permeability.

Figure 7 shows the effect of precision parameter t on 
the effective permeability reduction factor of fracture net-
work. Since the precision parameter represents the overall 
extent of deviation of individual fracture angle from the 
mean, the net effect is always to reduce the effective per-
meability when any fracture orientation deviates from the 
mean, which is reflected by the fact that the reduction fac-
tor is always smaller than 1 shown in Fig. 7. We can see that 
the effect of aperture orientation is reflected in reducing 
the effective permeability. In each individual fracture, how-
ever, the flow is still in the direction parallel to the trace. 
When the precision parameter t is small, which means the 
orientation of factures is more disperse, the reduction of 
effective permeability is more significant. As it has been 
shown earlier, the reduction factor approaches 1/3 in the 
case of extreme orientation dispersion when the precision 
parameter t approaches 0, as shown in Fig. 7. At the other 
end when the precision parameter t is large, the reduc-
tion factor RF approaches 1, indicating no reduction in the 
effective permeability of fracture network. In other words, 
the reduction in the effective permeability of fracture net-
work varies from 2/3 to 0 depending on the degree of ori-
entation dispersion of fractures in the network.

The main objective of this study is to examine the 
effects of scaling break in the relationship between the 
aperture and trace length on the effective permeability 
by assuming that each fracture cuts through the model 
domain and that the trace length and aperture follow the 
fractal scaling law. Therefore, the solutions developed in 
this study are unable to calculate the effective permeabil-
ity of fractured mass with variable fracture lengths in the 
general flow directions, which deserve further studies. 
The other main assumption is that the fractured domain 
behaves like a porous medium where Darcy’s law applies.

4 � Conclusions

In this study, new analytical expressions were developed 
to compute the effective permeability of fractal fracture 
network in which there might be non-universal scaling 
between the fracture aperture and length. In addition, a 
new solution was also derived that includes the influence 

Fig. 6   The effect of the fractal dimension Df on the effective per-
meability of a fractal fracture network at a few selected values 
of lb/lmax. The other parameters are: β1  =  0.002, lmin/lmax  =  0.001, 
lmax = 5.0 m, n1 = 1.5, and n2 = 1.0

Fig. 7   The effect of the precision parameter t in the Fisher probabil-
ity density function on the reduction factor of effective permeabil-
ity of the fracture network



SN Applied Sciences (2019) 1:4 | https://doi.org/10.1007/s42452-018-0002-2	 Research Article

of fracture orientation dispersion on the effective perme-
ability of fracture network. The main conclusions are sum-
marized as follows:

1.	 Depending on where the scaling break occurs, the 
effective permeability of the fractal fracture network 
may either increase or decrease with the increasing 
scaling exponent before the break. When the scal-
ing break occurs early, the effective permeability 
decreases with the scaling exponent before the break. 
However, if the scaling break occurs late, the effective 
permeability increases with the scaling exponent 
before the break.

2.	 The scaling exponent after the break also significantly 
affects the effective permeability of fractal fracture 
network. The effective permeability increases with 
the scaling exponent after the break. However, the 
extent of increase varies with the location of the scal-
ing break. If the scaling break occurs early, the increase 
in the effective permeability is more significant.

3.	 The effective permeability of fractal fracture network 
varies with the location of scaling break. If the loca-
tion of scaling break moves toward a longer length, 
the effective permeability of fractal fracture network 
increases.

4.	 The increase in the effective permeability with fractal 
dimension is mainly due to the increase of the fracture 
area with the fractal dimension.

5.	 The reduction in the effective permeability due to the 
individual fracture orientation variations becomes 
more significant if the fracture orientation becomes 
more disperse. The range of the reduction in the effec-
tive permeability varies from 0 to 2/3 depending on 
the degree of fracture orientation dispersion in the 
network.
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