
Vol.:(0123456789)

Journal of Vibration Engineering & Technologies 
https://doi.org/10.1007/s42417-024-01290-7

ORIGINAL PAPER

The Benefit of a Multi‑wedge Acoustic Black Hole at Low‑frequency 
Mitigation

Max Käfer1,2 · Fadi Dohnal1,2

Received: 11 December 2023 / Revised: 11 December 2023 / Accepted: 23 January 2024 
© The Author(s) 2024

Abstract
Introduction  Acoustic black holes (ABH) are capable to mitigate structural vibrations efficiently above a certain cut-on 
frequency. The most commonly used geometry for a flexible beam is a simple wedge following a power-law curve. A simple 
wedge demands large dimensions for achieving mitigation in the low-frequency range below 1000 Hz. It was shown recently 
by experiments and numerical simulation that a multi-wedge configuration is beneficial for realizing a compact design and 
still showing good performance at low frequencies.
Materials and Methods  The WKB approximation is extended for a single-wedge design. Expressions for the reflection coef-
ficient and cut-on frequency are discussed for an arbitrary number of wedges—the suggested multi-wedge ABH.
Results  The main benefit of the stacked multi-wedge ABH is a great improvement in performance in the low-frequency range. 
A numerical example highlights the successful vibration mitigation. It is shown how a multi-wedge ABH is tuned towards 
low-frequency in terms of cut-on frequency and reflections’ coefficient. The improved performance of a multi-wedge ABH 
is benchmarked against the well-established simple ABH.

Keywords  Acoustic black hole · Reflection coefficient · Cut-on frequency · WKB-approximation

Introduction

In the field of structural vibration management, methods 
have been divided into two main fields: passive and active 
strategies [1, 2]. Passive strategies include a number of 
established methods such as improving the damping prop-
erties of materials, incorporating viscoelastic dampers, using 
friction-based dampers and joints, using a variety of vibra-
tion dampers and isolation systems. The advantages of the 
passive approach lie in its simplicity and cost effectiveness. 
System stability is inherently assured and is based on the 
principles of energy dissipation within the structural system. 
In addition, their effectiveness for known systems is usu-
ally greatest for high-frequency vibrations or in a limited 

frequency range, while they often underperform for vibra-
tions at lower frequencies [3]. Effective passive vibration 
damping can also be achieved by employing an acoustic 
black hole in different geometrical configurations [4]. The 
idea of tapering the end of a beam to achieve an ABH goes 
back to [5] where a one-dimensional wedge-shaped ABH 
was proposed. This pioneering work was overlooked by the 
practical vibration community until its potential application 
for vibration damping was highlighted in [6]. Since then 
numerous geometrical shapes of the tapering of a beam have 
been investigated, including a stepped wedge, a trapezoidal 
wedge and a spiral wedge. The concept was extended from 
beams to two-dimensional plates in [4, 7].

All studies so far confirm the reduction in structural 
vibrations using this concept. Apart from the parameters 
describing the shape of the wedge and its material properties 
that define the natural frequency, the tip thickness and the 
damping layer are the two critical parameters to be selected 
for a proper design. The wedge of the tapered end follows 
a power law curve with a certain exponent. Theoretically, 
the wave speed of an incident structural plane wave tends 
towards zero if the length tends to infinity and the thickness 
of the wedge becomes zero [5]. In practise, it is impossible 
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to manufacture an infinitely long wedge or a perfectly sharp 
tip. Therefore, the power law curve has to consider a finite 
tip thickness of the wedge for a realistic prediction.

For a practical size of an ABH, the vibration mitigation 
starts with the so-called cut-on frequency [4, 8]. Its perfor-
mance below this frequency is poor. Adapting the geometry to 
low frequencies ( < 1 kHz) or very low frequencies ( < 200 Hz) 
demands a very long design which is unfeasible for practical 
applications and manufacturing. The proposed wedge design 
in this work achieves a reduction in cut-on frequency while 
keeping the dimensions of the ABH small. The effective-
ness of this design was proven experimentally and calculated 
numerically [9]. In this work we derive analytical approxima-
tions of the reflection coefficient and the cut-on frequency for 
multi-wedge ABH by extending the existing WKB-approxi-
mation for a single-wedge design to the proposed design. A 
low reflection coefficient underlines a high-performing ABH, 
leading to a low amount of vibrational energy to be reflected 
back into the host structure to which the ABH is attached to 
[10, 11]. The frequency-dependent reflection coefficient is 
analyzed for different exponents of the power law curve and 
different numbers of stacked wedges. In addition, the cut-on 
frequency of the multi-stack design is benchmarked against 
an equivalent single-wedge design. It is highlighted how a 
multi-wedge ABH is tuned towards achieving a low reflection 
coefficient and low cut-on frequency that are not reachable by 
a single wedge of the same characteristic geometry.

Theoretical Investigation of Wedge‑Shaped 
Acoustic Black Holes

We start with the basic idea of the wedge-shaped acoustic 
black holes in [5]. Therein the wedge follows a power law 
curve h(x) = �xm . If m ≥ 2 , the incoming wave cannot escape, 
if the wedge is infinitely long and its thickness decreases to 
zero. Figure 1 displays a schematic representation of a simple 
ABH. In reality the thickness h(x) cannot reach zero. There-
fore, the residual thickness htip is added to the power law result-
ing in Eq. (1). Depending on the direction of the incoming 
wave, the power law curve can be written as

(1)h−(x) = (htot − htip)

(
x

labh

)m

+ htip,

For a simple one-dimensional wedge-shaped ABH, the 
group and phase-velocity can be described as [6]

with the Young’s modulus E, the Poisson ratio � , the mass 
density � , the varying thickness of the wedge h(x) and the 
angular frequency of the bending wave � . For htip = 0 and 
xtip → ∞ , the phase and group velocities become zero [6, 11, 
12]. The propagation time T0 from the start of the wedge at 
xabh to its end at xtip yields

Reflection Coefficient

For an infinitely long wedge, labh → ∞ and a sharp end, 
htip = 0 , the propagation time in Eq. (4) becomes infinite, 
T0 → ∞ , if and only if m ≥ 2 , as already outlined in [5]. In 
other words, the incident wave does not return because it is not 
reflected. Equations (3) and (4) show that the wedge reduces 
the wave velocity, which also results in the vibration energy 
being concentrated at the ABH, again for m ≥ 2.

If the structure has a loss factor � ≠ 0 , the reflection coef-
ficient and wavenumber is given explicitly by [10, 11, 13]

with

Equations (5) and (6) show that for xtip → ∞ and htip = 0 , 
the wavenumber k(x) in the ABH region tends to infinity 
and the reflection coefficient vanishes. This means that no 
wave can escape from the ABH region [11, 14]. If the ABH 
is partially covered with a damping layer, the reflection coef-
ficient at any point in the damping region can be represented 
as a function of the thickness as [11]

(2)h+(x) = (htot − htip)

(
1 −

x

labh

)m

+ htip.

(3)cp =
4

�
Eh2(x)�2

3�(1 − �2)
, cg =

√
2 cp,

(4)T0 = ∫
xtip

xabh

dx

cg
=

4

√
12�(1 − �2)

E�2

x
1−m∕2

abh
− l

1−m∕2

abh

2 − m
.

(5)R = exp

(
−2∫

xtip

xabh

ℑ{k(x)} dx

)

(6)k(x) =
4

√
12�(1 − �2)�2

Eh2(x)
.

(7)

Rd
0
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�xm

htip
+
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⎫⎪⎬⎪⎭
,

Fig. 1   Schematic representation of a simple 1D ABH based on [5]
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with

Herein � represents the loss factor of the absorbing layer 
material and � the loss factor of the wedge material. The 
layer thickness of the damping material is denoted as � . 
E2∕E1 is the ratio of the elastic moduli of the absorbing layer 
and the plate. The wavenumber kp is given by the quasi-
longitudinal wave velocity cp and the angular frequency � , 
where kp = �∕cp . Here, cp = 2ct(1 − c2

t
∕c2

l
)1∕2 holds. The 

longitudinal and transversal wave velocities are marked as 
cl and ct , respectively. The additional loss factor � can be 
calculated for a plate with constant thickness h0 in [10] by 
[15–17] as

where �2 abbreviates the ratio �∕h0 , �2 represents the ratio of 
the elastic moduli E2∕E1 . If the plate is covered with a damp-
ing layer on both sides, the limiting case 𝛼2 = 𝛿∕h0 ≪ 1 
occurs and 𝛼2𝛽2 ≪ 1 must hold. Thus, Eq. (9) can be rewrit-
ten as [10]

Due to the effects and influences of a thin damping layer, 
the imaginary part of the wave number can be calculated as 
a function of local thickness h(x) as

For a quadratic wedge of the form h(x) = �x2 + htip , an ana-
lytic solution for the reflection coefficient R0 can be found 
by substituting Eq. (11) into Eq. (5) [10].

with

and

(8)K2 =
3��

4h1

E2

E1

�

htip
K, K =

4

√
12k2

p

�2
.

(9)
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�

1 +
1

�2�2
(
�2
2
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2
)
,

(10)� = 6�2�2� = 6
�
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√
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4
+

3

2

�
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�
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.

(12)R
(m=2)
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= exp(−2�

(m=2)

1
− 2�
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2
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1
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4
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12kp

�6
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4
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1

x2
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−
1
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Compared to the reflection coefficient in Eq. (7), no explicit 
value for the height htip of the wedge occurs. The depend-
ence here is implicitly given by the total length labh and its 
intercept at the point xtip . The dependence of the reflection 
coefficient on the tip height htip is exploited for practical 
manufacturing. In [10, 11], an equivalent theoretical solution 
was found by expressing the dependency in terms of xabh.

Repeating the calculation above for m = 4 starting from 
Eq. (5), i.e. h(x) = �x4 + htip , the following reflection coef-
ficient is derived [10]

with

and

Expressions for other values of m can be found in [18].
If no damping layer is present then � =0 and � =0 and 

the exponents �(m=2)

2
= 0 and �(m=4)

2
= 0 as outlined in 

[10]. The reflection coefficient R0 defined in Eqs. (12) 
and (15) for these two cases is visualised in Fig. 2 in 
dependency of the length of a simple-wedge satisfying 
the power law curve h(x) = �xm . The remaining system 
parameters chosen are listed in Table 1 in for a simple-
wedge ABH. It can be clearly seen that the increase of 
the exponent m leads to a lower value of reflection coef-
ficient which means that less kinetic energy from the 
incident wave is reflected from the ABH back into the 
host structure. Increasing the exponent from its mini-
mum value m = 2 to m = 4 results already in a significant 
decrease of R0.

Stacking a number of n wedges stacked on top of each other 
yields a multi-wedge ABH as sketched schematically in Fig. 3. 
Note that the total height htot remains constant for a fair com-
parison of the mitigation performance between a multi-wedge 
and a single-wedge ABH.

For the calculation of the reflection coefficient R0 without 
damping layer for a multi-wedge ABH, the schematic rep-
resentation in Fig. 4 is used. The shear force of the incom-
ing plane bending wave is split to shear forces acting on 
the individual wedge within the cross-section between the 
host structure and the two-wedge ABH, F = F1 + F2 . With 
the width b and the individual heights h1 and h2 for the 
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Fig. 2   Comparison of reflection coefficients (Eqs. (12), (15)) for ( htip ≪ 0, 1 mm) with m = 2 and m = 4 and without damping layer. (top): low-
frequency range up to 1000 Hz, (bottom): high-frequency range up to 10000 Hz

Fig. 3   Schematic representation of a multi-wedge ABH introduced in [9] for the same and for different wedge lengths
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two-wedge ABH in Fig. 4, this relation can be reformulated to 
pinb(h1 + h2) = pinbh1 + pinbh2 , where pin is the surface force 
of the incident wave acting on the cross-section. Consequently, 
the reflection coefficient between the incoming and reflected 
wave of a two-wedge becomes

For the special case of a two-wedge with identical wedge 
heights h1 = h2 , the individual reflection coefficients are 
identical, R1 = R2 , and the total reflection coefficient 
becomes Rtot = R1 . For an arbitrary number n of the wedges, 
the total reflection coefficient reads

(18)R
(n=2)
tot =

R1pinbh1 + R2pinbh2

pinb(h1 + h2)
=

R1h1 + R2h2

htot
.

(19)R
(n)
tot =

∑
n

Rnhn

htot
where htot =

∑
n

hn.

Introducing multiple wedges leads to an additional and sig-
nificant decrease of the reflection coefficient compared to 
Fig. 2. A comparison of the reflection coefficient (eq. (15) 
for a simple-wedge and ten-wedge ABH for m = 4 is shown 
in Fig. 5. The ten-wedge clearly outperforms the simple 
wedge configuration. In the plotted frequency range up to 
10000 Hz, the reflection coefficient is reduced by 50% from 
0, 68 for the simple wedge down to a value of 0, 29 for the 
ten-wedge. Note that the total height htot and the length of 
both configurations are identical.

Figure  6 shows the calculated reflection coefficient 
according to Eq. (5) starting from a simple wedge from a 
ten-wedge ABH up to the full ten-wedge ABH without a 
damping layer as function of the frequency. The physical 
parameters are listed in Table 1. With an increasing number 
n of stacked wedges the individual height of each wedge h0 
as well as htip remains the same while the total height htot 
increases. It can be clearly seen that each additional wedge 
layer decreases the reflection coefficient further. The higher 
the number of stacked wedges the stronger the decrease 
becomes. Additionally, the gradients gn were calculated.

An energy ratio between the multi-wedge and the host 
structure is evaluated to highlight the improved perfor-
mance of stacked multi-wedges. The energy ratio is the ratio 
between the kinetic energy in the wedges and the kinetic 
energy in the host structure where the incident wave origi-
nates from. These values are calculated using a finite ele-
ment model. Table 2 lists the first five natural frequencies 

Fig. 4   Multi-wedge 1D ABH with reflection coefficient R0

Fig. 5   Comparison of the reflection coefficients (Eq.  (15)) of a simple- and ten-wedge ABH with dimensions listed in Table  1 for m = 4 , 
htip ≪ 0, 1 mm
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for a simple-wedge and a ten-wedge configuration and its 
corresponding energy ratios for a host structure being a steel 
beam with a length of 250 mm, width b = 30 mm and a total 
height htot = 5 mm. The ten-wedge ABH shows significantly 
lower and more natural frequencies in the low-frequency 
range starting from 128 Hz. The energy ratio is orders of 

magnitude higher for the multi-wedge. Consequently, much 
more energy is present in the wedges than in the host struc-
ture which underlines the lower reflection coefficient dis-
cussed in the previous paragraphs. This confirms the high 
performance of a multi-wedge ABH in the low-frequency 
range while keeping the same outer dimensions.

Table 1   Geometrical parameters 
for example multi-wedge ABH 
given in mm

Number of wedges n, loss-factor � , Poisson’s ratio � and exponent of the power law curve m are dimension-
less. E and � are given in GPa and kg/m3

labh htot b n h0 htip m E � � �

50 5 30 1 5 1 4 210 10−3 7850 0,28
50 5 30 2 2,5 0,5 4 210 10−3 7850 0,28
50 5 30 3 1,67 0,33 4 210 10−3 7850 0,28
50 5 30 4 1,25 0,25 4 210 10−3 7850 0,28
50 5 30 5 1,00 0,20 4 210 10−3 7850 0,28
50 5 30 6 0,83 0,17 4 210 10−3 7850 0,28
50 5 30 7 0,71 0,14 4 210 10−3 7850 0,28
50 5 30 8 0,63 0,13 4 210 10−3 7850 0,28
50 5 30 9 0,56 0,11 4 210 10−3 7850 0,28
50 5 30 10 0,50 0,10 4 210 10−3 7850  0,28

Fig. 6   Reflection coefficients 
R (Eq. (5)) starting from a 
simple wedge up to a ten-wedge 
ABH ( R1−wedge to R10−wedge ) 
and gradient listed as gn for 
htip = 0, 1 mm
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This idea can be extended easily to a two-dimensional 
ABH by performing a rotation of the one-dimensional 
ABH. The tip of the ABH is the located in the center 
[19, 20]. The theoretical analysis in case of thin plate can 
be found [21]. A systematic summary of the theoretical 
analysis including a two-dimensional ABH was performed 
in [22]. Placing a damping material on the in the ABH 
region, the structure can be considered as a composite 
structure. The total loss factor can be expressed as [21]

where ED and hD are the modulus of elasticity and the thick-
ness of the damping layer, �D the loss factor of the damping 
material and Ew the Young’s modulus of the plate material. 
h(r) represents the thickness of the plate following the power 
law curve. The distance to the center of the ABH is denoted 
by r. As r decreases, the dissipation factor increases which 
means more vibration energy is absorbed. The reflection 
coefficient of the ABH becomes

where Ri is the radius of the entire ABH and Rt is the section 
length, i.e. the radius of the inner hole [11, 21].

WKB‑Approximation

The Wentzel-, Kramers-, Brillouin-approximation (WKB-
approximation) from quantum mechanics can generate 
analytical solutions of various orders of approximation for 
differential equations [23, 24]. The WKB-approximation 

(20)�comp(r) =

�D
EDhD

Ewh(r)

[
4(

hD

h(r)
)2 + 6(

hD

h(r)
) + 3

]

1 +
EDhD

Ewh(r)

[
4(

hD

h(r)
)2 + 6(

hD

h(r)
) + 3

] ,

(21)

R
plate

0
= exp

{
−

4

√
12�2[�(1 − �2)]

�2E

3

4 ∫
Ri

Rt

�comp(r)
dr

r

}
,

normally is used to solve wave equations. Here we use it 
to derive an approximation of the flexural vibration and the 
reflection coefficient. The first WKB-approximation was 
derived based on the conservation of energy for eq. (22) 
in [24]. For higher order approximations, similar to [25], a 
more general approach is used here [23, 26]. For a wedge-
shaped ABH with infinite width b in the y-direction, a sce-
nario can be considered where only the system variables 
vary in the x-direction. One-dimensional harmonic bending 
waves in a thin plate with varying thickness h(x) can be 
described by the output equation Eq. (23) as a fourth-order 
differential equation [23, 26, 27]

Here w(x,�) represents the complex transverse displacement 
amplitude at the center of the plate, � the angular frequency, 
� the density from the plate material and D(x) = �c2 h3(x)∕12 
the bending stiffness. The independent variable of the dif-
ferential equation is the spatial coordinate x. The conversion 
for the time change of the harmonic displacement is ei�t with 
imaginary unit i [23, 26]. The corresponding equation for 
this for bending waves in thin beams is given by [27]

B(x) = EI(x) represents the bending stiffness, with Young’s 
modulus E and moment of inertia I(x). The cross-sec-
tional area is denoted by AQS(x) . It is I(x) = bh3(x)∕12 and 
AQS = bh(x) with the width of the beam b. If the width is 
constant, the preceding equation can be transformed into

The WKB-method can produce the following form for the 
wave equation Eq. (22) by an expansion with a factor defined 
as � = �−1∕2.

For the transverse displacement, according to [23, 26], a trial 
solution in the form of an infinite exponential series can be 
generated as

The functions Sn change with position and frequency. A rep-
resents an arbitrary complex constant, with the dimensions 
of the displacement. In Eq. (26), the enhancement factor � 
goes to zero when the frequency goes to infinity. If The trial 
solution from Eq. (26) is substituted into Eq. (25) after all 
terms are divided by the exponent, the result can be rear-
ranged as a polynomial equation of � . These equations must 
hold for all values of � so that an infinite series of differential 

(22)[D(x)w��(x,�)]�� − �2�h(x)w(x,�) = 0.

(23)[B(x)w��(x,�)]�� − �2�AQS(x)h(x)w(x,�) = 0.

(24)
[
Eh3(x)

12
w��(x,�)

]��
− �2�h(x)w(x) = 0.

(25)�4(Dw��)�� − �hw = 0.

(26)w = Ae�
−1

∑∞

n=0
Sn�

n

, � → 0.

Table 2   First five eigenfrequencies for simple-wedge ABH and ten-
wedge ABH with energy ratios between ABH and 250  mm steel 
beam as base structure

EF simple-
wedge

energy ratio 
ABH/

EF ten-wedge energy ratio 
ABH/

ABH beam simple-
wedge

ABH beam ten-wedge

ABH ABH

501 Hz 0.56 128 Hz 519,79
967 Hz 1,67 129 Hz 226,31
1645 Hz 0,40 130 Hz 226,31
1970 Hz 3,92 131 Hz 631,71
2529 Hz 0,43 134 Hz 14,27
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equations can be obtained [23, 26, 28, 29]. The first equa-
tions can be represented as follows [23]

According to [23, 26], the WKB-approximation can be writ-
ten inferentially for a number of N approximations as

whereas a generalized form for w(x) can be represented as

The curve from Eq. (1) and k(x) for a simple ABH can now 
be used to calculate the individual Sn functions which results 
in

Now w(x) can be written as

Following S�
2
(x) can be stated as

Due to the complexity and length of the derivatives S�
3
(x) and 

S�
4
(x) , the equations are not displayed in the manuscript but 

can be followed in [23, 26]. The power law curves h−(x) and 
h+(x) (Eqs. (1), (2)) can now be substituted in the equations 
for S�

n
(x) . First h−(x) Eq. (1) is substituted, which leads to
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Again, the equations for S�
2
(x)−, S

�
3
(x)− and S�

4
(x)− are too 

cumbersome and are not given explicitly here. Following, 
physical values for the ABH are inserted. The physical val-
ues for this were taken from the practical applications of this 
work and used for the fabricated steel ABH. A Young’s 
modulus of E = 2.1 ⋅ 1011 GPa, density of � = 7850 kg/m3 , 
height of ABH htot = 5 mm, height tip of ABH htip = 1 mm, 
length lABH = 50 mm were used for calculation. Furthermore 
values of A = 1 and � =

√
5

1000
√
�
 , which corresponds to 

100000 Hz, were used. [23, 26] states that the WKB-approx-
imation is only relevant for high frequencies. Following the 
displacement w(x) can be calculated with

This can be plotted for the relative displacement w for a 
travelling wave over the length of the ABH shown in Fig. 7. 
It can be seen that if a wave is travelling from the tip of the 
ABH xtip = 0 to the end of the ABH xabh = 0, 05 the rela-
tive displacement is attenuated for higher order approxima-
tions. Underlining a resting beam structure while the ABH 
is oscillating.

The same procedure now can be applied to the power law 
curve h+(x) Eq. (2), which is substituted into S�

n
(x) . This leads to
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The equations for S�
2
(x)+, S

�
3
(x)+ and S�

4
(x)+ are too cumber-

some and are not given explicitly here. Now the physical 
values are inserted again. Now the displacement w(x) is 
given by

(42)

S�
0
(x)+ =

i 12
1

4

(
�E3

((
htot − htip

)(
1 −

x

labh

)m

+ htip

)2
) 1

4

E
((

htot − htip
)(

1 −
x

labh

)m

+ htip

) ,

(43)w0(x)+ = e200
√
5
√
� S0(x),

(44)w1(x)+ =
0, 02e200

√
5
√
� S0(x)

�
0, 004(1 − 20x)4 + 0, 001

� 3

4

,

(45)w2(x)+ =
0, 02e

200
�

S2(x)

200000�
+S0(x)

�√
5
√
�

�
0, 004(1 − 20x)4 + 0, 001

� 3

4

,

This time the wave is travelling from the end of the ABH 
xabh = 0 to the tip of the ABH xtip = 0, 05 . The relative dis-
placement w over the length of the ABH shown in Fig. 7. It 
can be seen that the travelling wave from the end to the tip 
of the ABH is amplified for higher order approximations 
of the relative displacement, underlining that the tip of the 
ABH is oscillating while the beam at the end of the ABH 
is at its rest.

The relative displacement in Fig. 7 and Fig. 8 states 
clearly that the displacement is attenuated if travelling 
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Fig. 7   Relative displacement w 
for a travelling wave over the 
length of the ABH from xtip = 0 
to xabh = 0, 05
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from xtip to xabh and amplified if travelling from xabh to xtip . 
If the amplitude of relative displacement is 1 for w4(x)− 
at xtip = 0 it shifts to 0,42 at xabh = 0, 05 . Vise versa if 
the amplitude of relative displacement is 1 for w4(x)+ at 
xabh = 0 it shifts to 4,9 at xtip = 0, 05 . This underlines the 
effectiveness of the ABH and was proven using the WKB-
method for higher order approximations, stating a resting 
beam structure at the end of the ABH and an oscillating 
tip of the ABH.

A more general analytical approximation of the displace-
ment at the tip of the ABH can be stated in the following 
Eq. (48). In this case approximations of the Sn(x = xtip values 
calculated with the leading term in each Taylor series were 
used.

If the physical values are substituted into Eq. (48) an ampli-
tude of displacement of 5,1 can be calculated. Compared 

(48)
w
�
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�
≈ A

�
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� 3
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e

7m�E3
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4

.

to the amplitude of displacement calculated numerical 
for w4(x)+ of 4,9 at xtip = 0, 05 a difference of 4 % can be 
presented. Like stated in [23, 26] the approximation only 
applies to the higher frequency range.

Cut‑On Frequency

The cut-on frequency for an acoustic black hole serves as 
the cut-on frequency above which sound energy can be 
effectively absorbed. This frequency functions similarly 
to the event horizon of a conventional black hole in that it 
represents the point at which it achieves its intended effect. 
Conversely, below the cut-on frequency, wave absorption 
cannot occur because the wavelength of the incoming wave 
is greater than the physical length of the ABH [4, 8]. From 
[8], the derivation of the cut-on frequency can be obtained 
analytically, of the form Eq. (49) [4]. The solution approach 
for an ABH with a power law curve of the form h(x) = �xm 
can be solved analytically to some extent via the wave equa-
tion for one-dimensional waves in solids and the harmonic 
solution. Since in [8] certain equation terms are omitted. 

Fig. 8   Relative displacement 
w for a travelling wave over 
the length of the ABH from 
xabh = 0 to xtip = 0, 05 with 
marked displacement of 4,9 of 
highest order approximation
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Figure 9 shows the cut-on frequency for the cases m=2 (top) 
and m=4 (bottom) as a function of the structure height and 
length of the ABH. h(x) = �x4 shows lower cut-on frequen-
cies for lower ABH lengths. This confirms, that its possible 
to achieve the same cut-on frequency with a much shorter 
ABH if the power law curve with m=4 is used. For practical 
applications this could result in a smaller amount of mate-
rial, which is used to manufacture the ABH. For a additional 
comparison between a simple-wedge ABH and ten-wedge 
ABH with labh=50 mm, m=4 the energy was calculated for 
both as function of frequency in Fig. 10 with a loss-factor 
� = 10−3 and � = 2 ⋅ 10−3 . Each peak in the figure marks an 
eigenfrequency. The dashed lines are marking the cut-on 
frequency for each configuration. It is clearly to be seen, 
that the stacked ten-wedge ABH has a significantly lower 
cut-on frequency at 128 Hz, allowing it to absorb vibrational 

energy in much lower frequency ranges. The pointed lines 
are showing the energy for both the simple-wedge ABH and 
ten-wedge ABH with � = 2 ⋅ 10−3 . It can be seen that an 
increasing � lowers the energy in the wedges of the ABH. 
The cut-on frequency for the simple-wedge ABH is marked 
at 501 Hz. Furthermore the stacked ABH has much more 
eigenfrequencies lower than 1500 Hz.

  
In addition the reflection coefficient (Eq.  (15)) for a 

simple- and ten-wedge ABH was displayed in Fig. 11 up 
to 1500 Hz with different loss-factors. It can be seen that 

(49)fcut−on(m) =
h
1∕m
tot

2�l2
abh

m

√
E(40 − 24�)

12�(1 − �2)
.

Fig. 9   Cut-on frequency for a simple ABH with (top): m=2 and (bottom): m=4
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Fig. 10   Energy for a simple-
wedge ABH and ten-wedge 
ABH with labh=50 mm for m=4 
and marked cut-on frequency 
with different loss-factors �

Fig. 11   Reflection coefficient 
(Eq. (15)) for a simple-wedge 
ABH and ten-wedge ABH with 
labh=50 mm for m=4 with dif-
ferent loss-factors �
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increasing � from 10−3 to 2 ⋅ 10−3 , the reflection coefficient 
of the ABH can be reduced significantly.

Conclusion

•	 Tunability of multi-wedge ABH towards low-frequency 
in terms of cut-on frequency and reflections coefficient

•	 Analytical derivation of relative displacement of a wave 
travelling into the ABH and out of the ABH based on 
WKB-approximation with use case

•	 Comparison of performance to the simple wedge ABH

The analytical and theoretical approach to calculate and 
determine the reflection coefficient showed significant 
results. The comparison for a simple-wedge ABH stated, 
that an ABH with the exponent m=4 in the power law curve 
results in much lower reflection coefficients than with an 
exponent on m=2. A lower reflection coefficient underlines 
a better working ABH, resulting in less induced energy 
reflected back into the host structure. The application of a 
damping layer can increase the ABH effect. Calculating the 
reflection coefficient with Eq. (15) and htip ≪ 0, 1 mm leads 
mathematically to more exact results for a higher performing 
ABH than using Eq. (5) and htip ≥ 0, 1 mm. Due to limita-
tions in the production of the ABH, an htip ≪ 0, 1 mm is very 
difficult to achieve in reality. The damping layer also absorbs 
the energy of the oscillating ABH. For the multi-wedge ABH 
an analytical derived reflection coefficient was stated. The 
ten-wedge ABH used for this paper theoretically resulted in 
much lower R0 values compared to a simple-wedge ABH in 
the selected frequency range.

The comparison of the cut-on frequency for a simple-
wedge ABH with m=2 and m=4 showed that the exponent 
m=4 lowers the cut-on frequency significantly. The cut-on 
frequency here sets a boundary at which frequency the ABH 
works effective and absorbs the induced vibrational energy. 
For practical applications ABH with an exponent of m=4 
result in benefits like less material to be used for manufactur-
ing. Resulting in cheaper production costs.

With the WKB-approximation an approach to calculate 
the displacement of the ABH while a wave travelling into 
the ABH from xabh to xtip and out of it from xtip to xabh was 
performed successfully. It was evident that more accurate 
findings were obtained using a higher order approximation. 
The WKB-method could only perform successful in the 
higher frequency range. When a wave is travelling into the 
ABH then the relative displacement increases significantly. 
On the other hand the relative displacement decreases for a 
wave travelling out of the ABH. This underlines the effec-
tiveness of the ABH.
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