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Abstract
Research Problem  The eigenvalue problem for the vibrations of an arbitrarily-curved three-dimensional beam with circular 
cross-section is solved by a series expansion method under various boundary conditions.
Methodology  The governing differential equations of motion are derived based on Euler-Bernoulli beam theory using the 
Hamilton’s principle. The general equations are given for any space curved beam with variable curvature and torsion, and 
solved for a specific example using the method of power series.
Results and Conclusions  The eigenfrequencies of a specific 3D beam were computed and compared with the eigenfrequencies 
of straight, circular, and helical beams, all having the same length.  It was found that the eigenfrequencies of the 3D beam 
tend to increase slower compared to the other cases as the mode number increases. The main contribution of this study is 
the computation of the eigenfrequencies of a truly three-dimensional beam: torsion and curvature change continously along 
the beam length.  In constrast, the most studied 3D case, helical beam, has constant curvature and torsion.

Keywords  Arbitrarily-curved · Hamilton’s principle · Power series

Introduction

While many of the curved elements used in engineering 
structures are very common shapes like circular arcs and 
helixes, arbitrarily shaped elements also find usage, which 
may be expected to expand with the ever increasing com-
plexity of mechanisms, aerospace and civil structures. The 
general equations for the small vibrations of an arbitrarily-
shaped space beam were derived long ago; the definitive 
reference for this (and many other problems) is [1].

Most studies about curved beams consider in plane and 
out of plane vibrations of plane structures with sometimes 
variable curvature and cross sections. An older paper [2] 
demonstrated the natural frequencies of circular arcs by 
using the Rayleigh Ritz method.

Finite elements with classical beam element shapes were 
used in [3] to find the natural frequencies of out-of-plane 
motion of any plane structure composed of slender elastic 
curved members.

An approximate method for the analysis of both in-plane 
and out-of-plane free vibrations of horizontally curved 
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beams with arbitrary shape and variable cross-section is 
presented in [4]. To obtain natural frequencies and mode 
shapes, [5] performed experimental and numerical studies. 
Timoshenko beam theory is used to investigate the out-of-
plane free vibrations of curved beams with variable curva-
ture on a Pasternak foundation in [6]. Solutions were found 
by using a Runge–Kutta solver combined with the Regula-
Falsi method.

The performance of two curved beam finite element 
models based on coupled polynomial displacement fields is 
investigated for out-of-plane vibration of arches in [7]. The 
analysis of homogenous curved beams of arbitrary cross sec-
tion taking into account the coupling of extension, flexure 
and torsion, nonuniform warping as well as shear deforma-
tion effects were studied in [8].

More complex systems also have attracted attention. 
The nonlinear behavior of naturally curved and twisted 
beams was investigated in [9]. Green–Lagrange strains and 
Saint–Venant’s torsion of a cylindrical shaft were taken into 
account.

Geometrically exact beam theory and the weak formu-
lation of the differential equations of equilibrium for the 
nonlinear elastic analysis of members curved in space with 
warping and Wagner effects taken into account were con-
sidered in [10]; the application of nonlinear differential 
equations of equilibrium to various problems were also 
illustrated. A non-linear formulation for curved, extensible, 
shear flexible, elastic planar beams is presented in [11]. They 
formulated the problem using a variational principle and 
compared numerical results with test results. The arbitrar-
ily large in-plane deflections of planar curved beams made 
of Functionally Graded Materials (FGM) were examined 
in [12]. A Series solution for the vibration analysis of com-
posite laminated deep curved beams with general boundary 
conditions was given in [13].

The studies on general 3D beams seem to be scarce. The-
oretical development of dynamic equations for undamped 
gyroelastic beams which are dynamic systems with continu-
ous inertia, elasticity, and gyricity was worked out in [14]. 
In this case, the motion of the beam is three-dimensional. 
The deformed configuration space of 3D rods can be carried 
out in an objective manner by means of a semi configuration 
dependent approach; this was done in [15].

Experimental studies utilizing acoustic emissions on the 
deformation of rolling element bearings whose main load 
carrying portion is a curved beam were carried out in [16, 
17]. Curved finite elements for the deformation analysis of 
3D beams, including results for circular and helical beams 
were given in [18]. An interesting study utilizing artificial 
neural networks (ANN) for optimization of functionally 
graded microplates in terms of vibration and buckling can 
be found in [19].

Hilbert and wavelet transforms in model parameter iden-
tification, including a footbridge which can be considered 
as a curved beam, were considered in [20]. Another study 
employing ANN in metamodel-assisted optimization of 
mechanical structures is [21]. Bending and vibration of a 
sandwich nanoplate whose properties vary as a sigmoid 
function were examined in [22].

In this paper, we consider an arbitrary space curved (3D) 
beam in the Euler–Bernoulli approximation [23]; our focus 
is on the beam being an arbitrarily curved one. A twelfth 
order partial differential equation system consisting of 
three equations with variable coefficients is derived and the 
natural frequencies are computed under different boundary 
conditions. Boundary conditions are taken as fixed–fixed, 
simply supported-simply supported, fixed-simply supported, 
fixed-free and simply supported-free. The fact that curvature 
and torsion of the beam changes quite arbitararily along the 
beam length is the main thrust of this study. In contrast a 
helical beam, for example, has constant curvature and tor-
sion, which simplifies its equations of motion compared to 
the truly three dimensional beam considered here.

Curvature and torsion of the beam are taken in a certain 
form so that an analytical solution by the method of power 
series can be obtained; it should be noted that the given 
form of the curvature and torsion are still quite general in 
that they change along the beam. More general, variable-
curvature-torsion beam shapes would likely involve numeri-
cal solutions. The solution given here is valuable in that it is 
obtained by analytical means due to the specific form of the 
curvature and torsion functions.

Materials and Methods

Considering a space-curved beam of arbitrary shape, the 
curve formed by the centroids of the cross sections at any 
station along its length will be called the beam axis. z-axis 
is along the tangent of the beam axis, y-axis is in the direc-
tion of the principal normal, and x-axis is in the direction of 
the bi-normal to the beam axis. The cross-section remains 
unchanged along the beam axis, and it is assumed to be a 
circle of radius r; but the formulation can easily generalized 
to more general cross-section shapes.

The material of the beam is assumed to be elastic and 
any other losses such as friction are ignored; the governing 
differential equations of motion can be derived through the 
Hamilton’s principle,

where

(1)� ∫
t2

t1

L = 0
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is the Lagrangian; T and V are the kinetic and potential ener-
gies, respectively. They can be expressed as

In Eq. (3), the first three terms show the kinetic energy 
due to translational motion and the last term is the kinetic 
energy due to rotary motion around the z-axis. The rotary 
inertia terms around the x and y axes are ignored. u, v, w 
are the displacement components along the x, y, z axes. � 
is the rotation of the cross-section around the z-axis. s is 
the arclength along the beam axis, m is the mass per unit 
length of the beam material. Mx,My,Mz are stress resultants 
(bending and torsional moments) at the cross-section, �x and 
�y show the curvatures around x and y axes. The subscript 
zero refer to the values before the deformation. The relations 
between the bending moments and curvatures are

where

are the bending rigidities, with E showing the elastic modu-
lus of the beam material and Ix , Iy the second moment of 
areas of the cross section around x and y-axes. For a circular 
cross section of radius r they are equal. The relation between 
the torsional moment and twist is

where

denotes the torsional rigidity. With GJ unspecified, the 
equations are still valid for a general cross-sectional shape 
with the condition that the twist axis coincides with the cen-
troid and the factor in front of the � term in Eq. (3) changed 
accordingly.

The curvatures and twist before and after the deformation 
are given by [1] and is rederived by using the modern vector 
approach in the “Appendix 1” as

(2)L = T − V

(3)T =
1

2 ∫
s

0

m(u̇2 + ẇ2 + v̇2 +
1

2
r2𝛽̇2)ds

(4)

V =
1

2 ∫
s

0

(

Mx

(

�x − �x0
)

+My

(

�y − �y0
)

+Mz

(

� − �0
))

ds

(5)Mx = A(�x − �x0)

(6)My = B(�y − �y0)

(7)A = EIx

(8)B = EIy

(9)Mz = C(� − �0)

(10)C = GJ

The condition that the beam axis does not extend should 
also be added:

These equations are for a circular cross-section beam 
with completely general variable curvature and torsion 
radii. In the following, a specific example will be consid-
ered for which the curvatures and the torsion are given as

The actual shape of the curve is shown in Fig. 1, and its 
derivation is explained in “Appendix 3”.

The displacements v and w are non-dimensionalized by 
L, the length of the beam [u will be eliminated by using 
Eq. (14)] and the time by 

√

�L4∕b . Thus, in Fig. 1, the 
nondimensional length of the curve becomes 1. The range 
of the curve is taken as 1 ≤ s ≤ 2 to avoid the singular 
behavior at s = 0 in Eqs. (26–28).

The following combinations of boundary conditions are 
considered at both ends of the beam:

s = 1 and s = 2 : fixed–fixed

(11)
�x = �x0 + ��y0 −

�
�s

(

v′ − w�x0 + u�0
)

− �0(u′ − v�0 + w�y0)

(12)
�y = �y0 − ��x0 +

�

�s
(u� − v�0 + w�y0) − �0(v

� − w�x0 + u�0)

(13)
� = �0 + �� + �x0

(

u� − v�0 + w�y0
)

+ �y0(v
� − w�x0 + u�0)

(14)u =
v�x0

�y0
+

w�

�y0

(15)�x0 =
1

s

(16)�y0 =
1

s

(17)�0 =
1

s
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Fig. 1   The shape of the space curve considered
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simply supported-simply supported

fixed-simply supported

fixed-free

simply supported-free

Substituting Eqs. (3–17) into the Hamilton’s principle, 
Eq. (1), and performing the variations, a system of partial dif-
ferential equations for w(s, t) , v(s, t) and �(s, t) is obtained. To 
find the mode shapes, harmonic variation is assumed

Result is the following linear system of ordinary differ-
ential equations with variable coefficients

(18)w = 0, � = 0, u =
�u

�s
= 0, v =

�v

�s
= 0

(19)w = 0, � = 0, u =
�2u

�s2
= 0, v =

�2v

�s2
= 0

(20)
w = 0, � = 0, u = �u

�s
= 0, u = �2u

�s2
= 0,

v = �v
�s

= 0, v = �2v
�s2

= 0

(21)
w =

�ws

�s
= 0, � =

��
�s

= 0, u = �u
�s

= 0,

�2u
�s2

= �3u
�s3

= 0, v = �v
�s

= 0, �2v
�s2

= �3v
�s3

= 0

(22)

w0 =
�ws

�s
= 0, �0 =

��s
�s

= 0, u0 =
�2us
�s2

= 0,

�2us
�s2

=
�3us
�s3

= 0, v0 =
�2vs
�s2

= 0,
�2vs
�s2

=
�3vs
�s3

= 0

(23)w(s, t) = W(s)ei�t

(24)v(s, t) = V(s)ei�t

(25)�(s, t) = B(s)ei�t

(26)

s
6
W

(6) + 6s
5
W

(5) − s
4�W (4) +

(

−8s2 − s
6�2 + 6s

2�
)

W
��

+
(

16s − 2s
5�2 − 12s�

)

W
� −

(

28 − s
4�2

)

W + s
5
V
(5)

− 3s
4
V
(4) − 2s

3�V (3) + 2s
2(1 + 4�)V ��

+
(

−20s − s
5�2 − 12s�

)

V
� +

(

28 − s
4�2

)

V − s
4(1 + �)B(3)

+ 2s
3(2 + �)B

�� − 2s
2(4 + �)B

� + 10sB = 0

To solve the eigenvalue problem consisting of Eqs. (26, 
27, 28) and boundary conditions, Eqs. (18, 19, 20, 21, 22), 
assume an analytic power series solution around the middle 
of the range of s , i.e., around s = 3∕2,

Substituting in Eqs. (26, 27, 28) results in recurrence rela-
tions for an , bn and cn . The first six coefficients of an , the first 
four coefficients of bn and the first two coefficients of cn can 
not be evaluated (in agreement with the number of boundary 
conditions).

An interesting feature of the solution procedure should be 
mentioned here: Normally, in solving differential equations by 
power series, the coefficients can be found in a naturally occur-
ring order. For the set of equations solved here, at each step we 
needed to solve unknown coefficients between two levels of 
recurrence relations; otherwise we would have 14 coefficients 
instead of the 12 that is needed.

In the next section, results of the computation of eigenval-
ues of the problem consisting of Eqs. (26–28) with bound-
ary conditions Eqs. (18–22) will be presented for the first 10 
eigenfrequencies,

In actual computations 50 terms were used for each of 
Eqs. (29–31), since it was found that, after 20–30 terms the 
significant figures do not change; so 50 terms should be a safe 
choise.

(27)

s
5
W

(5) + 8s
4
W

(4) − 2s
3�W (3) − 2s

2(1 + �)W ��

+
(

−12s − s
5�2 + 8s�

)

W
� + 20W + 2s

4
V
(4)

− 4s
2(3 + �)V �� + 8s(3 + �)V � + 2

(

−10 − s
4�2

)

V

− 2s
3(1 + �)B

�� + 2s
2(2 + �)B

� − 2sB = 0

(28)

s3(1 + �)W (3) + 2s2(2 + �)W ′′ − 2s�W ′ + 2W + 2
s2(1 + �)V ′′ − 2s�V ′ − 2V + s3�′′ −

(

2s − s3�2
)

 = 0

(29)w(s) =

∞
∑

n=0

an(s − 3∕2)n

(30)v(s) =

∞
∑

n=0

bn(s − 3∕2)n

(31)�(s) =

∞
∑

n=0

cn(s − 3∕2)n

(32)�n, n = 1, 2, 3,… , 10
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Results

In order to make comparisons, the eigenfrequencies are 
listed together with the eigenfrequencies of a straight 
beam, a circular beam, and a helicoidal beam all having 
the same length as the space-curved beam (i.e., all have 
length 1). The equations for the other three types of beam 
are listed in “Appendix 2”.

The following tables show the eigenfrequencies of all four 
beams for various boundary conditions (Tables 1, 2, 3, 4, 5).

The following figures show the eigenfrequencies as a 
function of mode number (Figs. 2, 3, 4, 5, 6).

It seems that for all boundary conditions considered, the 
eigenfrequencies of the 3D beam seem to increase slower 
than the other beams with the same mode number. The 3D 
beam also has the lowest eigenfrequency at any mode num-
ber. While the eigenfrequencies of straight and circular 
beams increase monotonically with mode number, the rate 
of increase of helicoidal and 3D beam, both being space 
beams, changes drastically with mode number. For exam-
ple, for the fixed-simply supported case (in Fig. 4), the 
increase in helicoidal beam from 8 to 9th modes, and the 
increase in the 3D beam from 5 to 6th mode are quite small 
compared to others. In the fixed–fixed case (in Fig. 2), 
the eigenfrequencies of the helicoidal and 3D beams are 

Table 1   Eigenfrequencies for 
fixed–fixed boundary conditions

Fixed–fixed λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Straight beam 22.37 61.67 120.90 199.85 298.52 416.97 555.12 713.05 890.72 1088.07
Circular beam 59.16 109.23 196.96 287.56 413.94 544.43 709.96 880.13 1084.96 1294.74
Helicoidal beam 24.60 126.27 136.08 224.36 224.82 329.82 338.42 471.72 472.30 622.79
3D beam 21.92 37.08 59.71 69.32 127.62 130.18 278.82 406.44 411.41 638.59

Table 2   Eigenfrequencies 
for simply supported-simply 
supported boundary conditions

SS–SS λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Straight beam π2 4 π2 9π2 16 π2 25 π2 36 π2 49 π2 64 π2 81 π2 100 π2

Circular beam 37.09 82.50 155.49 240.62 352.87 477.57 629.22 793.44 984.53 1188.26
Helicoidal beam 11.27 95.48 99.71 275.72 279.52 545.84 549.50 905.95 909.55 1356.09
3D beam 8.86 25.29 36.46 54.40 90.04 111.71 163.36 167.65 258.06 268.02

Table 3   Eigenfrequencies 
for fixed-simply supported 
boundary conditions

Fixed-SS λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Straight beam 15.41 49.96 104.24 178.26 272.01 385.49 518.74 671.74 844.42 1036.90
Circular beam 47.31 95.54 175.43 263.70 382.62 510.59 668.81 836.36 1033.97 1241.06
Helicoidal beam 16.94 111.12 116.54 303.14 307.40 584.76 588.53 956.27 959.76 1417.74
3D beam 14.56 28.83 49.45 59.75 106.93 116.69 278.75 609.13 743.93 984.05

Table 4   Eigenfrequencies for 
fixed-free boundary conditions

Fixed-free λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Straight beam 3.51 22.03 61.69 120.9 199.85 298.52 416.97 555.12 713.05 890.72
Circular beam 28.57 46.70 135.55 176.08 321.91 384.36 587.32 671.60 931.71 1037.78
Helicoidal beam 2.75 56.81 70.85 207.87 229.48 449.58 477.69 781.57 815.72 1203.71
3D beam 3.47 15.60 58.81 115.83 201.14 301.80 390.05 423.17 558.05 666.67

Table 5   Eigenfrequencies for 
simply supported-free boundary 
conditions

SS-free λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

Straight beam 15.41 49.96 104.24 178.26 272.01 385.49 518.74 671.74 844.42 1036.90
Circular beam 17.77 40.75 112.29 163.09 286.05 364.38 538.78 644.62 870.46 1003.82
Helicoidal beam 48.26 56.69 190.24 203.45 422.59 440.05 745.11 766.57 966.60 972.62
3D beam 1.69 11.78 48.93 106.23 182.71 278.80 388.05 393.72 523.46 651.18
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close to each other for all mode numbers considered. For 
the other boundary conditions (in Figs. 3, 5, 6), the two 
dimensional beams (straight and circular) generally have 

eigenfrequencies between the helicoidal and 3D beams. 
The most interesting outcome of this study seems to be 
the fact that the eigenfrequencies of the 3D beam increase 
very slowly with the mode number.

Finally, it should be noted that most of the results obtained 
in this study and the ones used in comparisons were obtained 
by analytical methods, although some of the works on helical 
beams use finite element methods. The equations derived 
for the general 3D beam in the present study are a system 
of variable coefficient linear ordinary differential equations. 
Although some forms of these types of equations can be 
solved by specific methods that might give simpler analytical 
expressions, it is not the case here. Therefore, the equations 
were solved by the series expansion method, and the con-
vergence of the results were verified. The operations were 
complictaed enough to render hand computations impossible 
and the symbolic manipulation capabilities of Mathematica 
were the method of choice. In terms of computational load, 
these coputations require much less resources than finite ele-
ment methods, for example.

Fig. 2   Eigenfrequencies for fixed–fixed boundary conditions

Fig. 3   Eigenfrequencies for simply supported-simply supported 
boundary conditions

Fig. 4   Eigenfrequencies for fixed-simply supported boundary condi-
tions

Fig. 5   Eigenfrequencies for fixed-free boundary conditions

Fig. 6   Eigenfrequencies for simply supported-free boundary condi-
tions
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Appendix 1

The following is the derivation of the relations between the 
curvatures and torsion of an arbitrarily curved space-beam 
before and after the deformation [24]. Following Love [1], we 
denote the axis along the arc length of the spatial curve formed 
by the centroids of the cross-sections (which will be called the 
wire axis) as z. x and y axes are chosen to be the principal axes 
of the cross-section (Fig. 7).

The xyz system is therefore attached to the wire axis with z 
denoting the tangent direction while x and y representing the 
orientation of the cross-section with respect to z. The principal 
normal (N) and the binormal (B) at any point on the wire axis 
are within the cross-section, however, they do not coincide 
with x and y axes, in general. We denote the angle between 
N and y as γ. The change in γ as one moves along the main 
helix axis, d�∕ds is termed the torsional twist, where s is the 
arclength along z. The unit tangent along z is denoted T. These 
are related by the Frenet equations:

(33a)
dT

ds
= �N

(33b)
dN

ds
= −�T + �B

where � is the principal curvature and τ is the torsion of the 
wire axis. Frenet equations can also be expressed as

where

is the Frenet vector. It is the angular velocity of the TNB 
system as its origin moves with unit velocity along the wire 
axis. The xyz system differs from the TNB system by a rota-
tion around T ( z axis) through the angle γ between N and 
y; therefore

where i , j , k are the unit vectors along xyz. The changes in 
these can be expressed as

where

is the angular velocity of the xyz system as its origin moves 
with unit velocity along the wire axis; it differs from the 
Frenet vector by torsional twist. In the xyz system

where

(33c)
dB

ds
= −�N

(34a)
dT

ds
= � × T

(34b)
dN

ds
= � × N

(34c)
dB

ds
= � × B

(35)� = �T + �B

(36a)i = sin � N − cos � B

(36b)j = cos � N + sin � B

(36c)k = T

(37a)
di

ds
= � × i = �j − �yk

(37b)
dj

ds
= � × j = −�i − �xk

(37c)
dk

ds
= � × k = �yi − �xj

(38)� = � +
d�

ds
k

(39)ω = �xi + �yj + � k

(40a)�x = −�cos�
x 

N 

y 

B 

T, z 

Fig. 7   Frenet vectors and coordinate system attached to beam axis
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are the curvatures around x and y directions, and

is the total twist with first term showing the torsional and 
the second the geometric twist. Also, we note the following, 
obtained from Eq. (37), to be used in the sequel

The derivative of any vector

can be expressed as

where

Let i0 , j0 , k0 denote the base vectors attached to a point on 
the wire axis before the deformation as explained before. After 
the deformation, the point moves to a new location and base 
vectors change to i , j , k . The deformation vector is denoted as

The point, initially located at R , moves to

Differentiating this expression with respect to the arclength

where k = dr∕ds , k0 = dR∕ds . Since the bar is assumed to 
be unextended, it does not matter what arclength is meant 
by s. The relation between the base vectors of undeformed 
and deformed coordinate systems is written as

(40b)�y = �sin�

(41)� =
d�

ds
+ �

(42a)�x = k ⋅
dj

ds

(42b)�y = i ⋅
dk

ds

(42c)� = j ⋅
di

ds

(43)A = Ax i + Ay j + Az k

dA

ds
=

�A

�s
+ � × A

�A

�s
=

dAx

ds
i +

dAy

ds
j +

dAz

ds
k

(44)� = ui0 + vj0 + wk0

(45)r = R + u

(46)k = k0 +
du

ds

(47a)i = L1 i0 +M1 j0 + N1 k0

(47b)j = L2 i0 +M2 j0 + N2 k0

Using Eq. (43), in Eq. (46) we find, from Eq. (47c),

L3 and M3 are O(‖U‖) (assuming deformation and deforma-
tion gradient are of the same small order) while N3 is O(1) . 
Since ‖k‖2 = L2

3
+M2

3
+ N2

3
= 1 , substituting from Eq. (48) 

and ignoring O(‖U‖) terms,

and to O(‖u‖),

which expresses that the wire axis is not extended. Thus, 
we have found how the tangent to the wire axis changes 
( k0 → k ) expressed in Eqs. (48a), (48b) and (49). To com-
plete the transformation, we need another parameter. Love 
[1] takes the angle between x axes before and after the defor-
mation and denotes the sine of this angle as � , i.e.,

The other entries in the transformation matrix Eq. (47) are 
found by requiring that the matrix is orthonormal; ignoring 
nonlinear terms,

Therefore, the complete transformation of base vectors 
during deformation is given in terms of u, v, w, � as

(47c)k = L3 i0 +M3 j0 + N3 k0

(48a)L3 =
dU

ds
− �0V + �y0W

(48b)M3 =
dV

ds
− �x0W + �0U

(48c)N3 = 1 +
dW

ds
− �y0U + �x0V

(49)N3 = 1

(50)
dW

ds
− �y0U + �x0V = 0

(51)M1 = �

(52a)L1 = 1

(52b)N1 = −L3

(52c)L2 = −�

(52d)M2 = 1

(52e)N2 = −M3

(53a)i = i0 + �j0 − L3k0

(53b)j = �i0 + j0 −M3k0
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where L3 and M3 are given by Eqs. (48a)–(48b). Using these 
in Eq. (42) we find the relations between curvatures and 
twist before and after the deformation:

For the case considered in this paper �x = �y = 1∕s , � 
is constant ( �∕4 ) and

Appendix 2

The following are the eigenfrequency equations for 
straight, circular and helicoidal beams.

For a straight beam;

For a circular beam [1],

For a helicoidal beam,

(53c)k = L3i0 +M3j0 − k0

(54a)�x = �x0 + �y0� −
dM3

ds
− �0L3

(54b)�y = �y0 − �x0� −
dL3

ds
− �0M3

(54c)� = �0 +
dB

ds
− �x0L3 − �y0M3

�2 = �2
x
+ �2

y
= 2∕s2

(55)u���� − �2u = 0

(56)u(6) + 2u���� +
(

1 − �2
)

u�� + �2u = 0

(57)

(

(1 + �)
�2
y0

)

w(6) +

(

2(1 + �)�2
y0 − 2(2(1 + �) + (1 + �))�20

�2
y0

)

w′′′′ +

(

(1 + �)�4
y0 + (−4(1 + �) − 2(1 + �) + 1)�2

y0�
2
0 + (1 + �)�40

�2
y0

− �2
)

w′′ +
(

−(1 + �)�2
y0�

2
0 + �2

)

w +
(

−
2((1 + �) + (1 + �))�0

�y0

)

v′′′′ +

⎛

⎜

⎜

⎜

⎝

�0
(

(−(1 + �) − 2(1 + �) + 1)�2
y0 + 2((1 + �) + (1 + �))�20

)

�y0

⎞

⎟

⎟

⎟

⎠

v′′ +
(

(1 + �)�y0�30
)

v +
(

(2(1 + �) + 1)�0
)

�′′ +
(

(1 + �)�2
y0�0

)

� = 0

Equations (57–59) can be derived by using the general 
formulation given in [1].

Appendix 3

The shape of a space curve with given curvature and torsion 
can be found by using the canonical representation of curves 
in differential geometry [25]. If the equation of the curve is, 
in natural coordinates, � = �(s) , with r position vector and 
s showing the arclength, writing the Taylor series around 
s = 1,

By placing the one end (s = 1) of the curve at the origin, 
the first term r (1) becomes zero. Since the whole curve can 
be rotated like a rigid body, its orientation can be chosen so 
that the Frenet vectors at the origin are in the directions of 
the base vectors, i.e.,

The first derivative above is the tangent vector

The higher derivatives can be evaluated by using the 
Frenet equations

(58)

(

−
2((1 + �) + (1 + �))�0

�y0

)

w′′′′ +

⎛

⎜

⎜

⎜

⎝

�0
(

(−(1 + �) − 2(1 + �) + 1)�2
y0 + 2((1 + �) + (1 + �))�20

)

�y0

⎞

⎟

⎟

⎟

⎠

w′′ +
(

(1 + �)�y0�30
)

w + (−1 − �)

v′′′′ +
(

�2
y0 + 2((1 + �) + 2(1 + �))�20

)

v′′ +
(

(−1 − �)�40 + �2
)

v +
(

((1 + �) + 1)�y0
)

�′′ +
(

(−1 − �)�y0�20
)

� = 0

(59)

(

(2(1 + �) + 1)�0
)

w′′ +
(

(1 + �)�2
y0�0

)

w +
(

((1 + �) + 1)�y0
)

v′′

+
(

(−1 − �)�y0�20
)

v + �′′ −
(

(1 + �)�2
y0

)

� = 0

(60)

� = �(1) + d�(1)
ds

(s − 1) + 1
2!

d2�(1)
ds2

(s − 1)2

+ 1
3!

d3�(1)
ds3

(s − 1)3 + 1
4!

d4�(1)
ds4

(s − 1)4 + 1
5!

d5�(1)
ds5

(s − 1)5 + O((s − 1)6)

(61)T(0) = e1

(62)N(0) = e2

(63)B(0) = e3

(64)
dx

ds
= T

(65a)
dT

ds
= �N
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and still higher derivatives can be found by differentiat-
ing the Frenet equations. For the curve considered in this 
paper,�2 = �2

x
+ �2

y
= 2∕s2 , and � = 1∕s . The result, up to 

order five is

This is plotted in Fig. 1 for 1 ≤ s ≤ 2.
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