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Abstract
Objective This paper presents the dynamic modeling and design optimization of a fully parametrized front-loading washing 
machine.
Methods  A thorough mathematical analysis is performed to capture the effect of nine design variables (including rota-
tion speed, spring stiffness, weight balancer mass density, damping coefficient, spring and damper angles) on vibrational 
characteristics of the washing machine. The parametric simulation reveals a complex relationship between the vibrational 
dynamics and design variables, entailing a computationally efficient optimization approach. A Bayesian Optimization (BO) 
framework is developed, in which a Gaussian process model and Genetic Algorithm (GA) are utilized along with carefully 
selected acquisition functions to enable adaptive sampling and search for optimal design values. The objective function is to 
minimize the maximum amplitude of the tub displacement inside the washing machine body. Two case studies are performed 
to consider a different number of design variables and choices of various infill methods.
Results Results show that the fully parametrized front-loading washing machine model is applicable for parametric simula-
tion and design optimization. The proposed BO is able to successfully find a set of design variable values corresponding to 
the lowest maximum displacement for vibration reduction. A comparison analysis is also carried out to exhibit the difference 
in optimization convergence and computational cost caused by the choice of acquisition functions.
Conclusion It is shown that the fully parametrized washing machine model yields a lower maximum displacement than the 
model with fewer design variables. Of the two acquisition functions studied for optimization, the Expected Improvement 
function converges more rapidly than the Lower Bound criterion.

Keywords Washing machine · Bayesian optimization · Genetic algorithm · Acquisition functions · Adaptive sampling

Introduction

It has been many years since home appliances with vibration 
behavior, such as washing machines, became an important 
field of study for researchers [1–3] to improve energy effi-
ciency [4] and stability and noise reduction [5]. One serious 

issue that needs to be studied is the vibration-induced walk-
ing problem that occurs when the machine operates at a 
high speed [5, 6], which is a stability concern, produces 
large noise, and leads to poor energy efficiency. Another 
one is the collision of internal components of the washing 
machine during its operation, which needs to be avoided [7]. 
Therefore, a more stable, quiet, and light weighted washing 
machine is desired by customers [1]. As such, design optimi-
zation of the washing machine comes to the scene with the 
benefit of keeping a balance between energy consumption 
and stability.

So far, two major types of washing machines have been 
investigated, including front-loading (with a horizontal 
rotation axis) [3] and top-loading (with a vertical rotation 
axis) [8]. Due to its popularity in use, front-loading wash-
ing machines are the focus of the current study. It should 
be noted that a majority of front-loading washing machine 
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studies have been conducted to develop active, passive, or 
hybrid approaches to reduce undesired motion caused by the 
unbalanced force generated by the unevenly distributed mass 
while the machine is in operation [3]. In order to address 
these issues, it is important to perform dynamic modeling 
and understand the most critical parameters affecting the 
vibration and dynamic behavior of the washing machine.

There are numerous research efforts of investigating the 
dynamic performance and vibration reduction of washing 
machines. Jo et al. [9] developed a robotic balancer that 
quantifies unbalance mass and phase angle during the wash-
ing machine spin cycle of a front-loading drum-type wash-
ing machine.The balancer actively produces an opposing 
force due to laundry and water dropping that occur during 
the washing process that proactively rebalances the system. 
Jang et al. [10] established a multibody dynamic model of 
a vertical axis washing machine to analyze the vibration of 
a washing machine during the dehydration process using a 
method called rapid decrease of the unbalanced liquid mass. 
Then, the vibration of the multibody dynamic model during 
the dehydration process with a rapid decrease of unbalanced 
liquid mass was analyzed to reduce the vibrations. Yalçın 
and Erol [11] developed a semiactive vibration control 
method to improve the dynamic stability of a horizontal axis 
washing machine by adjusting the maximum force produced 
by the semiactive suspension elements.

In the context of the dynamic performance of the washing 
machines, researchers also investigated the effect of using 
automatic or hydraulic balancers. Chen et al. [12] devel-
oped an active balancing system using water as a counteract 
to suppress vibrations in a vertical axis washing machine. 
They created a dynamic model to design a control system 
that displaces water to counteract unbalanced laundry loads, 
then manufactured and tested an equipped washing machine 
prototype with this active balancing mechanism. Hong and 
Chen [13] studied the dynamic performance of a drum-type 
washing machine by establishing a detailed dynamic model 
with an automatic counter-balancing model of balls. Chen 
et al. [14] built a mathematical model of a horizontal-axis 
washing machine with a ball balancer and carried out a 
stability analysis to study the stable and unstable regions. 
Another solution to the issue of vibration reduction is to 
study the effect of important parameters influencing the 
washing machine suspension system or to conduct a sensitiv-
ity analysis [15]. Park et al. [16] developed a linear dynamic 
model for front-loading washing machines to identify impor-
tant parameters and critical parameter ranges for modeling.

Many researchers have also developed optimization algo-
rithms for washing machine suspension systems along with 
dynamic modeling and parametric studies. Xiao and Zhang 
[17] proposed dynamics analysis and parameter optimiza-
tion of a drum washing machine based on the rigid-flexible 
coupling technology of virtual prototypes. Furthermore, a 

sensitivity analysis was conducted to enhance the optimiza-
tion of two key parameters: spring stiffness and damping 
coefficient. Nygårds and Berbyuk [18] proposed a multiob-
jective optimization formulation and a sensitivity analysis 
to address the vibration issues caused by unevenly distrib-
uted loads. The vibration resulting from unevenly distrib-
uted load was considered in the cost function for optimiza-
tion to assess tub motion performance, prevent collisions, 
minimize transmitted forces, and improve stability. Boyraz 
and Gündüz [1] introduced a method employing genetic 
algorithms (GA) to optimize vibration characteristics of a 
horizontal-axis washing machines, alongside a novel meas-
urement technique capable of determining both 2D displace-
ment and vibration frequency from acceleration data. While 
their study combined passive and active methods for reduc-
ing vibration in washing machines, their approach utilized 
a 2D dynamic model and an optimization of six parameters, 
including spring stiffness, damping coefficient, and the x 
and z coordinates of springs and dampers. Chen and Zhang 
carried out a full factorial experiment design of a horizontal 
axis washing machine with a ball balancer to investigate 
the importance of six different parameters. Then, they con-
structed a cubic polynomial regression model and performed 
a parametric optimization using a hybrid scheme to search 
the optimal parameter values [2]. However, their algorithm 
was used for the optimization of six parameters. In et al. 
[19] investigated the variability in spin time and spin vibra-
tion of washing machines, attributing it to uncertainty in 
unbalanced mass caused by the position or shape of laundry 
inside the drum during the spin process. Additionally, they 
improved the washing machines’ performance by optimizing 
the spin algorithm. However, the focus of their study was 
only on the spin algorithm.

In the previous effort [20], a thorough study on the effects 
of various design variables on the dynamic behavior and 
vibration characteristics of a front-loading washing machine 
was conducted analyzing a set of nine critical design vari-
ables using the commercial multibody simulation software 
Adams View. In addition, a sensitivity analysis was con-
ducted to examine how changes in these design variables 
affect both the natural frequency and overall dynamic per-
formance of the front-loading washing machine. It is worth 
noting that while there are valuable studies conducted on 
the dynamic behavior of washing machines, there remains a 
need for comprehensive research that considers a thorough 
list of design parameters affecting the washing machine 
suspension behavior and achieve salient performance 
of vibration reduction through computationally efficient 
optimization.

Within this context, the focus of the present effort is to 
develop new and comprehensive numerical models with a 
large number of design variables to investigate the vibra-
tional characteristics of front-load washing machines 
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through numerical simulations and optimization. This 
study is devoted to addressing the need for design optimiza-
tion with the following contributions. First, a new washing 
machine dynamics model including nine design variables 
is developed to analyze the vibrational characteristics, and 
the mathematical relationship between each design variable 
and system dynamics is derived through meticulous geo-
metrical analyses. Second, the dynamic model is utilized in 
a parametric analysis to manifest the complex vibrational 
behavior and its dependence on design variables. Lastly, a 
Bayesian Optimization is performed to minimize the maxi-
mum displacement response of the front-loading washing 
machine. Bayesian Optimization is chosen over other opti-
mization algorithms since it is a highly sample-efficient 
method for searching global optimum, that is, it can find 
better solution while running faster with a relatively smaller 
number of function evaluations [21]. The comparison of the 
optimization results using a different number of design vari-
ables convincingly confirms that simultaneously optimizing 
a larger set of design variables allows more room for vibra-
tion mitigation and yields better performance. The choice of 
the acquisition functions in Bayesian Optimization leads to 
different convergence rate and computational cost of opti-
mization. To our knowledge, the development of vibration 
models and investigation of the vibrational characteristics 
for a front-loading washing machine, characterized by nine 
design variables and optimized using Bayesian optimization 
to attain the optimal solution, marks a substantial enhance-
ment over prior research endeavors.

This paper is organized as follows. The problem formu-
lation is presented in Sect. “Problem Description”, which 
introduces the objective function and design variables of 
the optimization problem. Sect. “Methodology” elucidates 

the proposed Bayesian Optimization framework, including 
the derivation of nine design variables, the Gaussian Process 
model, Genetic Algorithm (GA), and adaptive sampling. In 
Sect. “Result and Discussion”, the results of Bayesian Opti-
mization with various infill criteria for two case studies are 
discussed. Finally, this study concludes with a summary in 
Sect. “Conclusion”.

Problem Description

The solid model of the washing machine studied in this 
paper is designed in a CAD, and then the multibody dynam-
ics simulation of the model is performed using the Adams 
View, as shown in Fig. 1. The dynamic system of the front-
loading washing machine contains a motor, a tub, a drum, 
front and rear weight balancers, two springs attached to the 
top of the tub, and four dampers linked to the tub’s lower 
portion (see Sect. “Design Variable Definition” for more 
details). The washing machine is composed of ten movable 
bodies, including a drum body, a tub body, and a piston and 
cylinder for each of the four dampers. The washing machine 
frame is considered to be the reference ground. Both the 
drum and tub are treated as rigid bodies, with their deforma-
tion effect neglected. Additionally, the left and right springs 
are symmetric with respect to the Y–Z plane, and the front 
and rear dampers located at the left and right sides of the 
washing machine are perfectly symmetrical with respect to 
the Y–Z plane.

In the present study, a Bayesian Optimization is per-
formed to minimize the maximum displacement ampli-
tude of the tub to avoid any potential collision. To capture 

Fig. 1  A front-loading washing machine created in Adams View
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the tub’s displacement response, the response data of the 
maximum displacement amplitude of the front top sensor 
attached to the tub in the washer model is investigated in this 
paper. The objective function of this optimization problem 
is described as

where f is the displacement of the tub, x ∈ Rd represents 
design variables, including the rotation speed, spring stiff-
ness, spring angle, weight balancer mass density, damper 
coefficient, and location and orientation of the damp-
ers, and d is the number of design variables, which is 9 
in this paper. All the design variables will be introduced 
in Sect.  “Dynamic Simulation” and elaborated more in 
Sect. “Design Variable Definition”. Typically, optimization 
based on dynamic simulation is computationally demand-
ing due to a large number of objective function evaluations. 
Therefore, a Bayesian Optimization algorithm is used to 
accelerate the optimization, which utilizes the underlying 
Gaussian Process model, i.e. fGP(x) to judiciously select the 
locations within the parameter space for the next round of 
simulation, i.e., adaptive infill, that balances between explo-
ration and exploitation.

(1)x∗ = min
x∈Rd

f (x)

Methodology

As seen in Fig. 2, a Bayesian Optimization (BO) framework 
with an adaptive infill sampling is proposed to minimize the 
displacement of the tub, which includes several steps: initial 
sampling, data generation, model construction, and adaptive 
sampling. BO has exhibited a superior performance com-
pared to other optimization algorithms [22]. It is a remark-
ably efficient method well suited for global optimization 
where other methods such as gradient-based optimization 
might struggle in cases where objective function might have 
multiple local optima [21]. For an overview of BO, please 
see Wang et al. [22]. The detailed procedure is given as fol-
lows: initially, a multi-dimensional hypercube of the param-
eter space is defined, which includes all the design vari-
ables along with their lower and upper bounds, i.e., Block 
(1) in Fig. 2 (detailed in Sect. “Design Variable Definition”). 
Then, Latin hypercube sampling (LHS) is performed to 
generate initial samples [23] to fill the parameter space for 
the dynamic simulations, i.e., Block (2) in Fig. 2. Numeri-
cal simulations of the washing machine are carried out at 
these samples, i.e., Block (3) in Fig. 2 to generate the initial 
training data set for modeling, i.e., Block (4) in Fig. 2. In 
this work, the data is the maximum displacement amplitude 
extracted from a dynamic simulation. Then, the samples and 
the generated training data set are used as the input–output 
data pairs to construct a Gaussian process regression (GPR) 
model, capturing the relationship between design parameters 
and maximum displacement amplitude as shown in Block 
(5) in Fig. 2. Since the initial GPR model is not sufficiently 

Fig. 2  BO flowchart with adaptive sampling for the front-loading washing machine
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accurate to cover the design space or search for the global 
optimum, an adaptive sampling process is incorporated into 
the framework to add new samples to the data set and update 
the model iteratively. A genetic algorithm is utilized to opti-
mize the acquisition functions (that is abbreviated as ‘AC’ in 
Fig. 2) given the infill criteria for locating the infill location, 
i.e., Block (6) in Fig. 2. In this study, two different infill 
criteria are examined for adaptive sampling, and their con-
vergence performances are compared. Then, the infill sample 
is supplied to ADAMS simulation to produce new training 
data, and the new data is subsequently added to the existing 
training data set to update the model. This process will be 
repeated iteratively until the maximum number of iterations 
is reached. Finally, the optimal parameter set found by the 
proposed framework is the design for the washing machine, 
which produces the minimum displacement amplitude, i.e., 
Block (7) in Fig. 2.

Dynamic Simulation

In order to analyze the behavior of the washing machine and 
generate the training data, Adams View is used to perform 
numerical simulations. Each simulation evaluates a dynamic 
process for 120 s, during which the drum’s rotation speed 
increases monotonically from zero at the beginning of the 
washer operation to a given rotation speed DV_W defined as 
the maximum speed during steady-state operation. DV_W 
is entered by the user prior to each simulation, as shown in 
Fig. 3.

In order to prevent collisions between the washing 
machine’s tub or other internal components and the washer 
frame, it is essential to minimize the vibration amplitude of 
the tub. Achieving this requires a thorough evaluation of the 
washing machine’s suspension system and a concerted effort 

among various design variables. While one might initially 
consider increasing the distance between the tub and frame 
as a solution, altering the size of the tub or the frame is 
not feasible due to conflicts with standard washing machine 
specifications, extra costs, and additional space requirements 
for installation.

Design Variable Definition

Before the analysis, our model needs to be built as a function 
of possible design variables/parameters influencing the vibra-
tion of the washing machine. Therefore, model parameteriza-
tion is one of the most important parts of the study. A full 
structure of the front-loading washing machine is presented in 
Fig. 4. A list of nine independent design variables (DVs) are 
used to describe the washer model in Adams View and inves-
tigate their geometrical effects on vibration characteristics. The 
standard values (the nominal or default values) of these DVs 
in the washer model are presented in Table 1.

Spring Stiffness and Spring Angle

The spring stiffness is an input parameter in Adams View 
and is chosen as the design variable DV_K in this study. 
However, the parameterization of the spring angle is more 
complicated than it seems. The left and right spring loca-
tions (when the washer is stationary) are aligned with the 
mass center of the entire tub-drum assembly, and thus, the 
upper and lower end points of both springs lie in the vertical 
plane that is parallel to the X–Y plane (see Fig. 5) and pass 
through the mass center. To satisfy this requirement, the Z 
coordinates of the end points of both springs are set equal 
to Zmc , the Z coordinate of the mass center of the entire tub-
drum assembly. The spring angle is set to be the same for 
both the left and right springs. Each spring has two ends: 
the end connected to the washing machine frame is named 
marker i , and the end connected to the tub is named marker 
j . For both springs, the marker j position during design is 
located on an elliptic curve formed by the intersection of 
the plane Z = Zmc and the tilted cylindrical surface of the 
tub, whose radius is determined by the distance from the 
j marker to the axis of rotation of the tub-drum assembly. 
Also, the line connecting the shaft mass center at the back 
of the washing machine to the mass center of the drum-front 
component at the front will be most aligned with the axis 
of rotation of the tub-drum assembly. The tilt angle θ of the 
axis of rotation, from the back of the tub to the front of the 
tub, is approximately 5◦.

Using the shaft mass center location as a reference point, 
which is represented as (X0, Y0 , Z0) = (0, 51.4888, 71.9637) 
(mm) and the tilt angle � = 5◦ , the following expressions for 

Fig. 3  The variation of the washing machine drum rotation speed 
with time
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the marker j location (Xj, Yj, Zmc) are given in Eqs. (2a), (2b), 
(3), and (4) below

where Eq. (2a) relate the global X and Y coordinates of 
marker j to the spring angle � as shown in Fig. 5. These two 

(2a)Xj = Xi +
(
Yi − Yj

)
tan �

(2b)Yj =
b +

√
b2 − ac

a

coordinates defined in Eq. (2a) and Eq. (2b) are obtained 
considering the conditions that markers’ j moves along the 
elliptic curve formed by the intersection of the plane Z = Zmc 
and the tilted cylindrical surface of the tub. The variation of 
the X and Y coordinates of marker j along the elliptic curve 
will result in the variation of spring angle � . Intermediate 
variables are introduced to simplify equation expression and 
progressive derivations, and all these variables are given in 
Eqs. (3) and (4)

Fig. 4  (a) A front-loading washing machine created in Adams View 
with schematic drawings (left and right) showing the spring angle α, 
the front dampers’ front angle β1 and the rear dampers’ front angle β2, 

and (b) schematic drawings of the front damper side angle γ1 and the 
rear dampers’ side angle γ2

Table 1  Nine design variables with their upper and lower bounds and standard values implemented in the Adams View dynamics model for the 
washing machine

Parameters Symbol Unit Nominal value Lower Limit Upper Limit

Rotation speed (DV_W) W rpm 1300.00 800.00 1700.00
Spring stiffness (DV_K) K kgf/mm 1.20 0.65 1.75
Spring Angle (DV_A) A  ° 12.87 5.00 18.00
Weight balancer mass density (DV_MD) m kg/mm3 4.50E-06 4.07E-06 9.37E-06
Damping Coefficient (DV_C) C kgf.s/mm 0.50 0.00 1.50
Front damper front angle (DV_FA) �1  ° 68.28 65.50 71.50
Rear damper front angle (DV_RA) �2  ° 80.96 77.90 84.40
Front damper side angle (DV_DFR) �1  ° 80.24 70.25 90.22
Rear damper side angle (DV_DRR) �2  ° 84.95 74.95 94.95
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In Eq. (4), the sign  +  is for the left spring, and – is for 
the right spring. The radius R of the cylindrical surface, 
on which the spring marker j is attached, is the distance 
from the marker to the tilted axis of rotation and is given 
a value of R = 329.27 mm. The expressions in Eqs. (2a), 
(2b), (3), and (4) are implemented in the Adams model, 
not as a design variable, but as a function expression to 
calculate automatically the marker j locations for the left 
and right springs when the design variable DV_A for the 
spring angle � is changed during design optimization.

Weight Balancer Mass Density

The design variable DV_MD for the mass density ( �f  ) of the 
front-up and -down weight balancers (see Fig. 1) is added to 
the model with a nominal value of 4.50E-06 (kg/mm3). The 
maximum value for DV_MD is the one when the mass of a 
weight balancer is increased by 10 kg while keeping the vol-
ume unchanged (that is, the geometry of the weight balancer 
is unchanged). The mass density parameter is designed in a 
way that when the mass density of the front weight balancers 
is varied, that of the rear weight balancer will be modified 

(3)
a = a2

1
+ a2

2
,

b = a1b1 + a2b2,

c = b2
1
+ b2

2
− R2,

(4)

a1 = ± tan �,

a2 = cos �,

b1 = Xi ± Yi tan �,

b2 = Y0 cos � +
(
Zmc − Z0

)
sin �

accordingly. Then, the Z coordinate of the mass center of the 
entire tub-drum assembly (consisting of 32 parts) remains 
the same, that is Zmc = 334.562675 (mm). According to this 
requirement, the following expression is derived in Eq. (5) 
relating the density of the rear weight balancer, �r , to that of 
the front weight balancer, �f ∶

where, ZmcN and MN are, respectively, the Z coordinate of the 
mass center and total mass of the entire tub-drum assembly 
without the three weight balancers; Zmcfu , Zmcfd and Zmcr are, 
respectively, the mass center Z coordinates of the front-up, 
front-down, and rear weight balancers; and Vfu , Vfd , and Vr 
are their respective volumes. The expression in Eq. (5) is 
also implemented in the Adams model, not as a design vari-
able, but as a function expression to calculate �r automati-
cally, when the design variable DV_MD for the mass density 
�f  is changed. The minimum value for DV_MD is deter-
mined by a physical lower limit that ensures the rear weight 
balancer mass cannot be negative. Specifically, the minimum 
mass density of the front weight balancers is determined by 
setting that of the rear weight balancer to zero.

Damper Coefficient, Front Damper Side Angle, and Rear 
Damper Side Angle

The design variable DV_visco_C for the damping coefficient 
of the four simple dampers is added to the washing machine 
model with a nominal value of 0.5 (kgf.s/mm). As discussed, 
in total, there are four dampers in the washer model. To 
facilitate the presentation below, we denote the front right 
damper as “damper A”, the front left damper as “damper 
B”, the rear right damper as “damper C” and the rear left 
damper as “damper D”, as shown in Fig. 6a. In order to 
parameterize dampers’ side angle, i.e., �1 and �2 , as shown in 
Fig. 4b, two DVs are added to vary the Z coordinate of the 
damper’s lower endpoints connected to the bottom frame: 
DV_DFR (the Z coordinate of marker m and p , respectively, 
attached to damper A and B) and DV_DRR (the Z coordi-
nate of marker f  and r , respectively, attached to damper C 
and D). Since dampers A and B, respectively, at the right 
and left, are perfectly symmetric to the Y axis, they share 
the same side damper angle ( �1 ). Therefore, only damper 
A’s side angle is parameterized and referred to as �1 . Like-
wise, for the dampers at the back (dampers C and D), only 
damper C’s side angle is parameterized and denoted as �2 . 
After parameterizing �1 and �2 at the right side, the damper B 
and D at the left will be updated automatically using proper 
functions in ADAM View, which allows the left dampers 
to follow their counterparts on the right side. The design 

(5)

�r =

[(
ZmcN − Zmc

)
MN +

(
Zmcfu − Zmc

)
�f Vfu +

(
Zmcfd − Zmc

)
�f Vfd

]
(
Zmc − Zmcr

)
Vr

Fig. 5  The schematic drawings (on the right side) showing the spring 
angle (α) and end points i and j 
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variable DV_DFR alters the side angle of dampers A and B, 
while DV_DRR changes the side angle of dampers C and D. 
The range of global Z coordinates of all lower endpoints for 
DV_DRR and DV_DFR must be consistent with the feasible 
range of the side angles �1 and �2 to ensure that the bottom 
markers m , p , f  and r in Fig. 4b do not lie outside the physi-
cal domain of the bottom frame. In addition, the nominal 
value for both DV_DFR and DV_DRR is determined using 
the existing damper geometry data from the existing washing 
machine model.

Each damper consists of two body parts, a piston and a 
cylinder. Take Damper A as an example: it has marker m 
attached to the piston and marker n attached to the cylinder. 
Each marker defines a local coordinate system attached to the 
body. An orientation function below is utilized (one of the 
existing functions in the expression builder provided by Adams 
view) for the alignment of the line connecting the marker m 
and marker n to make sure that the damper’s piston and cylin-
der are perfectly aligned in case either marker m or marker n 
is moved from its original place during design modifications.

This function returns the alignment of a specified axis 
from one coordinate system to another. In this case, the local 
Z axes of the markers m and n are aligned with the orientation 
function and always point toward each other when the loca-
tion of the bottom marker is changed. The same procedure is 
employed for the alignment of the rest of the dampers.

Front Damper Front Angle and Rear Damper Front Angle

Two design variables DV_FA for the front angle of the front 
dampers and DV_RA for the front angle of the rear dampers, 
i.e., �1 and �2 , respectively, are added to the Model in Adams 
View for model parameterization and optimization as shown 

���_�����_���� (markers m, markers n, the local Z axes).

in Fig. 6b. As discussed above, dampers B and D at the left 
are perfectly symmetrical, respectively, in relation to damp-
ers A and C at the right; therefore, they share the same front 
damper angle. Consequently, only front angle of damper A is 
parameterized and referred to as �1 . Similarly, for the dampers 
at the back (dampers C and D), only the front angle of damper 
C is parameterized and denoted as �2 . The damper B and D at 
the left follow their counterparts at the right side accordingly. 
The nominal values for �1 and �2 are determined using the front 
and rear damper geometry data in the Adams washer model, 
respectively, using Eqs. (6) and (7):

where subscript n, m, g, and f, respectively, denote the 
upper and lower endpoints for dampers A and C as shown in 
Fig. 6a. The initial angle range from  − 5◦ to  + 5◦ is used for 
both �1 and �2 . However, two physical constraints affect the 
actually achievable range, corresponding to the two extreme 
cases when the damper becomes tangential to the cylindrical 
surface from the upper or lower side of the cylinder.

The angle �1 is parametrized by moving marker n on 
the cylindrical surface of the tub without the coupling 
between the damper side angle and front angle as shown 
in Fig. 6b. During design modifications, the marker n is 
restricted to moving along the elliptical curve formed by 
the plane passing through dampers A and B and intersect-
ing the tub’s cylindrical surface. Meeting these aforemen-
tioned conditions, the global coordinates of marker n can be 

(6)�1 = tan−1
(
Yn − Ym

Xm − Xn

)

(7)�2 = tan−1
(
Yg − Yf

Xf − Xg

)

Fig. 6  (a) the schematic drawings showing the upper and lower end points for all dampers and (b) The schematic drawings showing the front 
dampers’ front angle (β1) and the rear dampers’ front angle (β2)
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parameterized by �1 and the elliptical curve for the upper end 
points of damper A and B. In order to determine marker n ’s 
coordinates, the following three equations are used.

In Eq.  (8) below, the global X and Y coordinates of 
marker n are related to �1

The second equation represents the parametric equation 
defining the plane that passes through the damper A and B 
in such a way that if the coordinates of each marker ( m , n, 
p and q ) on dampers A and B are changed, the plane would 
move in space accordingly. Obviously, this plane, given by 
Eq. (9), is a function of the global coordinates of markers m
, n, p and q . Note that the coordinates of marker m and p are 
already parameterized through the damper’s side angle as 
discussed in Sect. “Damper Coefficient, front Damper Side 
Angle, and Rear Damper Side Angle” above.

where

Due to symmetry, Eq. (9) will be simplified as follows:

The third equation to be determined is the cylindrical 
surface of the tub for marker n on damper A. As shown in 
Fig. 7, three coordinate systems are introduced: the global 
coordinate system ( XYZ  ), the local coordinate system 
before tilting ( X�

Y�Z� ), and the local coordinate system after 

(8)Xn = Xm −
(
Yn − Ym

)
cot �1

(9)

[(

t3
(

Yn − Ym
)

− t2
(

Zn − Zm
))(

Xn − Xq
)]

+
[(

t1
(

Zn − Zm
)

− t3
(

Xn − Xm
))(

Yn − Yq
)]

+
[(

t2
(

Xn − Xm
)

− t1
(

Yn − Ym
))(

Zn − Zq
)]

= 0

t1 =
(
Zq − Zp

)
; t2 =

(
Yq − Yp

)
; t3 =

(
Zq − Zp

)

(10)t3
(
Yn − Yq

)
− t2

(
Zn − Zq

)
= 0

tilting (X��Y��Z��) . The origin of the global coordinate sys-
tem isO(0, 0, 0).The global coordinate system ( XYZ ) shown 
in Fig. 7 is the same as the one introduced in the Adams View. 
Also recall that the tilt angle θ of the axis of rotation, from the 
back of the tub to the front of the tub, is approximately 5◦ as 
presented earlier.

The global Y coordinate of the tub axis increases linearly 
from the rear end to the front end of the tub. According to the 
right-hand rule, the tub is rotated from the horizontal orienta-
tion (with its cylindrical axis along the Z′ axis) to the tilted 
orientation (with its cylindrical axis along the Zε axis) by −� 
about its local X′ axis. The point Pc in Fig. 7 is the shaft mass 
center (introduced earlier) which is the origin of the local coor-
dinate system before and after tilting of the shaft and the tub. 
Since the tub is rotated about its local X′ axis during tilting, 
the axes X , X′ and Xε are all parallel. The tilted cylindrical 
surface of the tub in the tilted coordinate system (X��Y��Z��) 
has a simple form given by Eq. (11)

where R is the radius of the cylindrical surface for marker 
n on damper A, and its value is given by the distance 
from marker n to the tilted axis of rotation of the tub, i.e., 
R = 349.8107 mm. Assuming that Eε (Xε, Yε, Zε) is the coor-
dinate vector of a point in the X′′Y′′Z′′ coordinate system 
and E (X, Y , Z) is that of a point in the XYZ coordinate sys-
tem, the coordinate values of Eε and E in their respective 
coordinate systems are related through a transformation 
matrix TXεTS as following:

where  Pc stands for the coordinate vector of point  Pc, and

Utilizing Eqs. (11) and (12), the equation of the cylin-
drical surface in the global coordinate system can be deter-
mined by

where Xn , Yn and Zn , again, represent marker n ’s coordinates 
in the global coordinate system. Equation (13) also governs 
any cylindrical surface that shares the tilted axis of rotation 
with the tub. Thus, ( Xn , Yn , Zn ) as three unknowns can be 
obtained by solving Eqs. (8), (10) and (13), yielding

(11)X��2 + Y ��2 = R2

(12)E�� = TX��TS =
(
E − Pc

)

TX��TS =

⎡⎢⎢⎣

1 0 0

0 cos (�) − sin (�)

0 sin (�) cos (�)

⎤⎥⎥⎦

(13)

[

Xn − XPc

]2 +
[(

cos (�)Yn − sin (�)Zn
)

−
(

cos (�)YPc
− sin (�)ZPc

)]2 = R2

Fig. 7  The schematic showing the cylindrical surface of the tub in the 
global and local coordinate systems
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where,

The global coordinates Xn , Yn and Zn presented in Eq. 14 
are utilized to parameterize the front right damper’s coor-
dinates (i.e., marker n ’s coordinates). These expressions 
are implemented in the Adams model by the expression 
builder as a function expression to automatically calculate 
marker n locations for the left and right dampers at the 
front (i.e., damper B and A) when design variable DV_FA 
for �1 is changed. The same implementations are followed 
to parameterize design variable DV_RA for the rear damp-
ers’ front angle ( �2).

Gaussian Process Model

As a widely used probabilistic surrogate model, Gaussian 
Process (GP) approximates objective functions by modeling 
a distribution of random variables to fit a set of data points 
[22]. This feature makes them well-suited for approximating 
true objective functions in BO.

Given the total number n observations or sample points 
over the finite domain Dn = (x, y) , which are used as the 
training data set, where X = [x1, x2,… , xn] is the input with 
n as the number of sample points, and Y = [y1, y2,… , yn] 
is the corresponding response or output. The (GP) model 
operates under the premise that the observed data adhere to 
a Gaussian distribution. The objective therein is to formulate 
a regression framework aimed at predicting output response 
denoted as y , for a new data point x [22]. GP regression uses 
a multivariate normal prior distribution, where the regres-
sion is specified through two functions: a mean function 
that is a vector and a covariance or kernel function which 
is a matrix [24]. The kernel is deliberately selected in such 
a way that data points xi and xj , which lie in close proxim-
ity in the input space, exhibit a strong positive correlation. 
This reflects the underlying notion that these points should 
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)2
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1
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possess function values that are more alike compared to 
points situated at a distance from each other [24].

One of the most common kernel functions for GP are 
Matern class kernels, which are discussed in detail in [25]. In 
this study, Adaptive Relevance Determination (ARD) Matern 
5/2 is used, which enables the GP model to learn the key 
observed features [26]. MATLAB’s build-in function, fitrgp, 
is used for the Gaussian Process modeling in this study. The 
fitrgp function allows specifying the kernel function through 
KernelFunction. This functionality allows users to designate 
a predefined function as the kernel in GP modeling. The 
ARD Matern 5/2 kernel was selected in this study.

Adaptive Sampling

Prior to modeling the objective functions and its depend-
ence on various design variables, it is critical to establish the 
initial set of data points (initial sampling) with a consistent 
level of model accuracy across the multi-dimensional design 
space. The significance of the initial sampling lies in the 
high cost associated with the computation of generating each 
individual data point, which makes the selection of a highly 
informative set of initial samples challenging [27].

The statistical sampling plan called Latin Hypercube Sam-
pling (LHS) is chosen to randomly select initial sample points 
to fill the entire design space. LHS is selected since it is one of 
the most widely used methods to generate random sampling 
points to initiate optimization algorithms, which guarantees 
an even distribution of samples within the range of design 
variables and salient representation of all regions within the 
design space [28, 29]. More specifically, the LHS of a size N is 
generated by segmenting the distribution of each input design 
variable into N equal probability proportions, and sampling 
exactly one value from each division [29]. This segmentation 
(also called stratification) allows LHS to have a wider and 
more efficient coverage on the entire DVs domain [30]. The 
MATLAB function, lhsdesign, is utilized to obtain N sample 
points considering the DVs lower and upper bound, and N is 
a user input.

After constructing a full set of initial space-filling samples, 
the algorithm utilizes the response surface obtained from the 
GP and iteratively updates the model with additional informa-
tion through an approach called adaptive sampling. Although 
the ideal scenario is to train the model with complete informa-
tion, it is infeasible in reality as the computational resource 
is limited [31]. Adaptive sampling strategically selects cer-
tain data point based on the acquired knowledge from the GP 
model specifically in the targeted area [31, 32]. The newly 
selected infill point dynamically adds a data to the existing 
training data set and related information to the model, which 
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intelligently and progressively improves the quality of the opti-
mization [33].

The selection of the infill criterion plays a crucial role in 
the optimization performance, which is normally achieved by 
maximizing the acquisition functions. In this paper, two dif-
ferent acquisition functions, proven effective in our prior effort 
[32] are utilized to perform BO: statistical lower bound (LB) 
and expected improvement (EI). The LB is an approach to bal-
ance exploitation and exploration with the formula below [34]:

where ŷ(x) and ŝ(x) are respectively, prediction and the 
square root of predicted variance. As the value of A goes 
closer to zero, the effect of ŷ(x) will be more important, 
emphasizing exploitation (pure exploitation), while as A 
gets closer to ∞ , LB(x) aligns more with exploration (pure 
exploration). In other words, A is a constant that controls 
the balance between exploitation and exploration, which is 
set to be 2 in this paper following our prior work [32]. The 
other acquisition function used in this paper is the expected 
improvement (EI), which is defined in Eq. 17 below

where Φ(x) represents the cumulative distribution function 
and �(x) is the probability density function [34]. In the infill 
methods, ymin is the best observed value that in our case 
would be the minimum observed sampling, and E[I(x)] rep-
resents the area enclosed by the Gaussian distribution below 
the minimum of the optimization model found at the current 
iteration.

Genetic Algorithm

The next step is to determine the infill location for adding 
new data in each iteration of optimization, which essentially 
requires an efficient search algorithm to find the global opti-
mal value of the acquisition function above.

Genetic Algorithm (GA), one of the most popular sto-
chastic optimization algorithms [35] is chosen as the infill 
search tool. GA is an evolutionary algorithm inspired by 
Darwin’s theory nature’s fittest [36] which simply means 
the fittest gene survive to the next generation. Like other 
standard evolutionary algorithms (EAs), GA uses three 
fundamental operators for sequential reproduction: selec-
tion, crossover, and mutation [35]. In the selection operator, 
individuals with superior fitness scores are favored, and thus, 
more likely to propagate their genetic information into the 
next generation of solutions [37]. Using both selection and 
crossover operators, GA generates new offsprings with better 
potential to reach optimum solution. The mutation operator 

(16)LB(x) = ŷ(x) − Aŝ(x)
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{(
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)
Φ
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ŝ(x)
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+ ŝ(x)𝜑

(
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ŝ(x)

)
ifs > 0

0 ifs = 0

inserts random genetic modifications into the offspring solu-
tions, preserving population diversity, and avoiding over-
divergence from the optimum solution [37].

Using the aforementioned steps, this technique employs 
guided randomized exploration intelligently, supplemented 
by the integration of historical data. This approach system-
atically advances the search process within areas of poten-
tial solutions identified by previous findings, resulting in 
enhanced performance [37]. This adaptive feature makes GA 
a strong and robust tool to solve complex problems with 
multiple parameters in a large space for a satisfactory answer 
with lower computational cost in optimization algorithms 
[38]. Due to the reliability, adaptability and its convergence 
rate, GA is suited to this task, and it is used as the search 
algorithm in BO. In this paper, MATLAB’s built-in function, 
ga, is used to search for the global optimum value of the 
acquisition function in the algorithm. This function opti-
mizes the objective function based on user-input parameters 
and variables, including the total number of DVs and the 
lower and upper bounds of each design variable. Our mod-
eling approach demonstrates great robustness, with MAT-
LAB’s default GA configurations. Some of the configuration 
variables are briefly discussed here for clarity.

The number of candidate solutions evaluated in each gen-
eration by the GA is called population size, which depends 
on the number of variable ( NV  ). Typical population size is 
50 or 200; 50 for a smaller number of variables specifically 
for NV ≤ 5 , while a larger number of variables or NV > 5 
uses a population size of 200. Two models are investigated 
in this paper, which will be elaborated on in Sect. “Result 
and Discussion”: one model comprises 5 DVs, while the 
other model encompasses 9 DVs. In the case study of the 
former, the population size will be set to 50, whereas for the 
scenario with 9 DVs, the population size is increased to 200. 
The mutation function utilized to generate mutation chil-
dren in the ‘ga’ function is ‘ mutationgaussian ’. This default 
mutation function adds a random number sampled from a 
Gaussian distribution with a mean of 0 to each element of 
the parent vector. The default selection function in the ‘ga’ 
function is ‘ selectionstochunif  ’. This function organizes a 
line where each parent corresponds to a segment of the line, 
the length of which is proportional to its scaled value. As the 
algorithm progresses along the line, it takes steps of a uni-
form size. At each step, the algorithm assigns a parent from 
the segment it reaches, with the initial step beginning with 
a uniformly distributed random number smaller than the 
step size. The population fraction created by the crossover 
function at the next generation in the ga algorithm is cho-
sen to be 0.8. The ga function default tolerance is 1.0E-06. 
Additionally, the maximum number of iterations permitted 
before the termination of the GA in MATLAB is denoted by 
NV × 100 . However, the termination criterion is determined 
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by the user-defined maximum number of iterations. Once 
this criterion is met, the algorithm terminates.

Result and Discussion

In this section, we will perform a parametric analysis using 
the model with nine design variables (DVs) followed by 
optimization result and discussion. The parametric analysis 
conducted in this paper includes changing each individual 
design variable from its lower bound value to the upper 
bound value to evaluate how the maximum X displacement 
amplitudes at the front sensor changes with the design vari-
able. For optimization, two case studies, respectively, involv-
ing five and nine DVs are conducted and analyzed, and the 
effect of the acquisition functions on BO convergence is also 
investigated.

Parametric Analysis

The analysis starts with a single simulation, in which all DVs 
are set to their standard values. The simulation model with 
all DVs set to their standard values is called the standard 
configuration. The details of the solver settings are presented 
in our previous work [20]. Figure 8a–c portray the time-
varying response for the displacement amplitude along X, Y 
and Z direction at the front sensor for the standard configura-
tion. Each data series consists of two parts, a transient state 
and a quasi-steady state. It is clear from Fig. 8a–c that the 
maximum displacement in all three directions always occurs 
in the transient stage.

Subsequently, the parametric analysis is performed to 
investigate the impacts of individual DVs only on the maxi-
mum X displacement amplitudes. To facilitate visualization 
and interpretation of the results, each DV’s range is nor-
malized between 0 and 1. Each curve in Fig. 9 then depicts 
the variation of the Front sensor maximum displacement 
amplitude along X direction when one of the DV is set to 

Fig. 8  The simulation results for the standard configuration: (a) the front sensor X displacement; (b) the front sensor Y displacement; and (c) the 
front sensor Z displacement

Fig. 9  The parametric analysis 
considering all nine DVs for 
the variation of the front sen-
sor maximum X displacement 
amplitude
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a different value in the normalized range, viz., 0, 0.25, 0.5, 
0.75, and 1, and the rest of DVs remain unchanged (i.e., 
keeping their standard value). The maximum X displace-
ment amplitude is positively proportional to five DVs out 
of nine, including the rotation speed ( w ), spring stiffness 
( K ), front damper Z Coordinate (DV_DFR), rear damper 
Z Coordinate (DV_DRR), and front damper front angle (�1 ). 
That is, when these five DV values increase, the maximum 
X displacement also grows. On the other hand, the maxi-
mum X displacement amplitude increases when the rest of 
the DVs decrease their values, viz., the spring angle ( � ), 
rear damper front angle (�2 ), mass density (m ), and damping 
coefficient (C).

The impacts of individual DVs on the maximum displace-
ment amplitudes along Y and Z is discussed in detail in the 
previous study [20]. The parametric analysis confirms that 
the magnitude of the maximum displacement amplitude is 
dependent on all the 9 DVs. As discussed in Sect. “Prob-
lem Description”, the goal of the study is to minimize the 
maximum displacement amplitude of the tub to avoid any 
potential collision. The above analysis clearly suggests that 
there is a complex nonlinear relationship between the maxi-
mum amplitude in each direction and the nine DVs. Thus, 
it is a formidable challenge to identify the optimal design 
manually or in a straightforward manner. Instead, the BO 
algorithm with adaptive sampling is utilized to facilitate and 
automate the design of this front-load washing machine. To 
evaluate BO-based optimization, two different case studies, 
respectively, involving 5 DVs and 9 DVs with an increasing 
level of complexities are considered, followed by compari-
son between them, results, and discussion.

Case Study 1: Optimizing Model with 5 DVs

The case study in this section uses a washing machine model 
with a total number of five DVs, including rotation speed, 
spring stiffness, spring angle, mass density, and damper 
coefficient. The BO starts with 20 training data obtained 
through the LHS hypercube sampling. The two different 
acquisition functions for adaptive sampling are employed 

and compared in the BO. The first algorithm uses the lower 
bound (LB) type of acquisition function and the second one 
utilizes the expected improvement (EI) as presented above. 
Table 2 presents the result of the optimization including the 
optimal DV values. Again, each simulation starts with 20 
initial training data sets and continues with 50 additional 
samples determined by adaptive sampling.

As shown in Table 2, the maximum amplitude of the front 
sensor X displacement obtained by BO with the LB acqui-
sition function is 3.4505 mm, and the optimum design is 
obtained at iteration No. 43. Similarly, when BO with the 
EI acquisition function is employed, the amplitude of the 
front sensor X displacement reaches the minimum value of 
3.4506 mm with almost the same DV values for the optimal 
parameter set presented in Table 2, although the optimum 
design is attained much faster and at iteration No. 19. It is 
also interesting to observe that BO with the LB acquisition 
function can reach 2.4506 (the optimum design found by EI) 
at iteration No. 36, which, however, is still slower compared 
to EI.

The evolving optimization results during iterations for 
the washing machine model parameterized with 5 DVs uti-
lizing the LB and EI acquisition functions are presented in 
Fig. 10. According to Fig. 10a, the maximum amplitude of 
the front sensor X displacement found by BO with LB sud-
denly drops because the initial design represents the maxi-
mum amplitude for the standard configuration. Following a 
decay from the initial design, it gradually decreases until it 
does not change after iteration No. 43. Figure 10b illustrates 
the maximum amplitude of the front sensor X displacement 
found by BO with EI. A rapid decay at the beginning of the 
plot is observed again, which shows the difference between 
the optimal value found by the optimizer and the maxi-
mum amplitude obtained from the standard configuration. 
The optimal value is found at the iteration of No. 19, and 
after that the maximum amplitude remains as a constant till 
the end of the optimization. Considering the fact that the 
optimization with both acquisition functions and infill tech-
niques lead to almost the same DV set except for the rotation 
speed and maximum amplitude, and the BO with EI method 

Table 2  Five design variables 
utilized in case study 1 with the 
optimum DV values obtained 
using the LB and EI acquisition 
functions

Optimal Parameter Set

Symbols Definitions LB EI

W Rotation speed (rpm) 809.9439 800.0000
K Spring Stiffness (kgf/mm) 0.6500 0.6500
α Spring angle (°) 5.0000 5.0000
MD Mass density (kg/mm3) 9.3749E-06 9.3749E-06
C Damper coefficient (kgf.s/mm) 1.5000 1.5000
F_X Maximum displacement (mm) 3.4505 3.4506
IN The optimum design’s iteration number 43 19
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can reach the optimal design faster than the BO with LB, 
it is safe to deem that the former is more computationally 
efficient.

As mentioned earlier, the simulation model with all 
design DVs set to their standard values is called the stand-
ard configuration. Figure 11 compares the time series of 
the X displacement amplitude at the front sensor X in two 
simulations: one takes all standard values of all DVs (the 
red curve) and the other sets all DVs to the optimal values 
found by the optimization algorithm (the blue curve). Fig-
ure 11a illustrates the temporal response for BO with LB, 
and obviously the maximum displacement amplitude for the 

optimum design stays much lower throughout the time span 
compared to that obtained with the standard configuration. 
The purpose of optimization is to find an optimum set of 
DV values with the lowest possible (minimal) value of the 
maximum displacement amplitude relative to the washing 
machine frame during operation in order to reduce unfa-
vorable movement of the machine and improve its safety, 
which is confirmed by the present BO results. Also, Fig. 11b 
illustrates the temporal response for the design obtained by 
BO with EI and the similar observation in displacement 
minimization is obtained.

Fig. 10  Convergence of the maximum displacement for the washer model parameterized with 5 DVs using different acquisition functions: (a) 
LB and (b) EI

Fig. 11  Comparison of results of the maximum amplitude for the standard configuration and the optimal DV values for case study 1: (a) using 
LB and (b) using EI as the acquisition function
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Figure 12a–e depicts the variation of each individual DV 
with iteration throughout the optimization process for Case 
Study 1 with LB. This case study comprises 50 iterations. 
At iteration 0, the vertical axis represents the standard value 
of the DV as provided in the software Adams View. In all 
figures, there is an abrupt change from the standard value to 
the optimal value of DVs found in BO at iteration 43, cor-
responding to the best minimum of the objective function 
(3.4505 mm) given in Table 2.

The optimal value for rotation speed in Fig. 12a happens 
at 809.9439 rpm (as given in Table 2) which is close to 
the lower bound after experiencing some variation with BO 
process. In both Fig. 12b, c, variations of the DVs of spring 
stiffness and spring angle with iteration are shown, with 
the optimal value approaching the lower bound assigned 
to the DV. Figure 12d displays the variation of mass den-
sity throughout the optimization process, showing a trend 
towards the upper bound. This finding supports the conclu-
sion drawn in a previous study [20] that increasing mass 
density leads to a decrease in amplitude. Figure 12e dem-
onstrates that the optimal value is reached at the maximum 
allowable value for the damping coefficient. This indicates 
that the highest value of the damping coefficient results in 
the lowest maximum amplitude in the front sensor X dis-
placement. This observation further supports our previous 
finding [20] that greater damping coefficients are associated 

with notably decreased amplitudes for the system under 
consideration.

Figure 13a–e depicts the variation of each individual DV 
with iteration throughout the optimization process for Case 
Study 1 with EI. All DVs have their optimum solution at iter-
ation 19 as shown in Table 2. The optimum rotation speed in 
Fig. 13a aligns with the lower bound with some changes at 
the first couple of iterations. Both Fig. 13b, c show the varia-
tions of DVs spring stiffness and spring angle with iteration, 
consistently trending towards the lower bound. Figure 13d 
indicates the optimal mass density is found around the upper 
bound, resonating results from [20] that higher mass density 
correlates with reduced amplitude. In Fig. 13e, the optimal 
value coincides with the maximum allowed damping coeffi-
cient, reinforcing our prior discovery [20] that higher damp-
ing coefficients result in decreased amplitudes.

Case Study 2: Optimizing Model with 9 DVs

In the next step, we extend our study to the model with 9 
DVs and investigate the effect of the new DVs on the system. 
It should be noted that in the first case study, the only DV 
related to the dampers is the damping coefficient, while in 
this case study, four additional DVs are introduced to the 
washing machine model, which are the front/rear dampers 
side angle ( �1and�2 ) and the front/rear dampers front angle 
( �1and�2 ). The model will be a function of the geometrical 

Fig. 12  The variation of individual design variables with iteration throughout the optimization process for case study 1 with LB: (a) Rotation 
Speed, (b) Spring Stiffness, (c) Spring angle, (d) Mass Density, (e) Damper Coefficient
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position of dampers as well, and accordingly, the new DVs 
increase system complexity. In other words, the displace-
ment amplitude observed by the sensor will be altered as 
the damper’s geometry changes in design. It would allow for 
even more room for displacement minimization and design 
improvement.

In this study, the BO starts with 50 initial training data, 
which increases from 20 in the first case study to accom-
modate the higher dimension of the design space, i.e., the 

number of DVs changes from 5 to 9. A total of 70 itera-
tions (i.e., infills) in addition to the initial 50 data are used. 
Again, both acquisition functions: LB and EI are used, and 
their results are compared. Table 3 presents the result of the 
optimization including the optimal DV values. The optimal 
solution for the maximum amplitude of the front sensor dis-
placement along the X-direction using the BO with the LB 
acquisition function is 2.5901 mm and found at iteration 
No. 46. On the other hand, the BO with the EI acquisition 

Fig. 13  The variation of individual design variables with iteration throughout the optimization process for case study 1 with EI: (a) Rotation 
Speed, (b) Spring Stiffness, (c) Spring angle, (d) Mass Density, (e) Damper Coefficient

Table 3  Nine design variables 
utilized in case study 2 with the 
optimum DV values obtained 
using the LB and EI acquisition 
functions

Optimal parameter set

Symbols Definitions LB EI

W Rotation Speed (rpm) 822.4339 800.0000
K Spring Stiffness (kgf/mm) 0.6500 0.6500
α Spring angle (°) 16.5614 11.3126
MD Mass Density (kg/mm3) 9.3367e-06 9.3355e-06
C Damper Coefficient (kgf.s/mm) 1.5000 1.5000
DFR Front damper Z Coordinate (mm) 538.6186 537.9556
DRR Rear damper Z Coordinate (mm) 147.4810 100.2430
FA Front damper front angle (°) 65.5000 65.5000
RA Rear damper front angle (°) 84.4000 83.5445
F_X Maximum Displacement (mm) 2.5901 2.5468
IN The optimum design’s iteration number 46 26
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function identifies an even better optimum solution with the 
amplitude of 2.5468 mm at iteration No. 26. These observa-
tions indicate that the BO with EI not only achieves a lower 
X displacement, but also accelerates the design optimization 
process dramatically.

The convergence of the optimization process for the 
washing machine model parameterized with 9 DVs is 
presented in Fig. 14. It shows that the amplitude of the X 
displacement initially decays rapidly, and then becomes 
saturated when it approaches the optimum. Although the 
profiles appear similar for both LB and EI acquisition func-
tions, their convergence is quite different. Figure 14a shows 

that the maximum displacement value for the BO with LB 
does not change after iteration No. 46. Additionally, Fig. 14b 
illustrates the maximum amplitude of the X displacement 
obtained with EI. It can be seen that the solution reaches the 
plateau at the 26th iteration. Since the BO with EI finds the 
optimum design with a lower number of infills, we can con-
clude that this infill strategy converges faster for the washing 
machine system with 9 DVs under consideration.

Likewise, the temporal responses for the second case 
study obtained by the BO with the LB and EI acquisition 
functions (in blue) are depicted in Fig. 15. Their results are 
also compared with those generated by the standard DV 

Fig. 14  Convergence of the maximum displacement for the washer model parameterized with 9 DVs using different infill strategies: (a) LB and 
(b) EI

Fig. 15  Comparison of results of the maximum amplitude for the standard configuration and the optimal DV values for the case study 2: (a) 
optimization using LB infill strategy and (b) optimization using EI infill strategy
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values (in red). Results in both Fig. 15a, b clearly exhibit 
that the displacement for the optimum design during the 
entire time span is dramatically lower compared to that 
with standard configuration and that with 5 optimal DV 
values above as well.

Figure 16a–i illustrate the variation of each individual 
DV with iteration during the BO process for Case Study 
2 with LB. This case study spans a total of 70 iterations, 
with the vertical axis at iteration 0 representing the stand-
ard value of the DV. It can be observed in all Fig. 16a–i 
that DVs’ optimal values occur at iteration number 46 
(given in Table 3), and the DV value in each plot remains 
the same after this iteration.

Figure  16a illustrates the variation of the DV with 
iteration for the rotation speed. It can be observed that 
the DV eventually reaches its optimum at 822.4339 rpm 

which is close to its lowest possible value after experienc-
ing significant fluctuations, a trend not observed in the 
first case study. It is observed that the value of this DV 
changes during optimization until it reaches the optimal 
value at iteration 46 as shown in Table 3. The DVs varia-
tion for the spring stiffness and spring angle values with 
iteration in the BO process are depicted in both Fig. 16b, 
c, respectively. In both cases, fluctuations are observed 
throughout the optimization process. The optimum of 
spring stiffness occurs at the specified lower bound, while 
more variation is observed for spring angle during optimi-
zation. The optimal value for the spring angle is found at 
16.5614 degree, which is between the bounds as shown in 
Fig. 16c. This particular variation of spring angle was not 
observed in the case study with 5 DVs. Figure 16d displays 
the variation of mass density throughout the optimization 

Fig. 16  The variation of individual design variables with iteration 
throughout the optimization process for case study 2 with LB: (a) 
Rotation Speed, (b) Spring Stiffness, (c) Spring angle, (d) Mass Den-

sity, (e) Damper Coefficient, (f) Front damper Z Coordinate, (g) Rear 
damper Z Coordinate, (h) Front damper front angle, (i) Rear damper 
front angle
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process, trending towards the upper bound, and Fig. 16e 
demonstrates that the optimal value occurs at the maxi-
mum value for the damping coefficient. These two later 
observations further support our previous finding [20] that 
greater damping coefficients are associated with notably 
decreased amplitudes, and higher mass density is associ-
ated with lower amplitude.

The variations of the front and rear dampers’ Z coor-
dinates, representing the side angles of the front and rear 
dampers, are shown in Fig. 16f, g, respectively. The front 
damper Z coordinate achieves its optimal value after some 
fluctuations during the BO process somewhere between the 
DV range at 538.6186 mm. The rear damper Z coordinate 
reaches its optimal value after multiple variations in the BO 
process and at iteration 46. It is observed that these two 
DVs exhibit noticeable variation throughout the BO process. 
The variation of the front damper front angles is given in 

Fig. 16h, with the optimal value for this DV occurring at the 
lower bound. The last plot, Fig. 16i, shows the variation of 
the rear damper front angles, with the optimal value for this 
DV occurring at the upper bound.

Figure 17a–i show each individual DV change with itera-
tion during the optimization for Case Study 2 with EI. In all 
plots it is observed that the optimum solution for DV hap-
pens at iteration 26 as shown in Table 3. Figure 17a depicts 
the variation of the rotation speed DV during the optimiza-
tion process. It can be observed that, after significant fluc-
tuations, the DV eventually converges to its optimal value at 
the lower bound. Figure 17b, c illustrate the changes in the 
spring stiffness and spring angle DVs, respectively, through-
out the BO process. In both cases, DVs’ values exhibit fluc-
tuations along the optimization trajectory. The spring stiff-
ness achieves its optimum value at its lowest value; however, 
the spring angle optimal value happens somewhere within 

Fig. 17  The variation of individual design variables with iteration 
throughout the optimization process for the case study 2 with EI: (a) 
Rotation Speed, (b) Spring Stiffness, (c) Spring angle, (d) Mass Den-

sity, (e) Damper Coefficient, (f) Front damper Z Coordinate, (g) Rear 
damper Z Coordinate, (h) Front damper front angle, (i) Rear damper 
front angle
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the range at 11.3126 degree at iteration 26 (see Table 3), 
which is where optimal solution for the maximum ampli-
tude of the front sensor X displacement is found. Figure 17d 
shows the variation of the mass density DV, which trends 
towards the upper bound, and Fig. 17e demonstrates that 
the optimal value for the damping coefficient also occurs at 
its upper bound.

Figure 17f, g present the variations of the front and rear 
dampers’ Z coordinates, respectively, representing the front 
and rear dampers’ side angles. Both DVs reach their opti-
mal values after multiple variations during the BO process, 
exhibiting substantial fluctuations. The optimum value of 
the front damper Z coordinate occurs at 537.9556 mm in the 
DV range at iteration 26. Based on Fig. 17g, the rear damper 
Z coordinate’s optimal value happens at 100.2430 mm (see 
Table 3) in the DV range after some changes during BO 
process. It was observed that the optimal value for both front 
and rear dampers’ Z coordinates happen within the range of 
the DV, which shows the importance of these parameters on 
the optimum solution found by BO. Figure 17h illustrates 
the variation of the front damper front angle DV, with the 
optimal value occurring at the lower bound. Finally, Fig. 17i 
depicts the variation of the rear damper front angle DV, 
where the optimal value is found somewhere between the 
bounds at 83.5445 degree (as presented in Table 3).

Studying both cases yielded some findings that can be 
summarized as follows:

The optimal values of the rotation speed and spring stiff-
ness are consistently close to or at the lower bounds. The 
optimal values of mass density and damping coefficient 
occurred at the upper bounds of both DVs, supporting our 
key findings from the previous research study [20] that 
greater damping coefficients are associated with notably 
decreased amplitudes, and higher mass density is associ-
ated with lower amplitude.

The spring angle exhibited different optimal values for the 
model with 5 DVs or 9 DVs. In the case study with 9 DVs, 
the spring angle showed different behavior, and fluctuations 
of the DV value were observed throughout the BO process. 
The front and rear dampers’ Z coordinates experienced sig-
nificant fluctuations before reaching optimal values. In the 
case study with 9 DVs and the EI criterion, the fluctuations 
of the dampers’ angles were more pronounced compared to 
the case study with 9 DVs with LB, potentially caused by 
more broad exploration of the parameter space. The rear 
damper front angle in Case study 2 with EI showed fluc-
tuations and the optimum value happened within the range 
of the DV. These observations mentioned above prove that 
the dampers’ side and front angles are important parameters 
affecting the washer model with 9 DVs to have a lower maxi-
mum displacement when compared to a model with a lower 
number of DVs.

Conclusion

This paper presents parameterized dynamic modeling of a 
front-loading washing machine, which establishes the math-
ematical relationship between the vibrational characteris-
tic and a thorough list of nine design variables. The main 
purpose of this paper is to provide a fully parameterized, 
multibody dynamics modeling and optimization approach 
for front-loading washing machines. Subsequently, a BO 
framework with different infill techniques is developed, and 
global BO is performed on the parametrized model for mini-
mizing the maximum displacement to ultimately avoid pos-
sible collision of the tub and frame. Two case studies based 
on the model with 5 DVs and the fully parametrized model 
with 9 DVs were conducted, and a comparative analysis is 
undertaken to identify the best infill strategies for improved 
optimization performance. The major technical findings 
obtained from this study are listed below:

1. The front-loading washing machine studied in this paper 
was parametrized with nine DVs successfully that cover 
all critical suspension elements affecting the washing 
machine movement and are amenable to design optimi-
zation.

2. Our study indicates that the fully parametrized model 
with a total of nine DVs offers more room for design 
optimization, leading to the lower maximum displace-
ment when compared to a model with a lower number 
of DVs.

3. Two types of acquisition function are examined in this 
study, and the comparison shows that optimization with 
Expected Improvement converges faster than Lower 
bound infill criterion.

4. Optimal values of the rotation speed and spring stiffness 
were close to the lower bounds given the specified range, 
which is within the expectation.

5. Optimal mass density and damping coefficient values 
occurred at upper bounds, aligning with the previous 
research findings [20] that higher damping coefficients 
reduce amplitudes, and higher mass density lowers 
amplitude.

6. Front and rear dampers’ Z coordinates experienced 
significant fluctuations before reaching optimal values. 
Front and rear dampers’ front angles underwent multiple 
variations but eventually reached optimal values in the 
BO process.

7. For the 9 DV case with EI criterion, dampers’ angle 
fluctuations were more pronounced compared to the one 
with LB criterion.

In the future, several lines of effort can be pursued to 
further optimize the model or expand upon the research 
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findings. These may include construction of the washing 
machine, instrumentation and experimental setups to collect 
testing results for model validation, and development of new 
parameterizable models with different BO configurations for 
washing machines of other types.
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