Skip to main content

Advertisement

Log in

A Direct Calculation Method for Space-Based Active Detection of Greenhouse Gas-Flux

  • Original Paper
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

Facing the major scientific issues of the global carbon cycle and the monitoring demand for carbon emission reduction all over the world, this paper researches and develops a new calculation method for space-based remote sensing detection of greenhouse gas-flux based on the atmospheric boundary layer turbulence transport theory and the active detection of coherent differential absorption lidar system. By obtaining the atmospheric wind profile information, gas concentration profile information and the new calculation method for space-based gas-flux proposed in this paper, the near-surface gas-flux information in the detected area can be directly obtained. So it can innovatively realize the space-based active and direct remote sensing of the atmospheric boundary layer gas-flux. The method in this paper not only can make up the blank in the space-based active detection of greenhouse gas-flux, but also can realize the high spatial and temporal resolution measurement of the three-dimensional atmospheric motion. It reduces assumptions and errors of the existing model based on the column concentration assimilation inversion method, so it can realize a direct and active observation of global multi-scale, high-quality, long-sequence gas-flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Nauels A et al (2019) Attributing long-term sea-level rise to Paris Agreement emission pledges. Proc Natl Acad Sci 116(47):23487–23492

    Article  Google Scholar 

  2. Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101(46):16109–16114

    Article  Google Scholar 

  3. Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  4. Merlone A, Coppa G, Sanna F et al (2016) Metrology for climate observation. GCOS Sci Conf 2016:1–1

    Google Scholar 

  5. Qin DH et al (2014) Cryosphere change and its impact on climate in China. Acta Meteorol Sin 72(05):869–879

    Google Scholar 

  6. Cunde X, Shijin W, Dahe Q et al (2016) Cryosphere service function and its value evaluation. Clim Change Res 12(01):45–52

    Google Scholar 

  7. Yongjian D, Cunde X (2013) An introduction to the main scientific issues in the study of cryospheric changes and their effects. Adv Earth Sci 28(10):1067–1076

    Google Scholar 

  8. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press

    Book  Google Scholar 

  9. Lee X (2018) Fundamentals of boundary-layer meteorology. Springer International Publishing

    Book  Google Scholar 

  10. Emeis S (2010) Surface-based remote sensing of the atmospheric boundary layer. Springer Science and Business Media

    Google Scholar 

  11. Lees KJ, Quaife T, Artz RRE et al (2018) Potential for using remote sensing to estimate carbon fluxes across northern peatlands—a review. Sci Total Environ 615:857–874

    Article  Google Scholar 

  12. Hardesty RM (1984) Coherent DIAL measurement of range resolved water vapor concentration. Appl Opt 23:2545–2553

    Article  Google Scholar 

  13. Michalak A, Miller C, Briwell E et al (2008) ASCENDS—active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission. Technical report. University of Michigan in Ann Arbor, Michigan

  14. Ingmann P, Bensi P, Duran Y et al (2008) A-scope—advanced space carbon and climate observation of planet earth. ESA Report for Assessment, SP-1313/1. ESA, 2008

  15. Ehret G, Bousquet P, Pierangelo C et al (2017) MERLIN: a French-German space lidar mission dedicated to atmospheric methane. Remote Sens 9(10):1052

    Article  Google Scholar 

  16. Koch GJ et al (2004) Coherent differential absorption lidar measurements of CO2. Appl Opt 43(26):5092–5099

    Article  Google Scholar 

  17. Abshire JB, Riris H, Allan GR et al (2010) pulsed airborne Lidar measurements of atmospheric CO2 column absorption. Tellus B 62(5):770–783

    Article  Google Scholar 

  18. Ehret G, Kiemle C, Wirth M et al (2008) Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl Phys B 90(3):593–608

    Article  Google Scholar 

  19. Marseille, Stoffelen, Barkmeijer (2008) Impact assessment of prospective spaceborne Doppler wind lidar observation scenarios. Tellus A Dyn Meteorol Oceanogr 60(2):234–248

    Article  Google Scholar 

  20. Huffaker RM (1970) Laser Doppler detection systems for gas velocity measurement. Appl Opt 9(5):1026

    Article  Google Scholar 

  21. Hardesty RM, Post MJ, Banta RM (1991) Observing atmospheric winds with a Doppler lidar. Opt Photon News 2(10):12–15

    Article  Google Scholar 

  22. Lotsch HKV (2005) Lidar range-resolved optical remote sensing of the atmosphere

  23. Takashi Fujii TF (2005) Lidar remote sensing

  24. Lettau HH (1979) Wind and temperature profile prediction for diabatic surface layers including strong inversion cases. Bound-Layer Meteorol 17(4):443–464

    Article  Google Scholar 

  25. Lettau H, Davidson B (eds) (1957) Exploring the atmosphere's first mile. In: Proceedings of the Great Plains Turbulence Field Program, 1 August to 8 September 1953, O'Neill, Nebraska. Symposium Publications Division, Pergamon Press, 1957

  26. Viswanadham Y (1979) Relation of Richardson number to the curvature of the wind profile. Bound-Layer Meteorol 17(4):537–544

    Article  Google Scholar 

  27. Donnou HEV et al (2019) Vertical profile of wind diurnal cycle in the surface boundary layer over the Coast of Cotonou, Benin, under a convective atmosphere, Hindawi. Adv Meteorol 2019:7530828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Yao, W., Yu, Z. et al. A Direct Calculation Method for Space-Based Active Detection of Greenhouse Gas-Flux. Adv. Astronaut. Sci. Technol. 4, 133–141 (2021). https://doi.org/10.1007/s42423-021-00093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-021-00093-2

Keywords

Navigation