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Abstract
Purpose  This research introduces a groundbreaking method for bearing defect detection. It leverages ensemble machine 
learning (ML) models and conducts comprehensive feature importance analysis. The key innovation is the training and 
benchmarking of three tree ensemble models—Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting 
(XGBoost)—on an extensive experimental dataset (QU-DMBF) collected from bearing tests with seeded defects of varying 
sizes on the inner and outer raceways under different operating conditions. 
Method  The dataset was meticulously prepared with categorical variable encoding and Min–Max data normalization to 
ensure consistent class distribution and model accuracy. Implementing the ML models involved a grid search method for 
hyperparameter tuning, focusing on reporting the models’ accuracy. The study also explores applying ensemble methods 
and using supervised and unsupervised learning algorithms for bearing fault detection. It underscores the value of feature 
importance analysis in understanding the contributions of specific inputs to the model’s performance. The research compares 
the ML models to traditional methods and discusses their potential for advanced fault diagnosis in bearing systems. 
Results and Conclusions  The XGBoost model, trained on data from actual bearing tests, outperformed the others, achieving 
92% accuracy in detecting bearing health and fault location. However, a deeper analysis of feature importance reveals that 
the models weigh certain experimental conditions differently—such as sensor location and motor speed. This research’s 
primary novelties and contributions are comparative evaluation, experimental validation, accuracy benchmarking, and inter-
pretable feature importance analysis. This comprehensive methodology advances the bearing health monitoring field and 
has significant practical implications for condition-based maintenance, potentially leading to substantial cost savings and 
improved operational efficiency.
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Introduction

Ball bearings are essential elements in a rotating machine. 
They enable rotational or linear motion while minimizing 
friction and supporting dynamic mechanical loads. Defects 
and faults inside these bearings may lead to disastrous fail-
ures. Some defects in bearing appear gradually over time, 

while others occur suddenly with little warning. Therefore, 
early identification and diagnosis of defects in ball bearings 
can contribute to increasing machinery uptime and form a 
part of a preventative maintenance strategy. For example, 
Frosini et al. mentioned that 40–50% of induction motor 
failures in the industry happened due to damages occurring 
in bearings [1]. Therefore, condition monitoring (CM) of 
ball bearings plays a significant role in early fault detec-
tion and is considered an integral part of any preventative 
maintenance plan.

The persistent rotational movement of bearings during 
extended periods of operation causes friction, elevated tem-
peratures, and increased vibrations, leading to localized and 
distributed primary defect categories. Localized defects are 
defined as single-point faults, such as cracks, pits, spalls, 
and even small particles in the lubrication fluid [2]. These 
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defects are usually identified according to their locations 
(on the outer race, inner race, or the rolling element itself) 
[3]. The second type of bearing faults are called extended 
or distributed defects [4–6]. They refer to imperfections 
that are spread out over the surface of any of the bearing 
components. These defects, usually related to manufactur-
ing or installation mistakes, can include surface roughness 
and waviness [6]. They can also arise due to the progres-
sion of minor localized defects. Surface defects (localized 
or distributed) generate undesirable frequencies during 
the rotational motion of their supporting mechanisms and 
can also excite them at one of their resonances. However, 
they are usually hard to diagnose if represented only in the 
frequency domain. The presence of multiple simultaneous 
defects at various locations in the bearing may bring more 
complications when interrogating the spectrum. Therefore, 
investigating and studying these faults and how to detect 
them is especially important.

Different methods were developed to detect and diagnose 
defects in bearings. Among these techniques are vibration, 
acoustic emissions (AE), or motor's current variation [7, 8]. 
Bearings tend to generate vibration and noise due to the 
presence of defects, which works as an obstacle that impedes 
the smooth motion of the bearing balls. However, even if the 
geometry of the bearing is perfect, it generates vibration due 
to continuous changes in the total stiffness. This change in 
stiffness is due to the finite number of elements that carry 
the total load [9]. Singh et al. [10] stated that the generated 
vibration signals due to defects are caused by the restress-
ing of the rolling elements. Consequently, when the ball hits 
the end of a defect, the impulse generates vibration signals 
and enlarges the defect's size. In contrast, other explanations 
define the short force impulse vibration as the ball's com-
pression between the inner and outer races [11, 12]. In either 
case, the spectrum of a defect-free ball bearing differs from 
that of a ball bearing with (one or more) defect(s).

Different attempts were made to develop numerical 
or mathematical models that could predict the dynamic 
behavior of damaged bearings. However, these models 
always require validation compared to experimental results. 
Therefore, damaged bearings with specific types and sizes 
of damage are always needed. Using manufacturing tech-
niques, such as Electric Discharge Machining (EDM) or 
punching, the damage could be intentionally seeded on the 
inner or outer raceways of bearings. The defective bear-
ings would then be mounted on an experimental test rig to 
study their responses. One of the fault-testing approaches is 
run-to-failure, which consists of running the bearing under 
abnormal conditions, such as over-loading, over-speeding, 
or poor lubrication, until defects occur [9]. Vibration data 
is periodically or continuously recorded to study the time 
evolution of the vibration signal. Another approach is to 
seed several defects on different bearings [13] and test them 

separately under the same operating conditions to compare 
their readings with signals extracted from healthy bearings. 
The latter approach is adopted in this study. Subsequently, 
the vibration analysis could be done in the time domain, 
the frequency domain, or the time–frequency domain [9, 
14, 15].

Recently, machine learning (ML) was also adopted in 
both the diagnosis and prognosis of bearings' faults. ML 
could be based on supervised or unsupervised learning algo-
rithms. Supervised learning (SL) is the process in which 
the machine will learn with the help of given data contain-
ing features and labeled data. Features are the independent 
parameters, while dependent parameters are called labels. 
In contrast, unsupervised learning (UL) is about labeling 
unlabeled data using algorithms and then running processes 
to produce analyzed data. ML models usually use a consid-
erable percentage of data to train the system and then use 
the rest to test the prediction accuracy before conducting 
the prediction on foreign data [16]. Multiple ML techniques 
have been employed in the last two decades to detect defects 
in rolling element bearings, using distinct test data param-
eters to train the algorithms.

Artificial neural networks (ANN) are usually adopted 
when dealing with complicated problems with many train-
able parameters. Several types of ANN were adopted in 
bearings troubleshooting and condition-based maintenance 
(CBM), such as convolution neural networks (CNN) and 
recurrent neural networks (RNN). Eren, L. [17] presented 
a one-dimensional CNN model to monitor bearings health 
using a single-learning body model and achieved 97% fault 
detection accuracy. Hoang and Kang [18] used a novel 
CNN model that transforms 1D signals into 2D ones and 
approached 100% accuracy in defect detection using the 
Case Wester Reverse University (CWRU) public bearing 
data set. RNN is another branch of ANN that recurrently 
processes the data instead of the feed-forward behavior, 
allowing outputs to be processed as inputs while having 
unknown status in the hidden layers [19, 20]. However, 
one of the disadvantages of RNN is the possible gradient’s 
exploding and vanishing problem in time series during the 
backpropagation process [21]. Therefore, long-short-term 
memory (LSTM) could be used. LSTM is a time-recurrent 
neural network block used to solve the vanishing gradient 
problem [22] since it is suitable for processing and predict-
ing data with gaps and delays in a time series based on com-
plex historical fault data. Liu et al. [23] proposed their model 
of Gated Recurrent Unit-based denoising autoencoder, 
which outweighed other classifiers with more than 99.5% 
diagnosis accuracy. Several works have adopted the K-Near-
est Neighbors' Classifier [24–26] and used it in the fault 
detection of bearings as a different type of ANN classifier. 
Moreover, Multi-Layer Perceptron (MLP), the classical sup-
plement of feed-forward neural networks, is regularly used 
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in CBM of bearing [27–29]. Many other ML approaches 
were implemented in the CBM of bearings, such as Neu-
ral Fuzzy Networks [30], Generative Adversarial Networks 
[31], and Naive Bayes Classifier algorithm [32]. Regres-
sion techniques were also adopted in different bearing CBM 
models [33–35].

On the other hand, Trees Ensembles (TE) methods such 
as Decision Trees (DT), Extra Tree Classifier (ETC), Ran-
dom Forest (RF), and Gradient Boost (GBoost) are increas-
ingly adopted by researchers in classification and regression 
problems of bearing fault-detection [36–38] due to their low 
computational demands. In addition, enhancing the TE in 
classifying the defect is conducted with the use of other 
classification algorithms such as Support Vector Machine 
(SVM) [39], fuzzy classifiers [40], envelope signal-based 
feature extraction [41], and 2D-discrete wavelet transform 
[42, 43]. For example, Patil and Phalle [44] have found that 
adopting ETC to classify bearing faults achieved an accu-
racy of 98.12%. Moreover, Nistane and Harsha [45] used 
ETC supported with a stationary wavelet transform algo-
rithm to compare this technique's performance with RF 
and MLP regression. Furthermore, RF is another algorithm 
that combines multiple decision trees into one single deci-
sion tree, making it robust for regression and classification 
tasks; however, the training time increases in this case. The 
main difference between RF and ETC is that RF chooses the 
best node to split, while ETC randomly splits nodes to sam-
ple the training data, reducing bias, variance, and training 
time. Some researchers proposed ML models using RF [40, 
46]. In contrast, others [47] employed a refined composite 
multi-scale reverse dispersion entropy technique with RFC, 
achieving 100% maximum prediction accuracy and a 97.3% 
average classification accuracy.

In addition to ETC and RF, Boosting is a general ensem-
ble method that creates a robust classifier from several weak 
classifiers. One of the boosting techniques is GradientBoost-
ing (GBoost), which minimizes the prediction error of the 
next model by choosing the best outcome of the last model 
based on the DT model. It gained much attention in ML 
due to its efficiency in making predictions and its ability to 
handle large and sparse data. However, Extreme Gradient-
Boosting (XGBoost) has a computational advantage over 
GBoost, where training progresses slowly. XGBoost is a SL 
algorithm used to solve classification and regression prob-
lems [48] and is commonly used in bearing fault diagnosis 
[46, 49, 50]. Qi et al. [51] included different classifiers in 
their models and achieved 90.42%, 95.76%, and 97.21% pre-
diction accuracies when using DT, XGBoost, and Weighted 
Extreme Gradient Boosting (WXGB), respectively. Xia et al. 
[52] later adopted XGB in their Federated Learning model 
using the Privacy‐Preserving technique. Some works have 
included combining Adaboost and EMD [53, 54], while 
in [55], researchers used the DT classifier followed by 

Adaboost to compare it with SVM to achieve 96% and 92% 
maximum testing accuracy, respectively. One more classi-
fier is the Light Gradient-Boosting Machine (LightGBM), 
which was implemented in bearing fault detection in [56–58] 
and for the same contribution but supported with CNN in 
[59–62].

In predictive maintenance and condition monitoring, 
machine learning techniques have gained significant traction 
for their ability to extract valuable insights from complex 
industrial data. Recent advancements in tree-based ensem-
ble methods, such as Decision Trees, Random Forests, and 
XGBoost, have demonstrated remarkable performance in 
diagnosing faults in rolling element bearings using vibra-
tion signals [63]. Complementing these approaches, deep 
learning architectures have emerged as powerful tools for 
time series forecasting, potentially enabling proactive main-
tenance strategies [64]. However, industrial data's growing 
complexity and scale pose challenges regarding computa-
tional efficiency and privacy concerns. In this regard, dis-
tributed frameworks for training XGBoost models have 
been proposed, leveraging parallel computing to handle 
large-scale datasets [65]. Additionally, federated learning 
techniques have been explored for collaborative bearing fault 
diagnosis, enabling privacy-preserving data sharing across 
multiple parties [66]. Recognizing the diversity of machine 
learning approaches, comprehensive reviews have been con-
ducted to evaluate traditional and deep learning methods 
for fault diagnosis in rotating machinery [67]. These studies 
provide valuable insights into the strengths and limitations 
of various techniques, guiding practitioners in selecting 
appropriate methods for their specific application scenarios. 
Beyond the realm of rotating machinery, machine learning 
has also found applications in monitoring and diagnosing 
faults in actuators, which are critical components of many 
industrial systems [68]. Integrating intelligent algorithms 
into actuator systems can enhance their reliability and per-
formance, further underscoring the pervasive impact of 
machine learning in industrial operations. While significant 
progress has been made, implementing machine learning 
algorithms in real-world industrial environments remains 
challenging [69]. Data quality, sensor reliability, and system 
complexity must be carefully considered to ensure accurate 
and robust condition monitoring solutions.

The models developed in the literature using the ensem-
bles method and ANN algorithms were assessed based 
only on overall accuracy. However, those models usually 
make classification depending on the part of the independ-
ent feature data set while ignoring features with lower con-
tribution scores to the classification model. However, a 
generalized multi-parameter bearing fault detection clas-
sification model requires mapping between every signal 
feature with the target defect. Therefore, this paper pro-
poses and compares three tree ensemble machine learning 
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models (Decision Tree, Random Forest, and XGBoost) 
for diagnosing and prognosing faults in roller element 
bearings using vibration data. It utilizes 17 time-domain 
statistical features extracted from the vibration signals to 
the machine learning models as input features. A thorough 
feature importance analysis is conducted to understand 
which vibration signal features contribute most signifi-
cantly to the performance of each machine learning model 
in detecting bearing faults and their locations.

Experimental Testing, Results, and Data 
Setup

This study proposes and compares three tree ensembles of 
ML models that can diagnose and prognose faults of roller 
element bearings. Each of the three models can detect the 
defect's existence and location, whether it occurred on 
the outer or inner rings. Moreover, four more extra bear-
ings data were experimentally collected on the same test-
ing machine used in QU-DMBF [62], which were used 
to train the system and test it afterward. The introduced 
models enhance the CBM decisions of rotating equipment 
and assess the importance of time-domain signal param-
eters used to define the defective bearing. In this paper, 
we examine each model and the features it deems essen-
tial to make a decision, referred to as feature importance. 
This aspect is often overlooked in prior studies. Many 
researchers have gravitated toward benchmarking and fre-
quently fixating on accuracy scores, which usually leads 
to ignoring the exploration of the importance of features. 
Regarding predictive modeling, prior papers may have 
focused primarily on accuracy scores and model perfor-
mance rather than usually reporting on individual features 
and their contribution to the model performance cross-
referenced with the problem domain. While it acknowl-
edges the importance of accuracy as a vital component, 
this study explores the importance of features in model 
performance and domain: experimental Testing, Results, 
and Data Setup.

This paper utilizes benchmark experimental data to 
measure vibrations and validate defect diagnosis and prog-
nosis functionalities using multiple time domain parame-
ters. This section introduces the experimental test rigs and 
the set of bearings employed to gather vibrational data, 
along with incorporating these bearings into the existing 
QU-DMBF dataset. Subsequently, the time domain param-
eters essential for bearing fault analysis will be elaborated 
upon, detailing all the time domain parameters employed. 
The section concludes by discussing the data setup and 
model training criteria.

Qatar University Dual‑Machine Bearing Fault 
Benchmark (QU‑DMBF) Dataset

Figure 1 shows the test rig used in this research. This rig was 
originally a Machinery Fault Simulator from SpectraQuest 
Inc., USA. The rig includes a DC motor (0.5 HP, 90 VDC, 
5 A) with a maximum rotational speed of 2500 RPM. The 
original shaft of the machine was removed and replaced by 
a new and bigger one to accommodate the tested bearings 
(type NSK-6208). For the sake of resistance and stability, 
other supporting mechanical components were also rede-
signed. The machine has an approximate weight of 5kg and 
overall dimensions of (100 × 63 × 53) cm.

Initially, 19 different bearing configurations were consid-
ered in the investigation: one healthy, nine with a defect on 
the outer ring, and nine with a defect on the inner ring. The 
defect sizes vary between 0.35 mm and 2.35 mm. However, 
three more healthy bearings were added to the QU-DMBF 
published data set to balance healthy to faulty samples. One 
extra bearing with a 0.5 mm defect located on the outer race 
was exclusively used for testing. Hence, 23 bearings in total 
(same size and same brand) were employed in generating 
the dataset.

Six ICP® accelerometers (PCB Piezotronics, Model No. 
352C33) were used to extract vibrational signals. These 
accelerometers were fixed on the motor and in different loca-
tions on the machine's mounting base, and they were also 
fixed in various orientations and distances from the bearing 
rotation point at the end of the shaft (Fig. 2).

Two four-channel NI-9234 sound and vibration input 
modules controlled the readings at a sampling frequency of 
4.096 kHz. Signal recording for each bearing was taken for 
30 s at five different speeds, which are 240, 360, 480, 720, 
and 1020 RPM. Hence, the total recording time of faulty 
bearings was 16,200 s (18 bearings × 6 accelerometers × 5 
speeds × 30 s). The recorded time for each healthy bearing 
was increased to 270 seconds to ensure proper balance in the 
training data. The procedure consisted of recording 32,400 s 

Fig. 1   Defect insertions: a on the outer ring; b on the inner ring



Journal of Vibration Engineering & Technologies	

(4 bearings × 6 accelerometers × 5 speeds × 270 s), similarly 
for all the healthy bearings.

Time Domain Analysis

Vibration responses due to defective bearings could be stud-
ied using different approaches, such as the time domain, 
frequency domain, or time–frequency domain [9, 15]. Sev-
eral statistical parameters could be extracted from the time 
domain signals. These indicators could be training param-
eters in fault detection models for bearings CBM. Different 
mathematical operators can impact the statistical character-
istics of the signals, and a change in the mathematical opera-
tor can either increase or decrease the informational value 
of the signals. For example, the Root Mean Square (RMS), 
also known as the quadratic mean or the square root of the 
arithmetic mean of the squares of the values, is related to 
the vibration energy of a signal in the time domain [71]. 
Furthermore, the Crest Factor (CRSF) is the dimensionless 
waveform metric that displays the ratio of the peak ampli-
tude divided by the RMS value of the signal. It usually indi-
cates how extreme the peaks are in a waveform. Signal spiki-
ness affects how sensitive the crest factor is. Its sensitivity to 
signal spikiness can provide an early indication of significant 
changes in vibration readings. The CRSF increases when the 
signal has distinct spikes or peaks. A waveform containing 
random or periodic spikes scattered throughout the signal 
would have a greater CRSF than a pure sinusoidal wave. 
Researchers observed that the CRSF is more sensitive than 
skewness to the effects of radial load on bearing vibration.

One more parameter is the Kurtosis (KU), which rep-
resents a measure of the "tailedness" of the probability 
distribution of the random variable. In probability theory 

and statistics, KU is defined as the fourth-order normal-
ized moment concerning the square of the variance of 
a time series signal. It is more sensitive to impacts and 
degradation than CRSF and is the most sensitive param-
eter that can be used to identify faults in rolling element 
bearings [72, 73]. A KU of 3 usually represents the nor-
mal behavior of a healthy machine. At the same time, a 
kurtosis higher than 3 indicates advanced states of fault 
progression (a distribution with heavier tails than a nor-
mal one) [74]. KU is a valuable instrument for keeping 
track of the health of rotating machinery, including gears, 
bearings, and other components.

Time domain indicators have proved their effectiveness 
in training ML models to detect bearing failures [75]. Dif-
ferent time domain indicators were adopted during the last 
two decades to train ML models, such as intrinsic mode 
functions (IMFs) [76] and Zero Crossing features (ZC) [77]. 
Many of these time domain parameters were obtained from 
the data and implemented in the proposed model. Of all time 
domain indicators in literature [78–81], seventeen (17) were 
used in training and testing the current work's model. Their 
formulas and abbreviations are displayed in Table 1.

Experimental Data Setup

Bearing fault detection is considered a classification prob-
lem. The objective is to determine the bearing's health 
and the location of the defect if the bearing is defective. 
Hence, each class was given a label, as shown in Table 2. 
To develop the ML model, 80% of the dataset was used for 
training, while the remaining 20% was used for testing. As 
explained in “Qatar University Dual-Machine Bearing Fault 

Fig. 2   Experimental testing 
machine where numbers 1–6 
refer to accelerometers’ loca-
tions
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Benchmark (QU-DMBF) Dataset” section, the dataset was 
stratified to ensure a balanced presence of examples for each 
class label.

Machine Learning Models

In this section, we benchmark the dataset obtained from 
the experiments using three ML models: Decision Tree 
(DT), Random Forest (RF), and extreme GradientBoosting 
(XGBoost). These three models use the fundamentals of 
the DT algorithm. Thus, a feature importance analysis will 
be conducted, which provides insights into how influential 
a particular input is in the predictions of each model.

Table 1   Time domain indicators 
used to train and test the 
proposed model

Equation name Equation formula

Peak PEAK = Max(|x|) (1)
Peak to peak (p2p) p2p = Max(x) −Min(x) (2)
Mean square value (MSV)

MSV =
1

N

N∑
i=1

x2
i

(3)

Root square mean (RMS)
RMS =

�
1

N

N∑
i=1

x2
i

(4)

Crest factor (CRSF) CRSF =
PEAK

RMS
(5)

Standard deviation (STD)
STD =

�
1

N−1

N∑
i−1

�
xi − x

�2 (6)

Variance (VAR)
VAR =

1

N−1

N∑
i=1

�xi − x�2
(7)

MEAN ( x)
MEAN = x =

1

N

N∑
i=1

x(i)
(8)

Root sum of squares (RSSQ)
RSSQ =

�
N∑
i=1

�xi�2
(9)

Entropy
Entropy = −

N∑
i=1

y
�
xi
�
log2 y(xi)

(10)

Square root amplitude value (SRAV)
SRAV =

�
1

N

N∑
i=1

����y
�
xi
����

�2 (11)

Kurtosis (KURT)
KURT =

N
∑N

i=1 (xi−x)
4

�∑N

i=1 (xi−x)
2
�2

(12)

Shape factor (SF)
SF =

�
1

N

�∑N

i=1
(xi)

2

�

1

N

∑N

i=1
�xi�

(13)

Clearance factor (CLF)
CLF =

max(�xi�)�
1

N

∑N

i=1

√
�xi�

�2

(14)

Impulse indicator/factor (IMPF)
IMPF =

max(�xi�)
1

N

∑N

i=1
�xi�

(15)

Fourth order normalized power (NP4)
NP4 =

1

N

N∑
i=1

�
y(xi−y)

�

�4

− 3
(16)

Skewness (SKEW)
SKEW =

N⋅
∑N

i=1 (xi−x)
3

�√∑N

i=1 (xi−x)
2

�3
(17)

Table 2   Defect classes and 
corresponding labels

Class Label

No-defect 0
Inner-defect 1
Outer-defect 2
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Methodology

Before presenting the modeling, several assumptions need 
to be considered. Firstly, the data is assumed to follow a 
particular distribution, which can impact the models' per-
formance. Additionally, the models assume that the features 
used for training are independent of each other, which might 
only sometimes hold in real-world scenarios. The assump-
tion of balanced classes is also crucial for the models to 
learn effectively from the data. Furthermore, the models 
assume that the features selected are relevant and contribute 
significantly to the prediction task.

Moreover, it is worth remembering that the dataset con-
sists of vibration signals obtained from accelerometer read-
ings on bearings with different defect conditions (healthy, 
inner race defect, outer race defect) collected at Qatar Uni-
versity, with details on the experimental setup and data col-
lection procedure provided. The study used time-domain 
statistical features extracted from the vibration signals as 
input features for the machine learning models, employing 
17 different time-domain features. The models were treated 
as classification problems to predict the bearing condition 
(healthy, inner race defect, outer race defect) based on the 
input features. The dataset was split into training (80%) 
and testing (20%) sets in a stratified manner to ensure class 
balance.

The metrics used to validate and evaluate the models 
performance are precision, recall and F1-score. The preci-
sion score reflects how well the model has predicted the true 
positives in fraction to the overall predicted positves. On 
the other hand, the recall score shows how fit is the model 
to predict all true positives in fraction to the sum of true 
positives and false negatives. Finally, the F1-score gives an 
assessment on both, the precision and recall, producing a 
single measure while taking into account both the false posi-
tives and false negatives.

Figure 3 illustrates this paper's proposed approach for 
implementing machine learning models. It comprises three 
essential parts. Firstly, categorical variables were encoded 
into a numerical format during data preparation. Then, the 
Min–Max data normalization technique is introduced to the 
data to ensure all features have the same scale. Finally, a 
stratified split was implemented to provide a consistent tar-
get class distribution in the training and testing sets. This 
strategic division ensures against data imbalance and poten-
tial model bias stemming from the underrepresentation or 
the overrepresentation of specific target classes. The second 
part involves model implementation, where the grid search 
method is applied to fine-tune the model's hyperparameters 
through an iterative process of building and testing. The pro-
cess starts by setting a grid and values range to the model's 
hyperparameters; each combination of the model's grid will 
be evaluated. Once the validation set has achieved optimal 

accuracy, the grid search reports the hyperparameter val-
ues. Lastly, the concluding phase involves implementing 
the model on the entire dataset and reporting the accuracy 
report.

Ensemble Methods

Decision Tree (DT)

A decision tree algorithm is a versatile supervised machine-
learning algorithm for classification and regression prob-
lems. It creates a flowchart-like tree structure (Fig. 4), where 
each internal node denotes a feature, branches denote rules, 
and leaf nodes denote the algorithm's result. The decision 
tree algorithm works by recursively making new decision 
trees to maximize the homogeneity of the target variable 
in each subset of the dataset until a stage is reached where 

Fig. 3   Methodology flow chart
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further classification is not possible, and the final node is 
called a leaf node.

The primary challenge in decision tree implementation is 
identifying which attributes to consider as the root node at 
each level, known as attribute selection. The decision tree 
learning process employs a divide-and-conquer strategy 
by conducting a greedy search to identify the optimal split 
points within a tree. In the context of classification problems, 
to measure the degree of impurity in a subset of the tree, the 
Gini impurity Gini (D) is used, as shown in Eq. (18). For 
the information gain, IG(D), which measures the reduction 
in disorder [36] yield by splitting the data based on a fea-
ture (F), Eq. (19) is used, where entropy or disorder E(D) is 
shown in Eqs. (20) [36].

where pi is the probability of class i occurring in the node, 
and N is the total number of classes, and Dv is a subset of 
the collected samples set D [36].

However, DTs are prone to overfitting and underfitting 
problems. Hence, to obtain a model with high classification 
performance, the hyperparameter of the network must be 
optimized. Thus, the grid-search optimization technique was 
introduced to the model, resulting in the following values for 
the hyperparameters: entropy [70], to measure the quality of 

(18)Gini(D) = 1 −

N∑

i=1

p2
i

(19)IG(D) = E(D) −
∑

v∈Values(F)

||Dv
||

|D|
E(Dv)

(20)E(D) = −

N∑

i=1

pilog2(pi)

the split, the ideal depth of the tree is found to be 9, with a 
minimum three samples to create a leaf, and a minimum of 7 
samples to make a split. The model achieved an accuracy of 
82% on the testing dataset and a 94% accuracy on the train-
ing dataset. Table 3 shows the model's precision, recall, and 
F1 score, and Fig. 5 shows the confusion matrix.

Random Forest (RF)

Random forest (RF) is an ensemble supervised learning 
method for classification, regression, and other tasks that 
operates by constructing a forest of decision trees and com-
bining their outputs (Fig. 6).

Breiman and Cutler first introduced it [82] and trade-
marked it. The algorithm grows a forest of trees, where each 
tree is trained on a randomly chosen subspace of the training 
data and introduces variation among the trees. The decision 
at each node is selected by a randomized procedure rather 
than a deterministic optimization. The RF algorithm is an 
extension of the bagging method and utilizes both bagging 
and feature randomness to create an uncorrelated forest of 
decision trees. Feature randomness generates a random sub-
set of features, which ensures low correlation among deci-
sion trees. The algorithm has three primary hyperparam-
eters that must be set before training: node size, the number 

Fig. 4   Decision tree algorithm

Table 3   Performance metrics of the DT model on the testing data

Label Precision Recall F1-score

No-defect 0.96 0.96 0.96
Inner-defect 0.74 0.85 0.79
Outer-defect 0.85 0.72 0.78
Average 0.85 0.84 0.84
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of trees, and the number of features sampled. In the case 
of Random Forest for classification, each decision tree in 
the ensemble is often built using Gini impurity Gini(D), 
like the earlier decision tree. In summary, RF is a popular 
machine learning algorithm for classification and regres-
sion problems in various societal and industrial sectors. It 
builds multiple decision trees via randomness injection and 
takes a vote among the trees to make robust and accurate 
predictions. Among the key advantages of this method are 
its ease of use, flexibility, and the ability to handle missing 

values. Additionally, random noise in the data doesn't affect 
the accuracy of RF models. While there isn't a single equa-
tion that encapsulates random forests, the algorithm involves 
creating multiple decision trees, each trained on a differ-
ent bootstrap sample of the data, and making predictions by 
aggregating the results of these trees.

A grid search was applied to tune the RF model's hyper-
parameters and optimize the dataset's results. After several 
grid searches, it was found that the optimal number of trees 
in the forest is 60 trees, the max depth of the tree is 10, and 
the minimum number of samples mandated to split a node is 
2. The classification report shows that the model achieved an 
accuracy of 91% on the testing data, as displayed in Table 4. 
Moreover, the confusion matrix, displayed in Fig. 7, shows 
a recall score of 100% for the No-Defect class.

XGBoost

XGBoost, short-term for Extreme Gradient Boosting, is 
a software library that implements optimized distributed 

Fig. 5   Confusion matrix of the DT model on the testing data

Fig. 6   Random forest algorithm

Table 4   Performance metrics of the RF model on the testing data

Label Precision Recall F1-score

No-defect 0.9 1.00 0.96
Inner-defect 0.89 0.91 0.90
Outer-defect 0.92 0.87 0.90
Average 0.91 0.93 0.92
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gradient boosting machine learning algorithms under the 
Gradient Boosting framework. Like other boosting methods, 
it builds models sequentially, where each model learns and 
improves upon the previous model. However, XGBoost uti-
lizes more accurate approximations when computing splits. 
This prevents overfitting and enhances speed. XGBoost uses 
gradient boosting, which minimizes loss(L) when adding 
new models. This is done using gradients in the loss func-
tion L(yi, y�i) to estimate the descent direction. New models 
predict the residuals or errors of prior models and gradually 
boost the predictions. For multiclass classification prob-
lems, the loss function is shown in Eq. (21) [50]. Where N 
is the number of samples and M is the number of classes, 
the yi,j represent the true label for the i th example and the 
j th class, and pi.j represent the predicted probability of the 

sample in question to the class. XGBoost models are made 
up of decision trees like random forests. However, while 
random forest trains trees in parallel, gradient boosting trains 
trees sequentially. XGBoost is particularly popular due to 
its ability to handle large datasets, achieve state-of-the-art 
performance in many machine learning tasks such as clas-
sification and regression, and efficiently handle missing val-
ues without requiring significant pre-processing. It also has 
built-in support for parallel processing, making it possible 
to train models on large datasets quickly. Since its introduc-
tion, XGBoost has become the machine learning algorithm 
of choice for data scientists and machine learning engineers. 
It is known for its speed, ease of use, and performance on 
large datasets. It does not require optimization of parameters 
or tuning, allowing it to be used immediately after instal-
lation without further configuration (Fig. 8). Additionally, 
XGBoost counters the overfitting and underfitting problems 
in RF and DT models by incorporating regulation techniques 
such as feature subsampling and learning rate. The regu-
larization term Ω(f) is defined as shown in Eq. (22), where.

The regularization term to control the model complexity 
[49], shown in Eq.  (22), consists of two parts: γT , and 
1

2
λ
∑T

j=1
�
2

j
 . In the first part, γ refers to the regularization 

parameter for tree complexity, while T is the number of ter-
minal nodes (leaves) in the tree. Combined, they aim to 
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1
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Fig. 7   Confusion matrix of the RF model on the testing

Fig. 8   XGBoost Algorithm



Journal of Vibration Engineering & Technologies	

penalize the complexity of the tree based on the number of 
terminal nodes. The second term represents the L2 regulari-
zation penalty applied to the weights of the terminal nodes. 
Where λ is the L2 regularization parameter that controls the 
strength of the penalty.

However, to capture complex relationships and an appro-
priately generalized model, optimizing the XGBoost is fruit-
ful as it utilizes the model to its best performance. Hence, 
using the grid-search method for hyperparameter tuning with 
a fivefold cross-validation, which is determined as the opti-
mal choice, balancing computational cost and performance 
accuracy, helps mitigate overfitting. As a result, the model's 
optimal hyperparameters are 0.1 for eta, which is an alias for 

learning rate, 3 as the ideal depth of the tree, and 250 for the 
number of runs to learn. Figure 9 shows the log loss func-
tion with the number of epochs. As observed, the model's 
performance stops improving around the 180th iteration, 
corresponding to Fig. 10, the classification error for the test 
set plates around the 180th iteration. Hence, a learning rate 
of 0.1 is suitable for the dataset. It is worth noting that early 
stoppage has been set to 15 iterations. Consequently, if after 
15 iterations, the accuracy does not improve, the training 
shall stop.

As expected beforehand and illustrated in Table 5, the 
XGBoost outperformed all the other models with an accu-
racy score of 92% on the testing dataset.

Fig. 9   XGBoost log loss 
function versus the number of 
epochs

Fig. 10   XGBoost classification 
error figure shows the classifica-
tion error value on the y-axis 
and the number of epochs on 
the x-axis
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The confusion matrix, shown in Fig. 11, indicates the per-
formance of the XGBoost; like the Random Forest model, it 
predicts the No Defect class at 100% accuracy.

Feature Importance

The Ensemble trees models, Random Forest and XGBoost, 
build multiple decision trees to drive the output. The impor-
tance of the dataset's features in these models is derived 
from the collective behavior of these trees. In random 
forests, the Gini importance is typically used to calculate 
how often a feature is used to split the dataset across all 
the trees created by the model. Features that are used more 
often result in higher feature importance scores. However, 
XGBoost models utilize the Gain importance method, where 
features are ranked based on the resulting gain in accuracy 
introduced by the feature. The contribution of each feature 
is aggregated over all the trees created by the model; hence, 
the gain is calculated at each split. Finally, the Decision Tree 
model utilizes the Gini importance as well; however, since 

DT builds only a single tree, the importance of each feature 
comes from its contribution to the reduction in impurity or 
entropy over the single tree.

On the other hand, the precision, recall, and F1 score val-
ues only report the models’ performance without providing 
insights into feature selection or the driving factors contrib-
uting to that performance. In other words, for the data under 
study, each ensemble method selects its essential feature list 
in mapping between them and the targeted output. Therefore, 
a high-accuracy model is not the only target to achieve. In 
addition, the extent to which the ensemble algorithm consid-
ers the entire training feature in detecting the defect on the 
bearing is also a necessary fact to consider. After training 
the model, a feature-important analysis is conducted to illus-
trate each feature's contribution to the targeted prediction, 
as shown in Fig. 12.

In Fig. 12a, the DT approach has identified the SF as the 
main feature that dominates the bearing defect behavior at 
around 35% of the mapping process. Other input parameters, 
such as CRSF, CLF, or RSSQ, are essential but have scores 
of less importance. Furthermore, the algorithm neglects 
the accelerometer location by allocating a zero-importance 
score. Accelerometer location is a crucial feature that con-
tributes to the signal time-histogram intensity.

Therefore, the model might suffer from collinearity, 
where other features are highly correlated, and the model 
is utilizing them to make up for the accelerometer location 
feature. Meanwhile, RF allocates significant importance to 
each input feature without neglecting them. Nevertheless, 
two primary experimental conditions (accelerometer loca-
tion and motor speed) were unimportant. Eventually, the 
XGboost boosting technique showed more consideration for 
the accelerometer location and the motor speed. Although 
four distinctive features were neglected, their values were 
severely dependent on other features, such as RMS, STD, 
etc., already included in the model's essential features.

Based on the previous discussion, one can state that the 
proposed method utilizes tree ensemble machine learn-
ing models such as Decision Trees, Random Forests, and 
XGBoost for condition monitoring and predictive mainte-
nance of rotating machinery, precisely diagnosing faults in 
rolling element bearings. These models offer various appli-
cations, including early detection and diagnosis of bearing 
faults by identifying defects and pinpointing their location 
within the bearing using vibration signal data. Additionally, 
they support condition-based maintenance (CBM) of bear-
ings by monitoring vibration features and enabling proactive 
maintenance scheduling to prevent catastrophic failures. The 
models also facilitate the fault prognosis of bearings, allow-
ing for the tracking of defect progression over time. Fur-
thermore, they can be integrated into automated condition 
monitoring systems to continuously monitor bearing health 
in industrial machinery. The study provides a comparative 

Table 5   Performance metrics of the XGBoost model on the testing 
data

Label Precision Recall F1-score

No-defect 0.96 1.00 0.98
Inner-defect 0.91 0.91 0.91
Outer-defect 0.92 0.91 0.92
Average 0.93 0.94 0.93

Fig. 11   Confusion matrix of the testing data on the XGBoost model
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Fig. 12   Relative importance analysis results for the three models, a decision tree, B random forest, and C XGBoost
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benchmark of different tree-based machine-learning tech-
niques for bearing fault diagnosis, emphasizing the primary 
application of leveraging machine learning on vibration data 
for reliable and early fault detection and diagnosis in roll-
ing element bearings of rotating equipment across various 
industrial sectors. This approach enables timely maintenance 
and helps prevent unexpected failures that could result in 
costly downtime.

Moreover, the research reveals that the Decision Tree 
method identifies specific features that predominantly influ-
ence defect behavior, potentially reflecting the localized 
impact of faults within the bearing structure. In contrast, 
Random Forest assigns considerable importance to all input 
features, suggesting a holistic approach to fault detection 
that considers the collective influence of various parame-
ters. XGBoost, with its balanced consideration of essential 
features such as accelerometer location and motor speed, 
showcases a nuanced understanding of the interplay between 
different variables in determining bearing health and fault 
location.

The research delves into the importance of various time 
domain parameters like Root Mean Square (RMS), Crest 
Factor (CRSF), and Kurtosis (KU) in analyzing bearing 
faults. These parameters offer a tangible understanding of 
the vibration energy, signal spikiness, and distribution char-
acteristics, which are crucial for fault detection in rotating 
machinery. The models, including Decision Tree, Random 
Forest, and XGBoost, showcase high accuracy rates and 
highlight the significance of specific features in predicting 
bearing defects. Furthermore, the feature importance analy-
sis reveals how different models prioritize input features. 
For instance, Decision Trees emphasize features like SF, 
while Random Forests assign significant importance to all 
input features without neglecting any. On the other hand, 
XGBoost demonstrates a balanced consideration for features 
like accelerometer location and motor speed, showcasing its 
ability to handle complex relationships and optimize model 
performance effectively.

Conclusion

This research paper provides a detailed analysis of the exper-
imental testing, results, and data setup related to bearing fault 
diagnosis and prognosis functionalities. The study utilizes 
the Qatar University Dual-Machine Bearing Fault Bench-
mark (QU-DMBF) Dataset, which includes various bear-
ing configurations with defects on the outer and inner rings. 
Vibrational signals were extracted using accelerometers, 
and time domain analysis was conducted to study defective 
bearings. Three machine learning models were benchmarked 
using this dataset: Decision Tree (DT), Random Forest (RF), 
and Extreme Gradient Boosting (XGBoost). These models 

were evaluated based on their performance metrics, such as 
precision, recall, and F1-score, with XGBoost outperform-
ing the other models with an accuracy score of 92% on the 
testing dataset. The Decision Tree model achieved an accu-
racy of 82% on the testing dataset, with precision, recall, and 
F1-score values reported for each defect class. On the other 
hand, Random Forest achieved an accuracy of 91% on the 
testing data, with a recall score of 100% for the No-Defect 
class. XGBoost, known for its optimized distributed gradi-
ent boosting algorithms, demonstrated superior performance 
with an accuracy score of 92% on the testing dataset. The 
dataset preparation in the study involved several vital steps. 
Firstly, categorical variables were encoded into a numerical 
format. This is a common practice in machine learning to 
ensure that the algorithms can work with the data effectively. 
Secondly, the Min–Max data normalization technique was 
applied to the data. This technique ensures that all features 
have the same scale, essential for many machine learning 
algorithms to perform optimally. Finally, a stratified split 
was implemented to ensure a consistent class distribution 
in the training and testing sets. This strategic division helps 
to prevent data imbalance and potential model bias that 
could arise from the underrepresentation or overrepresen-
tation of specific target classes. The study highlights that 
while Decision Trees and Random Forests offer simplicity 
and interpretability, they often fall short in predictive accu-
racy compared to XGBoost, especially when dealing with 
noisy, high-dimensional, and multicollinear data. XGBoost's 
ability to balance bias and variance effectively, incorporate 
regularization techniques, and fine-tune hyperparameters is 
pivotal in mitigating overfitting and enhancing defect loca-
tion predictions. Moreover, XGBoost outshines its counter-
parts by providing more accurate feature importance scores, 
enabling it to iteratively build robust ensemble models by 
focusing on previous mistakes and refining feature impor-
tance scores with each boosting round.
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