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Abstract
Driver classification provides an efficient approach to isolating unique traits associated with specific driver types under 
various driving conditions. Several past studies use classification to identify behavior and driving styles; however, very 
few studies employ both measurable physiological changes and environmental factors. This study looked to address the 
shortcomings in driver classification research using a data-driven approach to assess driving tasks performed under vary-
ing mental workloads. Psychophysiological and driving performance changes experienced by drivers when engaged in 
simulated tasks of varying difficulty were coupled with machine-learning techniques to provide a more accurate estimate 
of the ground truth for behavioral classification. A driving simulator study consisting of six tasks was carefully designed to 
incrementally vary complexity between individual tasks. Ninety drivers were recruited to participate in both the subjective 
and driving components of this research. Positive and Negative Affect Schedule (PANAS), Cognitive Reflection Task (CRT), 
Interpersonal Reactivity Index (IRI), Empathy Assessment Index (EAI), Psychological Entitlement Scale (PES), 18-point 
Need for Cognition (NFC), and a basic demographic survey were administered. Time-series clustering using the Dynamic 
Time Warping (DTW) score within hierarchical clustering was applied to determine difference in driving styles. The use of 
pre-driving psychometric questionnaires to determine the most suitable metrics for predicting driving style outside of the 
automobile suggest promising results. The results of the binary logistic regression indicate that an individual’s annual driv-
ing mileage, CRT score, age, IRI fantasy score, and EAI affective response score, contribute significantly towards predicting 
their driving style.
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Introduction

Driver classification is a common strategy used to easily 
group individuals based on similar behavioral traits, driv-
ing style, or demographic characteristics. Classification pro-
vides an efficient approach to isolating unique characteristics 
associated with specific driver types under various driving 

conditions. Not only can this process be used to develop 
better driver behavioral models for car-following or lane 
changing, but also to identify risk-averse driving behaviors; 
thus, providing context for targeted safe-driving education.

Existing research indicates that driver classification has 
primarily been performed using aggregate or continuous 
driving performance metrics and driving-centric question-
naires. Furthermore, very few studies incorporate the use 
of physiological (defined as the information pertaining to 
a driver’s bodily functions such as cognition, heart rate, 
vision-related changes, skin conductance, perspiration, and 
others (Lin et al. 2006)) changes and environmental factors 
when assigning driving styles. To achieve a more holistic 
classification, this study seeks to address the above short-
comings using a data-driven approach to assess driving tasks 
performed under varying traffic conditions resulting in meas-
urable changes to mental workloads (defined as the propor-
tion of mental capacity required by an individual to perform 
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a task (Brookhuis et al. 1991)). We also go a step further to 
assess the overall performance under complex tasks such 
as distracted driving. The main goals of this research are to 
classify drivers based on their simulated driving and psy-
chophysiological (defined as physiological changes result-
ing from variations of psychological processes or behavior 
(Kummetha 2020)) performance using a machine-learning 
approach and predict their classification outcome (i.e., driv-
ing profile) from the scores of various psychometric ques-
tionnaires administered prior to their driving assessment, as 
independent variables within logistic regression. The novelty 
of this research stems from the extensive driving perfor-
mance and psychophysiological time-series data collected 
across various task complexities and for a relatively large 
pool of ninety participants.

The manuscript begins by providing a comprehensive 
overview on the existing research on subjective and quan-
titative driver classification. The section detailing the data 
and methods is then presented, diving into the participant 
selection and simulation, psychophysiological measures, 
data preparation, and methodological approach to driver 
classification and statistical modeling. The results, discus-
sion, and conclusions are then presented.

Background

Several studies have employed classification to identify 
behavior and driving styles. Some rely on continuous meas-
ures of driving performance or physiological parameters 
while others take on a subjective approach relying on ques-
tionnaires. Aoude et al. developed algorithms to classify-
ing drivers by considering their behavior at intersections 
(Aoude et al. 2012). The authors collected roadside data 
which included vehicle speeds, range, and lateral positions. 
A GPS antenna also recorded video from all intersection 
approaches including the traffic signal phases. They imple-
mented two machine-learning algorithms called Support 
Vector Machine (SVM) and Hidden Markov Model (HMM) 
to classify whether the driver was compliant or violating the 
signal indication. The developed model was then validated 
on another naturalistic dataset.

However, roadside data alone may not accurately clas-
sify drivers. Driving performance data from inside the 
vehicle can provide richer information for driver classifica-
tion. Kondyli and Elefteriadou observed behavioral trends 
within a naturalistic setting suggesting three driver behavio-
ral types: aggressive, average, and conservative. Aggressive 
drivers were observed to drive at high speeds (> 15 mph 
speed limit), perform six discretionary lane changes, and 
aggressive lane changing (Kondyli and Elefteriadou 2011). 
Average drivers did not exceed 10 mph over posted speed 
limits while conservative drivers maintained speeds within 

5 mph of posted limits. Fernandez et al. used several data 
elements such as gas/brake pedal usage, speed indicators, 
and acceleration collected from a 3-D virtual driving simu-
lator with a lifelike cockpit to group drivers (Fernández and 
Ito 2016). They developed a Fuzzy rule-based system that 
can profile the drivers into five groups (very passive, pas-
sive, normal, aggressive, and dangerous). Ly et al. built both 
supervised (SVM) and unsupervised (K-means clustering) 
machine-learning models using the inertia data collected 
from an instrumented vehicle’s Controller Area Network 
(CAN) bus (Ly et al. 2013). The study showed that features 
associated with the acceleration did not contribute much 
to classify drivers, rather the braking and turning events 
were prominent features to differentiate between drivers. 
Zhang et al. also developed a similar SVM model to clas-
sify drivers based on individual characteristics sensed by 
only low-level sensors (Zhang et al. 2016). Low-level sensor 
data include data gathered from sensors that are available 
on smartphones along with the sensor information available 
through the vehicle’s on-board diagnostics (OBD-II) port. 
Acceleration and jerk were used as main parameters instead 
of speed, as these variables were more closely related to 
driving behavior (Zhang et al. 2016). One of the shortcom-
ings of the study was that the classifier model worked best 
with fewer drivers, which may not be a realistic case for real 
world-driving conditions. A general framework to classify 
drivers through mathematical strategies was proposed by 
Jensen et al. (2011). In-vehicle data and survey data were 
both collected to build the framework to classify drivers into 
six classes ranging from ‘timid’ to ‘aggressive’. The in-vehi-
cle data were collected through the OBD-II recorder and 
included vehicle speed, acceleration, jerk, brake pressure, 
steering wheel angle, and yaw rate. The survey was mostly 
limited to questionnaires regarding demographic character-
istics of the drivers.

Further, researchers have also explored the use of physi-
ological measures in driver classification. Lin et al. clas-
sified ten drivers by analyzing physiological measures in 
response to an unexpected obstacle in a virtual simulator. 
Drivers were classified using driving trajectory, speeds, 
and event-related potentials (ERP) to form two categories: 
aggressive and gentle (Lin et al. 2006). Zeng et al. utilized 
Electroencephalography (EEG) signals to classify driver’s 
mental state (Zeng et al. 2018). Physiological data (EEG 
signal, blink rate, and heart rate) were collected through a 
driving simulator experiment. They proposed two deep con-
volutional neural network-based models called EEG-Conv 
and EEG-Conv-R, which can predict the mental state of the 
drivers (whether the driver is drowsy or not). The experi-
ment and validation concluded that the developed models 
were more reliable and accurate for binary classification of 
the driver’s mental state than traditional machine-learning 
models like SVM.
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Subjective questionnaires are frequently used in driving 
research to capture information not readily available or cap-
tured in performance datasets. The Driver Behavior Ques-
tionnaire (DBQ) was initially created to assess whether a 
questionnaire could distinguish between four main factors, 
i.e., unfocused errors, emotional errors, reckless violations, 
and confused errors. The questionnaire could explain up to 
33% of the variance in aggressive driving taking into account 
various errors and violations (Hong et al. 2014). Berdoulat 
et al. investigated the potential effects of aggressiveness and 
transgressive behavior of the drivers while driving (Berdou-
lat et al. 2013). They utilized five different types of scales 
and questionnaires to assess driving anger, aggressiveness, 
and impulsiveness. DBQ was used to classify three types 
of behaviors: “violations”, “slips and lapses”, and “Errors”.

Tao et al. investigated the role of personality traits and 
driving experience in risky driving behaviors among drivers 
in China (Tao et al. 2017). Personality traits were meas-
ured by Eysenck Personality Questionnaire (EPQ) which 
has 12-item subscales assessing four personality constructs 
such as: extraversion (e.g., “Are you a talkative person?”), 
neuroticism (e.g., “Does your mood often go up and 
down?”), psychoticism (e.g., “Do you enjoy co-operating 
with others?”) and lie (e.g., “Do you say some bad words 
casually?”). The risky driving behaviors were analyzed by 
the Chinese version of DBQ which modified the original 
four factors of DBQ into: ordinary errors and violations (15 
items), lapses (6 items), aggressive violations (3 items), and 
speeding (3 items). Another questionnaire that has been 
moderately used in driving behavior studies is “The Driv-
ing Vengeance Questionnaire (DVQ)”. It was created and 
used to gauge how often drivers avenge themselves in typical 
driving circumstances (Wiesenthal et al. 2000). Wiesenthal 
et al. further validated the DVQ where they showed that 
DVQ scores were predicted by driver violence and venge-
ful drivers had violence into their past acts. In situations of 
heavy traffic, vengeful drivers were more likely to display 
moderate aggression.

Other psychometric evaluation techniques used in behav-
ioral studies to assess mood and personality, cognitive 
engagement, and empathy and social decision-making, could 
also be applied to link general behavioral characteristics to 
driving styles. The most popular questionnaires/metrics as 
found in the literature are summarized in Table 1.

From the literature, it is evident that past studies have 
primarily performed classification using one of the three 
categories of data, i.e., driving performance, physiologi-
cal measures, or driving-centric questionnaires. However, 
most metrics are directly associated with driving, without 
regard for other behavioral traits outside the realm of the 
automobile but still influence the tasks associated with driv-
ing. In addition, most of the previous driver-classification 
studies, focused on uncovering extreme behaviors (e.g., 

errors or risky behaviors) and their correlation with safety 
and crash occurrence. However, they do not investigate how 
driver variability and different driver styles are affected by 
the roadway/traffic environment and complexity, and con-
sequently, how this relationship may impact the operation 
of the traffic stream. Therefore, the main objective of this 
study was to investigate driver variability and potential 
driver classes while completing driving tasks under differ-
ent roadway environments and normal/crash-free operations, 
by combining a variety of complex psychophysiological and 
driving performance measures. A secondary objective was 
to assess whether static driver information obtained from 
subjective questionnaires and demographic data can equiva-
lently be used to predict the derived driver classes. This is 
achieved by:

•	 Data fusion of psychophysiological and driving perfor-
mance changes experienced by drivers when engaged in 
simulated tasks of varying level of difficulty, coupled 
with machine-learning techniques to provide a more 
accurate estimate of the ground truth for behavioral clas-
sification, and

•	 Employing pre-driving psychometric questionnaires to 
determine the most suitable subjective metrics for pre-
dicting driving style. If psychometric questionnaires have 
strong predictive qualities, this may save resources and 
time for defensive driving educators, researchers, driving 
rehabilitation specialists, and drivers.

Data and Methods

In this study, we utilize time-series datasets of complex psy-
chophysiological and driving performance measures as the 
ground truth to complement a set of psychometric and demo-
graphic questionnaires to assign and predict driver classes. 
This section details the participant selection and driving 
simulation, psychophysiological measures employed, and 
data preparation and methodological framework.

Participants and Driving Simulation

The established methodology involves collecting driving 
performance and psychophysiological data from six tasks 
in a driving simulator setting as shown in Fig. 1. A fixed-
base simulator, in a half cab, utilizing three forward screens 
to provide a 170° horizontal field of view and a rear screen 
was used in this research. Ninety participants ranging from 
18 to 64 years of age were recruited for the study (mean 
age = 31.4  years, standard deviation (SD) = 14.2  years, 
Male driver to Female driver ratio of 1). PANAS, CRT, IRI, 
EAI, PES, 18-point NFC, and a basic demographic survey 
(i.e., age; gender; annual mileage traveled; crash history; 
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insurance type; traffic violation history; cell phone use while 
driving; and education level) were administered to drivers 
prior to their participation in the simulated drive. Drivers 

were compensated for their participation in the study with 
a $50 gift card. Table 2 presents a summary of the demo-
graphic properties of the recruited drivers.

Table 1   Summary of common psychometric evaluators

Name Description

Positive and Negative Affect Schedule (PANAS) This is a self-report measure to assess negative affect (i.e., distressed or nervous) and positive 
affect (i.e., excited or proud), with ten consistent and uncorrelated items for each subscale 
(Watson et al. 1988). Items are rated on a five-point Likert scale: 1 = “Very slightly or not 
at all” to 5 = “Extremely.” The total PANAS score is computed by adding the positive and 
negative subscale results

Cognitive Reflection Task (CRT) Consists of a set of three questions designed to measure an individual’s ability to suppress an 
intuitive and spontaneous wrong answer in favor of a reflective and deliberative right answer 
(Frederick 2005; Kummetha et al. 2020). CRT score is used as a measure of inhibition, an 
important component of executive function, which is crucial for safe driving. The questions 
include:

Qn 1: “A bat and ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much 
does the ball cost?”

Qn 2: “If it takes 5 machines 5 min to make 5 widgets, how long do 100 machines take to 
make 100 widgets?”

Qn 3: “In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 
48 days for the patch to cover the entire lake, how long would it take for the patch to cover 
half of the lake?”

Interpersonal Reactivity Index (IRI) Questionnaire used to measure individual differences in empathy and consists of four sub-
scales (i.e., perspective taking-PT, fantasy-FS, empathic concern-EC, and personal distress-
PD) with seven items in each (Davis 1983). Including empathy as a variable could be key 
in understanding driver behavior especially when sharing the road with other users or in 
instances that require cooperation such as merging or lane changes

Empathy Assessment Index (EAI) Measure based on cognitive neuroscience conceptualization of empathy consisting of a 
50-item questionnaire with five sub-dimensions (i.e., affective response-AR, self-other 
awareness-SA, emotion regulation-ER, perspective taking-PT, and empathic attitudes-EA) 
(Lietz et al. 2011). The total EAI score can be computed by adding the sum of the five sub-
dimensions

Psychological Entitlement Scale (PES) This scale measures the stable and pervasive sense that one deserves more than others 
(Campbell et al. 2004; Kummetha 2020). This sense of entitlement will also be reflected 
in desired or actual behaviors. The concept of psychological entitlement is intrapsychically 
pervasive or global and does not necessarily refer to entitlement that is situation specific 
(e.g., “I deserve an ‘A’ because I performed well in class”) (Campbell et al. 2004). Rather, 
psychological entitlement is a sense of entitlement that is experienced across all situations. 
The scale consists of nine self-reported measures. This questionnaire has not been used in 
driving research, but entitlement could play a vital role in predicting aggressive driving 
behaviors

Need for Cognition (NFC) This test is designed to assess the tendency to engage in and enjoy effortful cognitive endeav-
ors (Cacioppo et al. 1984). Driving is an instrumental activity of daily living that requires 
cognitive resources of the driver and a tendency to engage in cognitive endeavors may 
predict assertive (i.e., not passive) driver behaviors. The test entails of both a short and a 
long form that consist of 18 and 34 self-assessment questions, respectively

Fig. 1   KU driving simulator in 
action
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Participants’ eligibility for the study was determined 
based on the following criteria:

•	 Aged between 18 and 65 years and in possession of a 
valid U.S. driver’s license;

•	 At least 1 year of driving experience with an annual 
mileage of not less than 1,000 miles; and

•	 In good health (no eye conditions apart from corrective 
lenses, free from any heart conditions and seizures, no 
history of inner ear/balance problems, and little to no 
known history of severe motion sickness).

For the simulated drive, a tutorial and six tasks consist-
ing of select external conditions as detailed in Table 3 were 
created. The tutorial comprised of familiarizing participants 
with the simulator environment and equipment, particularly 
gas and brake pedal responsiveness, steering wheel sensitiv-
ity, speed and gap adjustment, and lane changing activity. 
The tutorial also served as a tool to screen for simulator 
sickness and any participants that showed signs of severe 
simulator sickness (i.e., vertigo, nausea, sweating, dizzi-
ness, fatigue, stomach awareness, vomiting, and general 
discomfort) were advised to forfeit with a partial monetary 
compensation.

Each task was 8 km long with a posted speed limit of 70 
mph (112.7 km/h) and was designed to capture incremen-
tal changes to behavioral and driving performance meas-
ures. Tasks varied in traffic density, but drivers were free 
to maintain any gap or speed. Emphasis was placed in sce-
nario design to carefully control in-vehicle body movements, 
visual and auditory discrepancies, and task uniformity, as 
these significantly affect data quality of psychophysiologi-
cal measures. The task sequence for each participant was 
completely randomized to eliminate order bias. Further, 
psychophysiological measures were continuously collected 
during the drive by capturing micro-level changes to vision 
and attention. At the end of each task, participants were 
required to complete the National Aeronautics and Space 
Administration-Task Load Index (NASA-TLX) (Hart 1986) 
and Situation Awareness Rating Technique (SART) (Selcon 
and Taylor 1990) questionnaires to provide a well-rounded 
subjective baseline.

Tasks 4, 5, and 6 shared the same roadway configuration 
as shown in Fig. 2. Task 6 additionally required participants 
to attempt a visual secondary task on a 10-in. Windows tab-
let, up to four times at random intervals no longer than 20 s 
each.

The tablet was placed approximately 30° to the lower 
right from drivers’ line of sight and was used to simulate 
the act of driving while using the media center or entering 
text into an on-board navigation system as shown in Fig. 3 
(Kummetha 2020; Kummetha et al. 2020). The data collec-
tion zone was limited to the middle 6.4 km to minimize data 
irregularities arising from the beginning and ending of the 
drive, shown in Fig. 2.

Psychophysiological measures

For the continuous measurement of vision-related met-
rics such as pupil diameter, gaze point vectors, blinks, and 
fixations, a Fovio FX3 eye tracker with a data collection 
frequency of 60 Hz was utilized (EyeTracking-Inc. 2019). 
Mental workload was established from the eye tracker in 
one-second increments using a patented pupillometric tech-
nique called Index of Cognitive Activity (ICA) (Vogels et al. 

Table 2   Summary of participant demographics

Variable n Mean SD

Age
 18 to 24 45 20.3 1.4
 25 to 49 29 35.0 8.0
 50 to 65 16 56.3 3.7

Gender
 Male 45 na na
 Female 45 na na

Annual mileage
 1000 to 1999 6 1150.0 281.1
 2000 to 4999 4 2500.0 1000.0
 5000 to 9999 23 6760.9 1166.5
 10,000 to 19,999 42 12,035.7 2445.5
 > 19,999 15 27,066.7 9027.5

Crash history
 0 to 1 82 na na
 2 to 3 8 na na
 > 3 0 na na

Insurance type
 Liability 36 na na
 Comprehensive 11 na na
 Collision 41 na na
 Did not answer 2 na na

Traffic violation history
 0 to 1 83 na na
 2 to 3 4 na na
 > 3 3 na na

Cell phone use
 Scale of 1 to 10 (1-never to 

10-always)
90 3.8 2.4

Education level
 High school 5 na na
 College student 51 na na
 Bachelor’s degree 18 na na
 Graduate student 4 na na
 Graduate degree or higher 12 na na
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Table 3   Summary of common psychometric evaluators

*Level of service (LOS) indicates freeway quality of service on a scale of A–F (Highway Capacity Manual 2010)

Composition Work zone type Traffic density Distraction

Task 1 (baseline) 4-lane divided highway
0% heavy vehicles

None 14–16 pc/km/ln (LOS B/C) None

Task 2 4-lane divided highway
0% heavy vehicles

None 22–24 pc/km/ln (LOS D/E) None

Task 3 4-lane divided highway
10% heavy vehicles

Inactive: left shoulder closed 22–24 pc/km/ln (LOS D/E) None

Task 4 10-lane divided freeway
20% heavy vehicles

Active on both sides: 3 lanes closed 14–16 pc/km/ln (LOS B/C) None

Task 5 10-lane divided freeway
20% heavy vehicles

Active on both sides: 3 lanes closed 22–24 pc/km/ln (LOS D/E) None

Task 6 10-lane divided freeway
20% heavy vehicles

Active on both sides: 3 lanes closed 22–24 pc/km/ln (LOS D/E) Secondary task

Fig. 2   Layout of tasks a Tasks 1 and 2, b Tasks 4, 5, and 6 (Kummetha et al. 2021)

Fig. 3   Secondary task used for 
distracted driving (Kummetha 
et al. 2021)
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2018). ICA was chosen over the raw pupil diameter metric 
because of its ability to disentangle pupil response arising 
from changing lighting conditions especially prominent in 
virtual environments (Vogels et al. 2018). ICA scores vary 
continuously between 0 and 1 indicating the lower and 
higher spectrum of mental workloads, respectively.

Engagement level (EL), defined as the level of engage-
ment/arousal experienced in response to a particular task, 
was an important component in this research (Pope et al. 
1995). Enobio 8 portable Bluetooth-based system was used 
to capture participants baseline and time-correlated EEG at 
500 Hz (Neuroelectrics 2019). Eight EEG electrode posi-
tions (i.e., P3, PZ, P4, CZ, T7, T8, O1, and FZ) aligned with 
the 10–20 international mapping layout and findings of Pope 
et al. were used as shown in Fig. 4 (Pope et al. 1995). An ear 
clip was also used to add two reference electrodes, i.e., com-
mon mode sense (CMS) and driven right leg (DRL). Driver 
EL was calculated using the power spectral density (PSD) 
relationship β/(α + θ) established by Pope et al. and Prinzel 
III et al. to assess alertness and engagement, mental effort, 
and attention investment; with theta band (4–8 Hz), alpha 
band (8–13 Hz): linked to mental workload, and cognitive 
fatigue, and beta band (13–22 Hz): linked to visual attention 
and short-term memory (Pope et al. 1995; Prinzel 2001).

Data were first system time-synchronized to identify 
critical analysis zones using MATLAB. The EEG data were 
isolated using unique identifiers and split into 10-s events. 
This resulted in approximately twenty 10-s events for each 
task with the goal of 20-point estimates of EL per task. Post-
processing was performed using the EEGLAB v14.1.1 tool-
box in MATLAB (Delorme and Makeig 2004). A custom 
MATLAB script was developed to convert data from the 
native Neuroelectrics-Enobio 8 (.easy) format to EEGLAB 
(.set). The EEG data were then resampled from their native 
500 to 240 Hz to ensure noise and processing time reduc-
tion. The dataset was filtered by applying a high-pass filter 
at 1.6 Hz and a notch filter at 60 Hz. An independent com-
ponent analysis was performed by identifying and prun-
ing artifacts from blinks and muscle movement to improve 

signal quality. This was followed by the application of a 
low-pass filter at 40 Hz. The filtered signal was then split 
into 2-s epochs with 5% overlap. The Darbeliai plugin in 
EEGLAB was applied to perform a fast Fourier transforma-
tion (FFT) using a 2-s window to generate PSD values for 
each electrode position. Using β/(α + θ) at PZ, CZ, P3, and 
P4 electrode locations, a single combined PSD value repre-
senting driver EL was obtained every 10-s of the drive. PSD 
combined values closer to 0 indicate lower EL.

Further, a Polar H10 chest strap was used to monitor driv-
ers heart rate (HR) at 1 Hz as a surrogate measure of mental 
workload. HR data were manually synchronized with the 
frames of the driving simulator output. Baseline HR data 
were collected prior to the start of the drive and HR vari-
ability within participants was normalized with respect to 
the baseline.

Data Preparation and Methods Summary

Due to the vast data collection techniques used in the study 
design, data fusion is employed to merge all output elements. 
The data fusion framework used to uniformly synchronize 
all data variables to 10 Hz is shown in Fig. 5.

Figure 6 summarizes the methodological approach with 
respect to five main stages, i.e., psychometric questionnaires, 
simulator study, data fusion, driver classification, and the 
prediction model.

Results

Task‑Specific Analysis

As each task was designed to capture performance and 
behavioral variability, changes in mental workload and sit-
uation awareness between individual tasks were assessed 
using a series of repeated measure analysis of variances 
(ANOVAs) with task 1 as the baseline. The ANOVAs were 
used to test the null hypothesis that the driver-reported 

Fig. 4   EEG electrode positions 
used (yellow) (Neuroelectrics 
2019)
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means of the average NASA-TLX and SART scores across 
the six tasks were similar and to identify the presence of 
any statistically significant differences, providing quanti-
tative validity for the experimental design in terms of the 
varying complexity of the attempted driving tasks. The 
average NASA-TLX scores showed no significant differ-
ences (α = 0.05) between the mean scores of task 2 and 
task 1 (baseline). However, significant differences in scores 
were observed between the baseline and tasks 3 (F(1, 
83) = 4.087, p = 0.046, �2

P
 = 0.047), 4 (F(1, 83) = 16.298, 

p < 0.001, �2
P
 = 0.164), 5 (F(1, 83) = 35.230, p < 0.001, 

�2
P
 = 0.298), and 6 (F(1, 83) = 201.257, p < 0.001, �2

P
 = 

0.708). The significant increases in NASA-TLX scores 
suggest that the developed tasks successfully captured 
various levels of mental workload, shown in Fig. 7.

Similar trends across tasks were observed with the 
SART scores. No significant differences were observed 
between the baseline and the mean scores of the task 2 and 
task 3; however, task 4 (F(1, 83) = 7.448, p = 0.008, �2

P
 = 

0.082), task 5 (F(1, 83) = 7.840, p = 0.006, �2
P
 = 0.086), 

and task 6 (F(1, 83) = 26.794, p < 0.001, �2
P
 = 0.244) 

Fig. 5   Data fusion framework

Fig. 6   Summary of methodo-
logical workflow
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showed significant differences. Overall, with greater task 
complexity an increase in subjective mental workload was 
observed along with a decrease in situation awareness 
(Kummetha and Kondyli 2022).

Time‑Series Clustering

As tasks were constant between participants, time-series 
clustering using the Dynamic Time Warping (DTW) algo-
rithm was selected for the analysis. The DTW algorithm 
provides a robust method of measuring and matching simi-
lar time-series datasets, such as trajectory and psychophysi-
ological data in our case. The DTW algorithm also allows 
us to compare time-series datasets of different lengths, or 
even with time lag between two pairs of interest, especially 
useful in driving studies where no two events can be com-
pletely identical (Giorgino 2009; Mueen and Keogh 2016). 
The DTW score (dissimilarity) for the two time-series (D1, 
D2) can be calculated using Eq. 1. The higher the DTW 
score the larger the dissimilarity and the closer the score to 

zero the more identical the observed pattern in the selected 
variable across the pair of drivers (Durrani and Lee 2019).

where dk is the distance in cell k in the shortest path. K is the 
total number of cells in the shortest path.

The same approach is employed to compare more than 
two time-series trends. In this study, acceleration (m/s2), 
steering wheel angle (degrees), headway (m), mental work-
load as ICA from left eye, and EL, were used for time-series 
clustering using the hierarchical clustering algorithm with 
DTW score as the distance metric (Yan et al. 2019). HR was 
not included as ICA was deemed to be more accurate for 
measuring the mental workload. Hierarchical clustering was 
selected due to its ability to provide intuitive visualization 
of the clustering process and unsupervised identification of 
cluster numbers (Johnson 1967). Hierarchical clustering was 
performed with various iterations of the number of clusters 
(i.e., n = 2 to 5), resulting in an optimal solution consisting 
of two clusters. The Silhouette coefficient was also calcu-
lated for various n values to verify the optimal solution and 
the best/largest coefficient value (0.33) was obtained using 
n = 2 (Rousseeuw 1987). Hierarchical clustering does have 
some limitations associated with sensitivity to the distance 
metric and inability to handle missing data points, however, 
with careful selection of the distance metric (i.e., DTW 
score) the effects were minimized.

The summary of the aggregate metrics for the two clus-
ters established for each task is shown in Table 4. The two 
established clusters did not exhibit qualities of aggressive 
driving as evident from the average speeds and headways. 
Average speeds were within 6 km/h of the posted speed 
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Fig. 7   Average a NASA-TLX and b SART scores

Table 4   Cluster properties

*Cluster ID—1: Moderate; 2: Conservative

Cluster ID N Avg License 
Age

Avg Head-
way (m)

Avg Speed 
(km/h)

Avg NASA-
TLX

Avg SART​

Task 1 1 72 12.9 88.2 118.2 34.6 22.7
2 13 18.2 209.9 114.7 32.3 24.8

Task 2 1 60 13.4 91.6 115.2 36.9 22.6
2 25 14.9 109.9 114.7 35.8 22.6

Task 3 1 40 12.7 96.0 114.4 37.9 22.0
2 45 15.3 89.5 113.0 37.0 22.8

Task 4 1 28 15.1 78.6 114.4 41.6 22.4
2 56 13.7 103.6 112.0 42.0 21.7

Task 5 1 43 13.2 68.4 114.0 43.5 20.8
2 41 15.8 104.1 111.4 45.5 21.9

Task 6 1 47 13.4 85.5 110.7 57.5 20.6
2 38 14.9 143.1 107.7 65.7 18.6
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limit while the smallest headway was 68.4 m (2.2 s). Drivers 
showed distinct properties within these clusters, including 
differences in self-reported measures of mental workload 
(NASA-TLX score) and situation awareness (SART score).

Cluster outputs from the six driving tasks were aggre-
gated to individually classify drivers as having moderate 
or conservative driving styles i.e., if a driver was classified 
to represent moderate driving style in three or more of the 
tasks, they were classified as moderate, else conservative. 
This was necessary because although hierarchical clustering 
classifies drivers, it is not apparent as to what each cluster 
represents, and the aggregate cluster properties help differ-
entiate the behavioral composition within them. Figure 8 

shows the mean variable spread of the conservative and 
moderate clusters across the six tasks. Cluster ID 2 in almost 
all instances has a larger surface spread, with the exception 
of the speed axis. This surface spread explains the differ-
ences between the two clusters and suggests that moderate 
drivers (i.e., Cluster 1) were younger with less driving expe-
rience and on average maintained shorter headway, at higher 
but safe speeds, and exhibited lower mental workload and 
higher situation awareness compared to conservative drivers.

The recorded increase in self-reported mental work-
load and decrease in situation awareness across both driver 
clusters could be a result of driving under extreme/non-
typical conditions (such as Task 6 with the presence of a 

Fig. 8   Radar charts showing 
the mean spread across the two 
cluster ids
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distraction). Out of 90 drivers, 84 drivers completed all the 
components of the questionnaires and driving tasks. 20 driv-
ers were classified as overall conservative across all tasks 
while 64 drivers were classified as moderate.

Logistic Regression

A 70/30 training–testing stratified split was applied to each 
of the obtained cluster IDs before performing further analy-
sis. Binary logistic regression, shown in Eq. 2, is a form of 
statistical modeling appropriate for independent binary out-
come variables, such as in classification problems to distin-
guish one class from another. Further, binary logistic regres-
sion is capable of handling both continuous and categorical 
independent variables and provides informative outcomes 
expressed as odds ratios. In this application, binary logistic 
regression was performed to distinguish between conserva-
tive (indicated by the value 0) and moderate (indicated by 
the value 1) drivers and predict their driving styles, using the 
psychometric metric and demographic questionnaires data.

where log() is the natural logarithm. p is the probability of 
the dependent variable. �0 is the intercept of the constant 
term. �1,… , �n are the coefficients assigned to the independ-
ent variables X1,… ,Xn

Training

A total of 10 iterations were performed using the following 
independent variables from the survey and questionnaires: 
PANAS (subscales: positive affect, negative affect), CRT, 
IRI (subscales: perspective taking, fantasy, empathic con-
cern, and personal distress), EAI (subscales: AR, SA, ER, 
PT, EA), PES, 18-point NFC, and other demographics (i.e., 
age; gender; annual mileage traveled; crash history; insur-
ance type; traffic violation history; cell phone use while driv-
ing; and education level). A balance between over-fitting the 

(2)log

(

p

1 − p

)

= �0 + �1X1 + �2X2 +⋯ + �nXn,

model and classification accuracy was achieved by excluding 
correlated parameters within the questionnaires. The back-
ward stepwise selection was implemented to sequentially 
remove statistically insignificant variables in the model. 
Manual checks were performed to ensure that the included 
independent variables were contributing substantially to the 
beta coefficient (B) i.e., Exp(B) and 95% confidence intervals 
deviating considerably from 1. The results of the logistic 
regression are shown in Table 5.

The results from the binary logistic regression indicate 
that an individual’s annual mileage, CRT score, Age, IRI 
fantasy (FS), and EAI affective response (AR) can signifi-
cantly help in predicting their driving style (moderate or 
conservative) with a training prediction accuracy of 87.7%. 
Figure 9 shows the scatter plots of the training dataset with 
respect to the significant variables in the logistic regres-
sion model. Results indicate a weak to moderate correlation 
between Annual Mileage and Age (r = 0.39) and CRT score 
and EAI AR (r = − 0.32), suggesting no substantial effect of 
multicollinearity.

Testing

Results from the confusion-matrix of the test sample, shown 
in Table 6, indicate a higher-than-average classification 
accuracy of 65.4% and a relatively good recall, precision 
score, and F1 score, suggesting a good predictive model 
(especially for moderate drivers). However, for conservative 
drivers the percent of correct predictions is relatively low at 
33%. This may be attributed to factors such as the relatively 
low sample size of the conservative drivers, selected train-
ing–testing data split, and the existence of other non-linear 
relationships between the variables not accounted for within 
the binary logistic regression.

Discussion

An important objective of this research was to investigate 
driver variability under different roadway/traffic environ-
ments and task complexity. This was achieved through the 

Table 5   Logistic regression 
summary

* < 0.05, ** < 0.01

Variable B S.E Wald df Sig Exp(B) 95% C.I. Exp(B)

Lower Upper

Annual mileage 
in 1000 miles

0.436 0.135 10.372 1 0.001** 1.547 1.186 2.017

CRT score − 0.925 0.460 4.036 1 0.045* 0.397 0.161 0.978
Age − 0.110 0.040 7.413 1 0.006** 0.896 0.828 0.970
IRI FS − 0.151 0.071 4.556 1 0.033* 0.860 0.748 0.988
EAI AR − 0.337 0.125 7.230 1 0.007** 0.714 0.559 0.913
Constant 9.904 3.424 8.369 1 0.04* 20,019.582
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testing of six driving simulator scenarios (Table 3) with mul-
tiple levels of task difficulty by varying the traffic, geometry, 
and control conditions, and presence of distraction. It was 
found that, as task difficulty increased, mental workload 
increased and situation awareness decreased, supporting 
the linear relationship between these variables and ensuring 
that our data collection methods were appropriate to study 
these relationships.

Time-series clustering using the hierarchical approach 
with the DTW score as the distance metric was also per-
formed to classify drivers by utilizing a holistic approach 
where both performance metrics (acceleration, headway, 
steering wheel angle) and psychophysiological charac-
teristics (mental workload, situation awareness) were 
adopted. The two derived clusters (i.e., moderate and con-
servative) indicate distinct differences in driver age, driving 

experience, average headway, average speed, and average 
subjective scores for mental workload and situation aware-
ness, similar to the observations made by Lin et al. (2006) 
and Manjunatha et al. (2019).

The second modeling approach of binary logistic regres-
sion was used to investigate whether we can use offline, 
static driver information to accurately cluster drivers. The 
results of the logistic regression indicate that annual driv-
ing mileage, CRT score, Age, IRI fantasy score, and EAI 
affective response score, can be used to predict driving 
styles with a decent accuracy and precision. The odds ratios 
(Exp(B)) for the significant variables shown in Table 5 were 
assessed for more insights into the findings. The odds ratio 
for annual mileage suggests that an increase in reported 
mileage increases the chance of being a moderate driver. To 
be specific, every 1000 miles increase in the reported annual 
mileage is associated with a 54.7% increase in the odds of 
being a moderate driver. The CRT score can be used as a 
measure of intuitive thinking and objective assessment, an 
important component of executive function, which is crucial 
for safe driving. The results suggest that an increase in the 
CRT score (indicating higher level of objective assessment) 
by one point decreases the odds of being a moderate driver 
by 60.7%. Similarly, for every 1-year increase in age, the 
odds of being classified as a moderate driver decreases by 
10.4%.

Fig. 9   Scatter plots and respec-
tive Pearson correlation coef-
ficients

Table 6   Confusion matrix

TP true positive, TN true negative, FP false positive, FN false nega-
tive

Confusion-Matrix Moderate (1) Conservative (0) % Correct (%)

Moderate (1) TP = 15 FP = 5 75.0
Conservative (0) FN = 4 TN = 2 33.3
Classification accuracy 65.4%; Precision = 0.750; Recall = 0.789; 

F1 = 0.769
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The IRI FS score, which represents an individual’s ten-
dency to transpose into imaginative feeling and characters, 
was also found to be significant. A one-point increase in IRI 
FS score decreases the odds of being classified as a moderate 
driver by up to 14%. Although, not directly intuitive to driv-
ing, inference can be made from the fact that a high IRI FS 
score indicates the general tendency to use more cognitive 
resources engaging in thoughts while driving suggesting a 
slower behavioral adaptation to changes in conditions, typi-
cally associated with decreased driving performance (Davis 
1983).

EAI AR, which is a subcomponent of empathy derived 
from affective response, was also found to be significant. 
An increase in the EAI AR score by one point suggests up 
to 28.6% decrease in the likelihood of being classified as 
moderate driver. This result seems plausible and similar to 
the past research (Wiesenthal et al. 2000) as an increase in 
empathy could indicate less vengeance and lead to more 
conservative driving behavior such as letting motorists cut 
in front or allowing merging at on/off ramps.

Overall, the results show similarities with past research 
utilizing other forms of questionnaires with similar subcom-
ponents of personality traits. However, the differences lie 
within the variety of psychometric and psychophysiologi-
cal data collected, multi-complexity experimental design, 
clustering approach, and prediction methods. The com-
bined accuracy of predicting driving style from the logistic 
regression performed on the training and testing datasets 
was 76.6%, which is higher than similar studies using non-
driving performance metrics for classification (Liao et al. 
2022; Razmara et al. 2018).

Conclusions

This study aimed at addressing the shortcomings in driver 
classification research using a data-driven approach and 
assess driving tasks performed under varying mental work-
loads. A simulator study was carefully designed to achieve 
variability in complexity between individual tasks. Ninety 
drivers were recruited to participate in both the subjective 
and driving components of this research. The main goals 
of this research were achieved by successfully performing 
data fusion of psychophysiological and driving performance. 
Time-series clustering using the DTW score as the distance 
metric within the hierarchical clustering was performed to 
provide a more accurate and holistic estimate of the ground 
truth for behavioral classification.

Evaluating the use of pre-driving psychometric ques-
tionnaires to determine the most suitable metrics for pre-
dicting driving style outside of the automobile suggest 
promising results. Binary logistic regression summary 

indicates that an individual’s annual driving mileage, CRT 
score, Age, IRI fantasy score, and EAI affective response 
score, can be directly attributed to identifying their driv-
ing style. The results provide a promising outlook towards 
the practical strength of using psychometric evaluators in 
driver profiling with respect to personality, attitudes, and 
habits, risk assessment to develop targeted interventions 
for road safety improvement, deeper understanding of 
driver behavior and decision making processes that affect 
the conscious and subconscious components of driving, 
development of training and education programs targeted 
towards pre-screened individuals, and design/development 
of intelligent and autonomous transport systems to tailor 
behavioral needs and preferences of individual drivers.

Although the research goals were achieved, the limita-
tions of simulator-based driving data should be acknowl-
edged. However, the use of complex physiological equip-
ment such as EEG and presence of hazardous conditions 
(in-vehicle distractions) might not be feasible for real-
world testing. A larger sample size would provide more 
concrete evidence of the observed findings. Lastly, large 
sample sizes are also needed to investigate the attributes 
of the aggressive driving style cohort, since the existing 
dataset only captured moderate and conservative driving 
styles.

Based on the conclusions derived from this study, future 
research can utilize a similar methodology to study how 
psychometric evaluators can be used to predict driver 
behavior during partial (i.e., adaptive cruise control and 
lane centering) and full automation. Another aspect to 
explore would be utilizing psychometric evaluators to 
subjectively predict individual driving styles during travel-
altering emergencies such as pandemics (i.e., coronavirus 
disease 2019 (COVID-19) travel restrictions/lockdowns) 
and disaster evacuations (i.e., hurricanes, wildfires, floods, 
and other types of severe weather).
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