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Abstract
An accurate short-term passenger demand forecast makes a contribution to the coordination of traffic supply and demand. 
Forecasting the short-term passenger demand for the on-demand transportation service platform is of utmost significance 
since it might incentivize empty cars to relocate from over-supply regions to over-demand regions. Yet, because spatial, 
temporal, and exogenous dependencies need to be evaluated concurrently, short-term passenger demand forecasting may 
be rather difficult. This article aims to investigate several methods that can be utilized to forecast short-term traffic demand, 
with a primary emphasis on deep learning approaches. We examine varying degrees of temporal aggregation and how these 
levels affect various architectural configurations. In addition, by analyzing 22 models representing 5 distinct architectural 
configurations, we illustrate the influence of varying layer configurations within each architecture. The findings indicate that 
the long-term short memory (LSTM) structures perform the best for short-term time series forecasting, but more complex 
architectures do not significantly enhance the outcomes. Moreover, considering the spatiotemporal aspects results in an 
improvement in the prediction of more than fifty percent. In addition, we investigate the vectorization of time, also known 
as Time2Vec, as a way of embedding to make it possible for a selected algorithm to recognize periodic characteristics in 
time series, and we show that the outcome is improved by fifteen percent.
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Introduction

On-demand transportation services can now be provided in 
an unique and popular way due to the rise of online apps and 
platforms for car-hailing services. Nearly, every transporta-
tion service advertises that they are committed to attracting 
more customers. Hailing a taxi on street is getting less popu-
lar as people would rather use taxi service platforms such 
as Uber, DiDi and Lyft, which are gaining popularity at a 
rapid rate, to request a pickup on their smartphones. This is 
because these platforms offer more customization options.

Several of the companies that provide on-demand trans-
portation are losing money due to an imbalance between 
supply and demand. The cause of the imbalance between 
supply and demand is, on one hand, long wait times for 
passengers who are located in an area where there are no 
available taxis, and, on the other hand, idle taxis and the 
drivers who are lingering around to find customers. Both 
of these factors contribute to the problem. This leads in a 
loss of income not only for taxi firms but also for individual 
drivers, as well as a waste of time for passengers who are 
waiting.

The forecasting of short-term taxi demand is an essen-
tial component of the solution to the problem of an imbal-
ance between supply and demand for taxi companies. If 
taxi businesses were to have accurate demand predictions 
in advance, they would be able to pre-allocate taxi fleets 
from areas of oversupply to regions of excess demand in 
order to fulfill the demand of passengers and enhance the 
performance of their services. Both transportation opera-
tors and passengers would benefit from proactive deci-
sion assistance provided by predictive data analytics. 
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Therefore, the subject of demand forecasting has con-
stantly been under study by many researchers over the last 
several decades, and a large number of solutions have been 
proposed. These solutions range from model-based time 
series analysis through machine learning approaches and 
model-free deep learning models.

The conventional method of analyzing time series makes 
use of statistical models, which may provide accurate pro-
jections of future values based on the recurrence of histori-
cal patterns. The most well-known ones are, the Bayesian 
Forecasting, the autoregressive integrated moving average 
(ARIMA) model and the Kalman filter Guo et al. (2014). 
These techniques have been used in a wide variety of more 
complex statistical models, including the applications in the 
prediction of traffic flow Vlahogianni et al. (2004); Williams 
and Hoel (2003); for example. These methods, are dependent 
on the particular mathematical assumption about the input 
data, which limits the application of this methods. Moreo-
ver, the mathematical assumptions constrains coping with 
the complex properties of the data collected from a wide 
variety of sources.

Data-driven methods try to tackle the same problem 
of imbalance between demand and supply by considering 
the different data sources. These data can be categorized 
by three aspects, called dependencies according to Zhang 
et al. (2017).

Temporal dependencies: passenger demand has a sig-
nificant periodicity (for example, it is predicted to be high 
during morning and evening peaks and low during sleep-
ing hours), and short-term demand is reliant on the trend 
of the closest previous demand.

Spatial dependencies: passenger demand in one zone 
was endogenously reliant on all zonal variables in the net-
work in Yang et al. (2010). An enhanced model that can 
capture local spatial dependencies is needed since adjacent 
factors affect more than distant variables.

Exogenous dependencies: weather conditions, points 
of interest (POI), and travel time rates may strongly affect 
short-term passenger demand. Exogenous variables have 
temporal and spatial interdependence.

In this work, we tackle the prediction of the demand 
for on-demand services primarily by deep learning 
approaches. In particular, we conduct a cross-comparison 
between models and datasets. We investigate the effect 
of temporal aggregation and consideration of spatial and 
exogenous dependencies. The contribution of our work is 
as follows:

• This paper studies short-term demand prediction for on-
demand services.

• The short-term demand prediction model studies differ-
ent data aggregation levels of the input data and shows 
how this affects the prediction results.

• The current study includes independent and dependent 
temporal and spatiotemporal variables, considering the 
characteristics of demand prediction.

• In the current work, we provide a representation of time, 
in the form of vector embedding, to automate the feature 
engineering process and model time better.

• The method presented in this paper is compared with 
classical machine learning methods to show performance 
of the algorithm.

The rest of the paper is organized as follows. In Sect. 2, we 
review the most relevant literature on the short-term demand 
prediction for on-demand services in terms of motivation 
and methods. In the subsequent section, we state the problem 
at hand, and in Sect. 4, we explain all the models studied in 
the current work. The datasets and their features are pre-
sented in Sect. 5. Finally, the results and conclusions are 
provided in Sect. 6 and Sect. 7 respectively.

Literature Review

We investigate two aspects in the literature that underpins 
our paper: (1) Motivations for accurate short-term demand 
prediction for on-demand services (2) machine learning 
methods that have been used in the short-term prediction 
of on-demand or similar passenger demand prediction 
conditions.

Motivations for Accurate Short‑Term Demand 
Prediction for On‑Demand Services

The placement of idle cars to predict future demand and 
operating states is crucial for the operation of on-demand 
services like taxis, dynamic ridesharing, or vehicle shar-
ing Sayarshad and Chow (2017). Demand prediction for 
optimizing the operation of on-demand mobility systems is 
studied in different approaches Zardini et al. (2021). Fleet 
operators rely on estimates of upcoming user requests to 
efficiently place empty vehicles and manage their fleets of 
vehicles Dandl et al. (2019). Yang et al. (2002, 2010); Yang 
and Yang (2011) developed a meeting function to define the 
search frictions between drivers of unoccupied taxis and 
waiting passengers in light of the fact that they cannot be 
matched concurrently in a certain zone. The meeting func-
tion made it clear that the density of waiting passengers and 
available taxis in a given zone at a given time determined 
the meeting rate, indicating that the waiting time for pas-
sengers, the searching time for drivers, and the arrival rate 
of passengers (demand) were all endogenously correlated. 
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When the arrival rate of empty cabs perfectly matched the 
arrival rate of waiting passengers, the equilibrium condition 
was attained. The exogenous factors, such as the number of 
taxis in the fleet and the fare per trip, had an impact on this 
equilibrium state as well as the endogenous variables. The 
taxi operator may use the on-demand service platform to 
coordinate supply and demand, therefore, influencing the 
equilibrium state by controlling the entrance of taxis and 
setting the taxi price structure, such as non-linear pricing 
Yang et al. (2010). However, researchers discovered that 
when there was an excess of empty taxis or waiting pas-
sengers in that location, a regional disequilibrium would 
arise Moreira-Matias et al. (2013). Due to this imbalance, 
resources may not meet supply and demand, resulting in 
poor taxi usage in certain areas and low taxi availability 
in others. The taxi operator must thus prioritize develop-
ing a short-term passenger demand forecasting model that 
can be used to perform effective taxi dispatching and expe-
dite route finding to reach equilibrium across metropolitan 
regions Zhang et al. (2017). Additionally, when demand 
is unknown, drivers frequently behave extremely differ-
ently. For instance, if parking is available, drivers might 
simply wait in one spot. Alternatively, one could wander 
the streets. Due to increasing traffic congestion and the 
diverting of passengers from public transportation, they are 
likely to have a negative impact on the environment Zhang 
and Zhang (2018). However, some drivers go in advance to 
possible passenger pickup sites based on past knowledge 
of demand patterns. Improved operations using algorithms 
targeted at enhancing empty vehicle routing and reposition-
ing for both taxi and ridesourcing systems is a vast area 
of research Yu et al. (2019); Chen et al. (2021). There are 
many other applications for more precise forecasting. A 
more precise dynamic surge pricing setting is made possible 
by knowing which areas will likely have higher demand in 
the upcoming timestep Iglesias et al. (2018); Chen (2016). 
When demand is strong in a particular region, and at a 
particular time, ride-hailing businesses may use dynamic 
pricing for a variety of reasons, such as weather-related 
events, special occasions, and so forth. Previous studies 
have shown that the ride-hailing compensation model is 
problematic for drivers because there is a risk that they will 
not have a job due to demand uncertainty, which results 
in lost wages for drivers as they wait for new passengers 
and are unsure of where demand may be for high-yielding 
rides that could potentially provide them with a source of 
income Chen et al. (2021); Li et al. (2019); Zoepf et al. 
(2018). Surge pricing has a detrimental impact on passenger 
demand as well Chen et al. (2015). The issues that can arise 
in on-demand services include cancellation by the passen-
ger due to a long wait before being assigned to a vehicle, 
cancellation by the passenger due to a longer-than-expected 
pick-up time after being assigned a vehicle, and passenger 

reorder and rebooking after cancellation, despite the fact 
that passenger behavior in on-demand services has not been 
as thoroughly studied as driver behavior Wang and Yang 
(2019); Chen et al. (2021).

Machine‑Learning Methods for short‑term 
ride‑hailing demand prediction

Short-term prediction of transport demand is a topic, which 
attracts many researchers. Vlahogianni et al. (2004), in his 
study of the literature on short-term traffic forecasting, 
noted that due to the rapid advances in data accessibil-
ity and computing capacity, researchers were switching 
from traditional statistical models to neural network-based 
methodologies. Deep learning in particular has been widely 
used in transportation state prediction Ke et al. (2021). 
And new opportunities arises with advances in deep learn-
ing techniques to address short-term transport behavior. 
Deep learning often involves the training of convolutional 
neural networks (CNNs) which are capable of capturing 
high-order spatial-temporal correlations in transportation 
prediction problems. There is a broad range of problems 
in the domain of transportation, which are similar to short-
term passenger demand forecasting. Researchers have used 
CNNs for a variety of prediction tasks, such as speed evalu-
ation Ma et al. (2015), bike usage prediction Zhang et al. 
(2016), and demand-supply prediction for ride-hailing ser-
vices Ke et al. (2017). To analyze time series data, a num-
ber of deep learning models have been proposed, and they 
have demonstrated cutting-edge performance in practical 
applications. For instance, Huang et al. (2014) introduced 
a multi-task learning structure to perform road traffic flow 
prediction and provided a deep belief network to detect the 
spatio-temporal properties. Cheng et al. (2016) proposed 
a DL based approach to forecast day-to-day travel demand 
variations in a large-scale traffic network. Similarly, Lv 
et al. (2015) used a stacked autoencoder model based on 
traffic prediction method. Ma et al. (2015) extended the 
deep learning theory for the large-scale traffic network 
analysis, and predicted the evolution of traffic congestion 
with the help of taxi GPS data. Recurrent neural networks 
(RNNs) and their extensions such as long short-term mem-
ory (LSTM) are well fit for processing time series data 
streams. Xu et al. (2018) applied LSTM to predict taxi 
demand in New York City. Some researchers integrated 
RNNs with CNNs to make full use of spatial-temporal 
information to forecast short-term ride-hailing demand Ke 
et al. (2017),[29] studied different pre-training approaches 
of DNN for traffic prediction.

Extensions to the integrated deep learning algorithms 
have been made, drawing on but not limited to the CNN 
and RNN mechanisms. To forecast the demand for taxis, 
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Li et al. (2019) created a contextualized spatial-temporal 
network that includes local spatial context, temporal evolu-
tion context, and global correlation context. For the purpose 
of forecasting demand for ride-hailing services, Geng et al. 
(2019) put out a spatial-temporal MCG (STMCG) model 
that makes use of non-Euclidean correlations. Zhou et al. 
(2018) created an attention-based deep neural network to 
estimate multi-step passenger demand for bikes and cabs 
based on an encoding–decoding structure between CNNs 
and ConvLSTMs. An LSTM model is used to simulate the 
temporal features as well as other traffic-related data in Yang 
et al. (2019)’s hybrid deep learning architecture.

Short-term passenger demand depends on additional 
explanatory factors in addition to its own spatiotemporal 
characteristics (some with spatiotemporal properties and 
some only with temporal properties). The proposed archi-
tectures, a deep learning CNN structure, are developed in 
the next section. In contrast to earlier temporal convolutional 
networks, it uses raw counts of ride-hailing pickups along 
with a variety of temporal and spatial features (such as soci-
oeconomic variables, spatial heterogeneity, weather, etc.) 
that are used in a multivariate architecture for the effective 
short-time demand prediction of ride-hailing services. The 
established deep neural network’s learning capacity has been 
improved thanks to the CNN architecture and the utilization 
of temporal and spatial information.

Research Problem

The goal of the short-term demand forecast is to predict the 
number of on-demand taxi ride requests that will be needed 
at some point in the future in a certain unit area by taking 
into account the requests that have been placed in the past. 
In order to forecast the demand for on-demand services, 
in addition to using data from past demand, we also con-
sider temporal and spatiotemporal features. Generally, the 
problem can be seen as a time series forecasting problem. 
There are several time-series prediction algorithms. In the 
following section, we explain the studied models. Moreover, 
we propose a representation of time in the form of vector 
embedding so that the feature engineering process may be 
automated and time can be modeled more accurately. The 

vector embedding of time is then combined with machine 
learning methods.

Modelling

Most short-term demand forecast systems in transportation 
have traditionally relied on running models using univari-
ate trip count data obtained by loop detection, GPS, and 
other sources Vlahogianni et al. (2004). The trip count is 
a continuous and time-dependent variable that constitutes 
time-series data. Predicting time-series data falls under the 
regression class of machine learning algorithms.

We devised five models that are currently widely used in 
the literature for the prediction task: Random Forest (RF), 
Long Short-term Memory (LSTM), Convolutional Neu-
ral Network (CNN), LSTM-CNN autoencoder, and Deep 
CNN. Furthermore, we combined the vectorization of time 
(Time2Vec Kazemi et al. (2019)) as a layer to stack it with 
other models and try its power in our case study. In the fol-
lowing, we briefly explain each model.

Random Forest Regressor

Random Forest is an ensemble learning approach, which can 
undertake classification and regression tasks. A random for-
est is an ensemble of unrelated decision trees. These multi-
ple decision trees are averaged to build a more robust model 
with a better generalization performance and less suscepti-
bility to overfitting Breiman (2001). It is implemented with 
sklearn.ensemble.RandomForestRegressor(). Within the 
random forrest regressor, four hyperparameters are tuned: 
Max depth, which is the maximal length of a path from 
the decision tree root to the leaf; Max features, which is 
the maximum number of features that are examined for the 
splitting of each node within the decision tree; Min samples 
split, which is the minimum samples limit that is imposed 
to stop the further splitting of nodes; N estimators, which is 
the number of trees in the forest. The tuning process is con-
ducted by means of an exhaustive grid search. Finally, model 
RF-Model 1 is the model with 200 trees; RF-Model 2 is the 
model with 50 trees; and RF-Model 3 is the tuned forest. 
The grid search space of the tuned model for the different 

Table 1  Grid search space for 
RF-Model 3 hyperparameter 
tuning across different datasets

Dataset Dataset A Dataset B Dataset C

Number of fits 750 2500 1080
max-depth [3, 4, 5, 6, 7] [7, 10, 12, 15, 18] [7, 10, 12, 15, 18]
max-features [3, 4, 5, 6, 7] [3, 4, 5, 6, 7] [6, 15, 21, 28]
min-samples-split [3, 6, 12, 18, 24] [4, 12, 24, 96] [20, 387, 1574]
n-estimators [50, 70, 100, 200] [30, 50, 70, 100, 200] [20, 30, 50, 70, 100, 200]
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datasets is presented in Table 1. The hyperparameter space 
was adjusted according to the number of data points within 
each dataset.

One of the major pros of the random forest model is that 
it is an interpretable transparent model. Due to this model’s 
attribute, a relative feature importance analysis can be car-
ried out to determine which features have a more pronounced 
effect on the prediction outcome. Furthermore, it is also 
possible to extract a random tree from the ensemble and to 
examine the splitting and the residual errors after each split 
according to a feature. In any decision tree, the upper levels 
of the tree usually comprise splits based on more important 
features. The deeper we run down the tree levels, the more 
the data’s variance is covered by more and more splits of less 
important features. The feature importance analysis of our 
dataset will be presented in Sect. 5.

Long Short‑Term Memory Network (LSTM)

Long Short-term Memory network is a special type of 
Recurrent Neural Network. An LSTM unit consists of the 
cell, input, output, and forget gates. The model is imple-
mented with Tensorflow.keras.layers.LSTM(). The relevant 
hyperparameter is the number of LSTM units. The model 
takes transformed timestep window tensors as input. The 
different timestep window sizes for all datasets are shown 
in Table 2. Six different architectures are designed for the 
task. The schematic diagrams of the architectures are shown 
in Fig. 16.

Models 1 and 2 share the same architecture. In the first 
layer, successive LSTM units learn the demand patterns 
which are then passed to a neural layer with eight nodes 
which interprets the features further and then feeds it to the 
output layer with one node for the single output variable. 
Models 3,4 and 5 share the same two-layer stacked LSTM 
architecture. The difference between M3, M4, and M5 is the 
hyperparameter settings. Finally, there is M6 which has three 
stacked LSTM layers and is the deepest of all architectures.

Time2Vec For a variety of challenges involving sequence 
modeling, recurrent neural networks (RNNs) have shown 
outstanding results. The majority of RNN models assume 
that inputs are synchronous and do not include time as a 

characteristic. Since time is recognized as a crucial compo-
nent, it is often included as yet another input dimension. In 
actual application, RNNs often fall short of adequately using 
time as a feature. Many researchers create hand-crafted time 
features tailored to their particular problems and input those 
characteristics into the RNN to aid in better use of time. But, 
hand-crafting features can be costly and demands subject-
matter knowledge.

In the current work, we implement Time2Vec as 
explained in Kazemi et al. (2019) and adopt their solution 
in developing Neural Network with LSTM model explained 
above. Their goal is to provide a vector embedding for the 
representation of time. Mathematically, the implementation 
of Time2Vec is as follows:

Where k is the Time2Vec dimension, � is a raw time series, 
F  is a periodic activation function, � , and � are a set of 
learnable parameters. In order to enable a chosen algorithm 
to detect periodic behaviors in data, we set F  to be a sin 
function. In addition, the linear term captures non-periodic 
patterns in the input that rely on time while also representing 
the passage of time. Several architectures may simply apply 
this vector representation of time due to its simplicity. In 
this instance, by changing a simple Keras dense layer, we 
attempt to translate this idea into a Neural Network structure. 
This custom layer’s output consists of the user-specified hid-
den dimension ( 1 ≤ i ≤ k ), which comprises the network’s 
learned sinusoids and a linear representation of the input 
( i = 0 ). With this instrument in our possession, all we have 
to do is to stack it with more layers to test its effectiveness 
in our case study. We stack the Time2Vec layer on the best-
performing LSTM from the architectures shown in Fig. 1 
and show the results in Sect. 6.

Convolutional Neural Network (CNN)

CNN is an artificial neural network that is modelled after 
the visual cortex. In a convolutional layer, the algorithm 
carries out a mathematical operation called convolution on 
a rolling kernel across the input space. Convolutions include 
different filters which extract feature maps from the input 
space. CNN is implemented with Tensorflow.keras.layers.
Conv1D(). Three relevant hyperparameters are considered: 
input shape (units take input values in time step format), 
filters (number of filters in the convolutional layer), kernel 
size (length of the one-dimensional convolutional window). 
The timestep window setting is the same as in LSTM models 
(see Table1). Two models with different numbers of filters 
are designed (See Fig. 2).

(1)t2v (�)[i] =

{

�i� + �i, if i = 0.

F(�i� + �i), if 1 ≤ i ≤ k.

Table 2  Timestep window setting for data transformation

Dataset Timestep 
window 
size

Interpreta-
tion

Input 
shape

A (Temporal 1 hr) 3 3 h (3, 8)
B (Temporal 15 min) 2 30 mins (2, 9)
C (Spatio-Temporal 15 

min)
8 2 h (8, 34)

C (Deep Architecture) 96 6 h (96, 34)
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In this architecture, the CNN layer extracts feature maps 
from the transformed input tensor, and then a flattening layer 
feeds the outputs of the CNN layer to a fully connected layer 
to articulate the features. Finally, same as before, one node 
outputs the target variable.

LSTM‑CNN Autoencoder

This model is a hybrid of CNN and LSTM models, using a 
CNN layer as an encoder and an LSTM layer as a decoder. 
Implementing methods include four-layer functions from 
Tensorflow.keras.layers, including LSTM(), Conv1D(), 
and Maxpooling1D(). Max pooling is used to reduce the 
dimensionality of the feature map so higher-order patterns 
can be extracted. There are five relevant hyperparameters: 
input shape (units take input values in tuples of time step 
format), filters (number of filters in the convolutional 
layer), kernel size (length of the 1D convolutional win-
dow), pool size (size of the 1D max pooling window), 
and units (number of LSTM units). The same time step 

windows in Table 2 were used. The Four different archi-
tectures are shown in Fig. 3.

The models share the same architecture, and their dif-
ferences lie in their varying hyperparameter settings. The 
repeat vector creates LSTM unit readable input tensors 
from flattened data.

Deep CNN

In deep CNN architectures, convolutional layers are stacked 
using max pooling layers. This is realized by four functions 
from Tensorflow.keras.layers: Conv1D(), MaxPooling1D(), 
BatchNormalization(), and Dropout(). Compared with CNN, 
there are two additional hyperparameters. Pool size is the 
size of the 1D max pooling window, while dropout rate is 
the dropping rate of units during training. Table 2 shows 
the time step window configuration, which is 96 instances. 
The window size is set large enough to enable a multi-layer 
stacked architecture. Successive convolutional and max 
pooling layers with kernel sizes and pool sizes larger than 

Fig. 1  Different LSTM architectures with various hyperparameter settings

Fig. 2  CNN architecture with various hyperparameter settings
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1 rapidly reduce the input shape dimensionality, which 
is why a larger window size is warranted. As a result of 
these stacked layers, the model should theoretically be able 
to extract more far-reaching patterns. Figure 4 shows the 
six different models. Models M1 and M2 share the same 
architecture and have different hyperparameter settings. 
They include three convolutional layers followed by three 
max pooling layers. The resulting feature maps are flattened 
and are connected to a one-node output layer. Model 2 has 

more convolutional layers compared to model 1. Model 3 
has another fully connected layer with 32 nodes which is 
close to the independent feature count of 28. Model 4 uses 
an additional layer of batch normalization following each 
convolutional layer which standardizes the layer inputs. 
Models 5 and 6 make use of a 20% dropout in the second 
and second to third max-pooling layers, respectively. Drop-
out acts like a mask that randomly nullifies the contribution 
of some neurons randomly during training, creating a large 

Fig. 3  LSTM-CNN autoencoder architecture with various hyperparameter settings

Fig. 4  Different deep CNN architectures with various hyperparameter settings
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number of neural networks with different architectures in 
parallel. This is an effective regularization method to reduce 
overfitting and improve generalization error in deep neural 
networks of all types.

Data

In this project, we build a multivariate time-series data-
set using a variety of variables provided by transport 
operations and travel behavior study fields to be useful to 
demand prediction. These criteria include temporal, mete-
orological, socioeconomic, and demographic factors. As 
a result, the data are grouped into three categories and 
comes from four separate sources.

First, the trip data includes green taxi trip data. The 
data were collected from the New York City Taxi & Lim-
ousine Commission (NYC TLC) NYC (2019) and are 
available to the public. Furthermore, in order to capture 
interannual demand patterns for green taxis we use 2 years 
of green taxi pickup data from 2017 to 2019. This decision 

stems from two reasons: firstly, we decided to set the study 
period cutoff date before 2020 to avoid the impact of 
COVID-19 and its lockdowns on travel behavior secondly, 
from 2017 onwards the trip records pickup and drop-off 
locations are formatted according to the NYC TLC’s own 
taxi zones (see Fig. 5) as opposed to coordinates in previ-
ous records. The coordinates formatted trip records are 
more tedious to work with and are not as precise due to 
GPS logging errors as shown in Fig. 6, where a consider-
able number of pickup records fall outside the study area. 
Taxi zones formatted data is more suitable for integrating 
spatial features and is less prone to errors.

The green taxi data have detailed information about each 
trip. The most important and relevant variables in these data-
sets are the location and time of pickup and drop-off since 
they are the keys to spatial data augmentation and temporal 
features such as day, hour, weekday, and the like can be 
extracted from them. The location variable is the code of 
the taxi zones where pick-up or drop-off happens and the 
time variable is when, respectively, the trip starts and ends 
in minutes.

Fig. 5  Taxi zones in New York City according to NYC TLC NYC (2019)
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Second, the socio-demographic features are gathered 
from the US Census Bureau. These features are arranged 
in five different types of features: population, housing 
unit, social characteristics, economic characteristics, and 
household characteristics. All features and their respective 
descriptions are shown in Table 3.

Third, climate features are also included. They are pro-
vided by the US National Oceanic and Atmospheric Admin-
istration. The New York Central Park daily weather data 
are used to describe meteorological and inclement weather 
impacts. The dataset has not only information on tempera-
ture and precipitation, but also data on heating degree days, 
cooling degree days, snowfall, and snow depth.

Finally, point-of-interest data are obtained from NYC 
Open Data (2023) and categorized in six categories 
explained in Table 3

Data Aggregation and Exploratory Data Analysis

To carry out the predictions, the trip data are aggregated 
in both temporal and spatial bins. The rationale behind this 
aggregation is two-fold: firstly, ride-hailing service provid-
ers usually look for demand forecasts in a given region for 
the next 15 min or 1 h to dispatch vehicles, and secondly, 
aggregation results in fewer data instances and less model 
training time as a result. In order to account for these needs 

and limitations, both temporal aggregation and spatial aggre-
gation are employed. To investigate the effects of temporal 
aggregation on prediction accuracy, we apply two temporal 
aggregation schemes: a 15-min aggregation and a 1-h aggre-
gation scheme.

The trip counts resulting from different temporal aggre-
gation schemes are shown in Fig. 7. In the first week of 
2017, clear patterns of daily traffic peaks are discernible in 
both 15-min and 1-h aggregation. A morning peak and an 
evening peak can be observed nearly every day. In the first 
month of 2017, a regular pattern across weeks is shown in 
both 1-hour and 15-minute aggregated data in the middle 
row of Fig. 7. Finally, the trend for 2017 shows that the 
demand for green taxis is higher in the colder months and 
decreases with warmer weather, which further indicates 
the seasonality of green taxi demand and underlines the 
importance of including climate features for prediction 
purposes.

Spatial aggregation aims to further augment data with 
spatial features (socio-demographic and climate features). 
The trip data and the spatial features have different spatial 
resolutions: trip data are at the taxi zone level, while the 
spatial features are at the borough level. Eventually, all the 
trip data are aggregated to the borough level so they can 
be joined with spatial features. There are two major rea-
sons why taxi zone level aggregation is not pursued in this 

Fig. 6  The spatial distribution of pickup coordinates from green taxi trip records
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project. On one hand, the available socio-demographic data 
is not at the taxi zone level. If the taxi zone is set as the tar-
get spatial aggregation level, the spatial features will have 
to be broken down and distributed among taxi zones, and 
a distribution method must be estimated, which may, in 
turn, introduce bias to the dataset. On the other hand, a finer 
aggregation level results in a much larger dataset, raising 
computational limits. Compared with the 5 boroughs, there 
are 263 taxi zones in New York City, and a spatial aggrega-
tion at the taxi zone level, and considering all the features 

will lead to an increase in training compute for an LSTM 
model with 8 input neurons and 100 epochs by approxi-
mately 10 orders of magnitude.

As mentioned before, apart from univariate trip records, 
socio-demographic, and climate features are also included. 
Figure 8 shows the spatial distribution of two example 
socio-demographic features: employment rate and mean 
commute time. One can observe the lower employment 
rates in less affluent boroughs such as Staten Island and the 

Table 3  List of all selected features in dataset C

Independent variable name Variable description Variable type

LocationID TLC Taxi Zone in which the taximeter was engaged int
LocationID TLC Taxi Zone in which the taximeter was disengaged int
trip_distance The elapsed trip distance in miles. float
total_amount The total amount charged to passengers. Does not include cash tips. float
RINTERNATIONALMIG Net international migration rate float
household_estimated Annual estimates of number of housing units float
male_rate Male rate among 15-year-olds and over float
employment_rate In-labor-force rate among 16-year-olds and over float
mean_commute_min Mean travel time to work in minutes float
other Mode share of means of transport other than driving, PT and walking float
3+_veh Households with more than 3 vehicles float
temp_min Lowest temperature of the day (F) float
temp_depart Daily temperature departure from normal (F) float
precipitation Rain intensity (inch) float
new_snow Snowfall (inch) float
snow_depth Depth of snow (inch) float
year The year of trip int
month The month of trip int
day The day of trip int
weekday The day of the week in which trip took place int
hour The hour of trip int
weekend_true Whether the trip took place on a weekend int
POI_Density_Cat1 Residential float
POI_Density_Cat2 Transportation facility, Government Facility float
POI_Density_Cat3 Cultural, Recreational, Religious Facility float
POI_Density_Cat4 Social and Health facility float
POI_Density_Cat5 Commercial POIs float
POI_Density_Cat6 Education facility float
Borough_Bronx Whether the trip took place in the Bronx int
Borough_Brooklyn Whether the trip took place in Brooklyn int
Borough_Manhattan Whether the trip took place in Manhattan int
Borough_Queens Whether the trip took place in Queens int
Bourough_Staten_Island Whether the trip took place in Staten Island int
Dependant variable name Variable description Variable type
trip_counts Number of trip counts within 15 min (1 hr in case of dataset A) float
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Bronx. Lower employment rates can result in fewer com-
mute trips and fewer trips in general. Conversely, mean com-
mute times in less affluent boroughs are much higher than in 
more affluent boroughs like Manhattan. This suggests that 
more residents from the Bronx and Staten Island go to work 
in other, more affluent boroughs where there are more jobs 
and opportunities.

Furthermore, Fig. 9 shows two example climate features: 
daily minimum temperature and precipitation. The seasonal-
ity of both features is what we come to expect from climate 
data.

Dataset Design

For the purpose of investigating the effect of temporal aggre-
gation and the inclusion of spatial features on green taxi 
demand prediction, three datasets were designed for cross-
comparison. As seen in Fig. 7, dataset A is comprised of trip 
records and temporal features, and the data are temporally 
aggregated in one-hour intervals. Dataset B is designed to 
have the same trip records and similar temporal features, 
however, its data is temporally aggregated in 15-min inter-
vals allowing for more fine-grained predictions in time. 
Finally, spatial features and climate features are integrated 

Fig. 7  Effect of temporal aggregation on trip count data (left: 1 h aggregation, right: 15 min aggregation, top row: trip count for the first week of 
January 2017, middle row: trip count for January 2017, bottom row: trip count for 2017)

Fig. 8  Spatial distribution of employment rate (left) and mean commute time (right) in New York City in 2019 NYC (2019)
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into dataset B to create dataset C, which is a spatiotemporal 
dataset. It is spatially aggregated at the borough level and 
temporally aggregated in 15 min.

Data Preparation

The datasets are cleaned to remove any NA instances. 
Moreover, the data is scaled to avoid model bias towards 
features with larger values. To this end, the min–max scaler 
is employed to scale and standardize continuous data. The 
intention is to preserve the feature distribution while stand-
ardization, which is why data normalization was not used. 
After scaling, all the features are compressed to fit from 
0 to 1, apart from the categorical data coded with one-hot 
coding. These categorical features include weekend and bor-
ough, which inform about whether the trip occurred on the 
weekend and in which borough the trip started.

Feature Selection

Feature selection is an important step that aims to reduce the 
computational cost of modeling and improve performance, 
by reducing the number of input variable dimensionality 
Vlahogianni et al. (2004). The objective here is to filter out 
redundant features that are linearly correlated to other fea-
tures and are, therefore, not independent variables that add 
more information to the model. To achieve this, a Pearson 
correlation matrix is produced for dataset B and dataset C 
(dataset A has the same features as dataset B), illustrating 
the degree of linear collinearity between the two features. 
Collinearity of more than 0.5 indicates that the two features 
are correlated and a collinearity of 1 indicates a perfect cor-
relation. Collinearity of -1 indicates a perfect inverse cor-
relation and is also equally unwanted. Figure 11 shows the 
correlation matrices for datasets B and C.

Upon closer examination, it becomes clear that most 
socio-economic and climate features are correlated and 
should be filtered. The opted feature selection method is 

Fig. 9  Daily minimum temperature in Fahrenheit (top) and precipitation in inches (bottom)

Fig. 10  The three different 
datasets, dataset A and B, are 
temporal, and dataset C is a 
spatiotemporal dataset
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Fig. 11  Correlation matrices for dataset B with 9 features (left) and dataset C with 60 features (right)

Fig. 12  Feature selection procedure flowchart (left), filtered dataset C with 34 features (right)
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a procedural pairwise collinearity check that progressively 
filters out the redundant features with the least correlation to 
the target variable, in this case, trip counts. This procedure is 
depicted in Fig. 10 as a flowchart. Initially, we set a correla-
tion threshold of 0.7. In other words, pairs of features with a 
correlation of more than 0.7 or less than −0.7 are selected for 
further inspection. After this step, the feature with the least 
correlation to the target variable is filtered and eliminated. 
As a result of feature selection, the number of features drops 
from 60 down to 34 (see Fig. 12).

It should be noted that adding one more feature was left 
out not directly due to this filtering procedure but to other 
reasons. This feature is passenger count with a linear cor-
relation of 0.99 in relation to the target variable trip counts. 
This would suggest that most green taxi trips have only 
one passenger on board in New York City, which renders 
the problem of counting the number of trips within a given 
time interval almost indistinguishable from that of counting 
the number of passengers per trip in the same time win-
dow. This would mean that including the passenger count 
feature is tantamount to a tautological endeavor since one 

Fig. 13  Random Forest feature importance analysis of dataset C

Fig. 14  Dataset Splitting
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would essentially try to predict trip counts with trip counts. 
Furthermore, the one-hot-coded spatial borough features 
are also excluded from the filtration process to allow for 
the observation of the regional differences in ride-hailing 
demand contribution.

Feature importance: as mentioned in Sect. 4 in Random 
Forest Regressor, one of the advantages of Random Forest 
model is to be interpretable and transparent, this attribute 
can provide a feature importance analysis to identify which 
features can significantly influence the prediction.

The feature importance analysis based on Random For-
est 13 on dataset C shows that the most important variables 
are hours of the day, number of households in the departing 
borough, and employment rate in the departing borough. 
Moreover, the result suggests that few trips are from Staten 
Island, whereas the Bronx has the largest share of trip counts 
and therefore contributes more to the prediction outcome.

Data Transformation and Splitting

In preparing for the final data manipulation step, the data 
is sorted according to each incident’s timestamp. Conse-
quently, the data is split into training, testing, and validation 
sets in an 80–10–10% split as a general rule of thumb for 
machine learning, according to Fig. 14.

Importantly, since we are dealing with time-dependent 
data, it is essential that the splitting follows a chrono-
logical order so that earlier instances in time are used to 
predict instances in the future. The training data spans 
29 months from January 2017 to May 2019 and the test-
ing and validation data each span 5 and 4 months from 
May 2019 to September 2019 and from September 2019 
to December 2019, respectively. The models are fit on 
the training sets and are optimized with the help of the 
validation data. Ultimately, the predictive performance of 
the fitted model on held-out testing set is assessed. As a 
further step, some of the machine learning models pre-
sented later in the following section, require the data to 
be transformed into a tensor with a certain shape. These 
models train on rolling timestep windows of a given size 

and extract certain patterns and features in the timestep 
window to predict the value immediately after the timestep 
window. Figure 15 shows such a rolling timestep window 
mechanism with a time-step window size of 8.

In this example, the models are trained on a time win-
dow of using 8 instances of independent feature vectors 
X1 to X8 to extract intrinsic patterns and features within 
the dataset in order to predict the target variable instance 
number 9 ( y9 ). In the next iteration, the time window is 
rolled over one-time unit, and independent feature vectors 
X2 to X9 are used to predict target variable instance y10 and 
so forth.

To train the models, we use 100 epochs and a learning 
rate of 0.0001. An epoch is a forward and backward pass 
of the dataset through the neural network, which is used to 
change the weights of the hidden layers, otherwise known 
as optimization. The learning rate is a tuning hyperpa-
rameter that determines the step size of the optimization 
iteration. The weights of the models are tuned through 
the minimization of the loss function, which in our case, 
is the mean squared error since this is a regression prob-
lem. Moreover, we use Adam as the optimizing algorithm 
because it is a stochastic algorithm that is more compu-
tationally efficient than gradient descent (Kingma and Ba 
2017). Each model’s testing and training root mean square 
error (RMSE) is used as a comparison metric since it can 
be interpreted as the accuracy of prediction in terms of the 
number of trip counts per unit of time.

Results

The results for all the models and architectures on the testing 
dataset are reported in Table 4. Moreover, the training times 
for dataset C for all the models are also reported. Root mean 
square error (RMSE) is the reported metric to compare the 
models defined as:

Fig. 15  Data shape transformation and rolling timestep window



 Data Science for Transportation (2023) 5:19

1 3

19 Page 16 of 20

RMSE =
√

1

n
Σn
i=1

(x̂i − xi)
2,

where xi is the ith Actual value and x̂i predicted value of 
the demand, respectively, and n is the size of the test set.

Our experiment platform is a server with 8 CPU cores 
(Intel(R) Xeon(R) CPU @ 3.20 GHz), 256 GB RAM, with 
Python 3.9.16.

One of the main findings is that including spatial fea-
tures can improve model performance. Compared with the 
best-performing model of Dataset B (LSTM Model 4), the 
best one for Dataset C (LSTM Model 4) has a 54.5% lower 
RMSE. Furthermore, all other models are improved by intro-
ducing spatial and climate features (see Table 4). Among all 
the models in our explorations, the best-performing models 
in each architecture are depicted in Fig. 16 for all three data-
sets. Moreover, the testing performance of the models with 
the best RMSE values for dataset C is presented in Fig. 17.

Results in Table 4 show that two-layer stacked LSTM 
architectures (M3–M5) performed better on average across 
the different datasets, and their performance got better with 
more data points. Model 4 of LSTM architecture with two 
layers of stacked LSTM learns the demand pattern and then 
passes it to a neural layer with eight nodes, which makes the 
interpretation. The last layer of one node produces the single 
output variable. The difference between model 4, model 3, 
and model 5 results stems from different hyperparameter 

settings. Model 1 and Model 2 of LSTM architecture have 
lower prediction accuracy on average. Interestingly, Model 
6 does not outperform two-layer stacked architectures even 
though it is the deepest LSTM architecture. Furthermore, 
by stacking Time2Vec embedding with LSTM Model 4, we 
achieve lower RMSEs. This shows that the vector embed-
ding of time series helps the algorithm to detect periodic 
behaviours in data in a more precise way.

The results for Random Forest show that RF-Model 1 and 
RF-Model 2 show signs of overfitting since training per-
formance are orders of magnitude better than testing per-
formance. In other words, the model is biased towards the 
training set, and it mimics its patterns to perfection, but as 
soon as it is faced with out-of-set data, it cannot generalize 
the learned patterns enough to be able to make decent pre-
dictions. Moreover, the performance curve of testing indi-
cates that the models underestimate the demand at evening 
peaks. To address the overfitting issue, the tuned RF-Model 
3 is designed, which is the best performing Random forest 
model out of 750 fits for dataset A. Although overfitting is 
mitigated, the model is not performing very well.

CNN models are much lighter than LSTM models and 
therefore run faster through training epochs. CNN Models 
have slightly lower but comparable accuracy levels com-
pared to LSTM architectures. Interestingly, increasing the 
number of filters from 64 to 128 resulted in a worse accuracy 

Table 4  Summary of RMSE of 
prediction models on green taxi 
test dataset

Dataset A Dataset B Dataset C
 Model  Architecture Testing Testing Testing Train-

ing time 
(min)

Model 1 69.18 18.77 7.62 215
Model 2 96.07 19.59 9.38 190
Model 3 95.02 17.49 7.74 226
Model 4 90.91 16.31 7.42 217
Model 5 86.25 18.28 8.13 224

LSTM Model 6 84.37 16.49 8.57 463
LSTM+Time2Vec Model 4 + Time2Vec 77.27 13.86 6.80 220

Model 1 76.12 18.81 8.52 42
 CNN Model 2 124.73 18.75 8.55 53

Model 1 198.23 51.87 16.43 15
Model 2 198.00 52.00 16.43 11

Random forest Model 3 236.01 57.37 16.06 327
Model 1 99.74 20.23 8.94 60
Model 2 146.16 20.83 7.64 94
Model 3 128.64 17.09 7.60 310

LSTM-CNN Autoencoder Model 4 89.58 19.66 8.28 135
Model 1 – – 18.41 1500
Model 2 – – 19.97 2040
Model 3  –  – 18.40 1992
Model 4 – – 18.37 1450
Model 5 – – 17.58 1413

Deep CNN Model 6 – – 17.48 1202
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Fig. 16  RMSE comparison 
between best-performing archi-
tectures for green NYC taxi data

Fig. 17  Testing performance of models with best RMSE values for dataset C for 1 week
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across all datasets, indicating that more complicated feature 
maps do not necessarily output more accurate results. The 
LSTM-CNN Autoencoder architecture performs better than 
simple CNN, but it runs slower. However, it is more compu-
tationally efficient than LSTM architectures.

In deep CNN architecture, Model 2, with more convolu-
tional layers, results in better model performance compared 
to model 1. It is interesting to observe that increasing the 
convolutional filters and thereby increasing the number of 
feature maps only has a constructive effect in deeper models, 
which might suggest that increasing filters in lighter mod-
els leads to overfitting and lower performance. The perfor-
mance of Model 3 with another fully connected layer with 
32 nodes which is close to the independent feature count of 
28, dropped compared to Models 1 and 2. Model 4, with an 
additional layer of batch normalization following each con-
volutional layer, results in faster models (fewer epochs are 
required for training). All things constant, model 4 indeed 
trained faster compared to model 3. Models 5 and 6 make 
use of a 20% dropout in the second and second to third max-
pooling layers, respectively, which contributes to better 
results compared to other deep CNN models.

The different temporal aggregation has different impacts 
on model performance. By comparing the results of dataset 
A and dataset B shown in Table 4, RMSEs for dataset B are 
approximately 75% lower than A. This is because the RMSE 
for dataset A indicates the error within 1 h, while in dataset 
B, this error is for 15 min. Therefore, a comparison should 
be based on standardized values as presented in Table 5. The 
results indicate that a finer temporal aggregation improve 
models involving LSTM layers, as well as LSTM-CNN 
Autoencoder architectures, while CNN and random forest 
are not sensitive to the change of aggregation level. Con-
sequently, the aggregation approach should be carefully 
selected for LSTM modeling.

Conclusions

In this work, we explored the task of predicting the demand 
for on-demand services with different deep-learning 
approaches. By conducting a cross-comparison between 
different architectures, we showed how different layers can 

affect the prediction performance. By vector embedding the 
time series we improved the results. Moreover, by examining 
the temporal aggregation levels, we showed how different 
architectures are affected by the level of aggregation.

Improved datasets and modeling approaches should be 
included to develop the work further. The explored models 
can still be improved. Currently, all models except the ran-
dom forest models are tuned manually. To further improve 
the performance, the models need to be fine-tuned through 
robust grid searches. Moreover, spatial features at higher 
resolution levels can realize prediction at the taxi zone level, 
which is more helpful to the taxi service providers. Then, 
Temporal features like real-time traffic load, congestion 
sites, and accidents can also be included. Finally, the models 
can be applied to other transportation modes like private cars 
and buses. To acquire these data, extensive data collection 
and fusion are needed. On the other hand, advanced mod-
els, and architectures such as customized CNN layers and 
multi-step architectures can be employed to improve model 
performance further.

It is worth mentioning that many studies on this subject 
focus solely on the location and time of demand as the only 
input to their algorithms. In our methodology, we aimed to 
incorporate all publicly available features to explore their 
impact on the prediction. A comprehensive list of all the 
features we have included is provided in Table 3. To the 
best of our knowledge, no other studies have examined such 
a wide range of features and their influence on the predic-
tion. The inclusion of all these features necessitates working 
at a certain level of data aggregation provided by the pub-
licly available feature data source. Consequently, obtaining 
fine-grained feature data for smaller zones was not feasible 
for us. Considering these reasons, we selected methods that 
could accommodate all the data and features we intended 
to work with. To compare our results with other works, we 
refer to the work by Chen et al. (2021). The results provided 
in Table 2 and Table 5 of their manuscript (Chen et al. 2021) 
show that the RMSE values for their predictions are worse 
than our results, and the number of features we have con-
sidered is greater.
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