Skip to main content
Log in

Research Developments of Eddy Current Dampers for Seismic Vibration Control of Structures

  • Review
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Eddy current damper (ECD) pledges better control over damping coefficient, provides contactless damping, requires little or no maintenance, has simpler construction, no performance degradation over time, and is cost-effective as compared to mechanical dampers. Its challenge includes the development of a system which provides comparable damping density to other mechanical systems for structural applications.

Purpose

ECD has the potential to protect common structures in seismically active areas at low cost and with better vibration control. Further, the application of such dampers may protect industrial assembly structures against undesirable fatigue and increase the lifespan of structures that are constantly prone to vibrations.

Methods

This paper produces a review of existing literature in vibration control of structures equipped with ECDs, types of ECDs developed for structural applications, SDOF (single degree of freedom) benchmark structure equipped with ECD, challenges, and opportunities in the development of ECD therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skelton RE, Soong TT, Spencer BF, Yao JTP (1997) Structural control: past, present, and future. J Eng Mech 123:897–971. https://doi.org/10.1061/(asce)0733-9399(1997)123:9(897)

    Article  Google Scholar 

  2. Spencer BF, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 129:845–856. https://doi.org/10.1061/(asce)0733-9445(2003)129:7(845)

    Article  Google Scholar 

  3. Soong TT, Spencer BF (2002) Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Eng Struct 24:243–259. https://doi.org/10.1016/S0141-0296(01)00092-X

    Article  Google Scholar 

  4. Elias S, Matsagar V (2017) Research developments in vibration control of structures using passive tuned mass dampers. Annu Rev Control 44:129–156. https://doi.org/10.1016/j.arcontrol.2017.09.015

    Article  Google Scholar 

  5. Sadek F, Mohraz B, Taylor AW, Chung RM (1996) Passive energy dissipation devices for seismic applications. Gaithersburg

  6. Symans MD, Charney FA, Whittaker AS, Constantinou MC, Kircher CA, Johnson MW, McNamara RJ (2008) Energy dissipation systems for seismic applications: current practice and recent developments. J Struct Eng 134:3–21. https://doi.org/10.1061/(asce)0733-9445(2008)134:1(3)

    Article  Google Scholar 

  7. Thenozhi S, Yu W (2013) Advances in modeling and vibration control of building structures. Annu Rev Control 37:346–364. https://doi.org/10.1016/j.arcontrol.2013.09.012

    Article  Google Scholar 

  8. Parulekar YM, Reddy GR (2009) Passive response control systems for seismic response reduction: a state-of-the-art review. Int J Struct Stab Dyn 9:151–177. https://doi.org/10.1142/S0219455409002965

    Article  Google Scholar 

  9. Diez-Jimenez E, Rizzo R, Gómez-García MJ, Corral-Abad E (2019) Review of passive electromagnetic devices for vibration damping and isolation. Shock Vib. https://doi.org/10.1155/2019/1250707

    Article  Google Scholar 

  10. Ellis RC, Fink RA (1989) Eddy current damper. In: The 23rd aerospace mechanisms symposium (SEE N89-23892 17-39). NASA, Marshall Space Flight Center, pp 127–137

  11. Gunter EJ, Humpris RR (1983) Design study of magnetic eddy current dampers for application to cryogenic turbo-machinery

  12. Kligerman Y, Grushkevich A, Darlow MS (1998) Analytical and experimental evaluation of instability in rotor dynamic system with electromagnetic Eddy-current damper. J Vib Acoust Trans ASME 120:272–278. https://doi.org/10.1115/1.2893817

    Article  Google Scholar 

  13. Matsuzaki Y, Ishikubo D, Kamita T, Ikeda T (1997) Vibration control system using electromagnetic forces. J Intell Mater Syst Struct 8:751–756. https://doi.org/10.1177/1045389X9700800904

    Article  Google Scholar 

  14. Nagaya K, Kojima H, Kibayashi H (1984) Braking forces and damping coefficients of eddy current brakes consisting of cylindrical magnets and plate conductors of arbitrary shape. In: IEEE transactions on magnetics MAG-20

  15. Ebrahimi B, Khamesee MB, Golnaraghi F (2010) Permanent magnet configuration in design of an eddy current damper. Microsyst Technol 16:19–24. https://doi.org/10.1007/s00542-008-0731-z

    Article  Google Scholar 

  16. Ghaedi K, Ibrahim Z, Adeli H, Javanmardi A (2017) Invited review: recent developments in vibration control of building and bridge structures. J Vibroeng 19:3564–3580. https://doi.org/10.21595/jve.2017.18900

    Article  Google Scholar 

  17. Irazu L, Elejabarrieta MJ (2018) Analysis and numerical modelling of eddy current damper for vibration problems. J Sound Vib 426:75–89. https://doi.org/10.1016/j.jsv.2018.03.033

    Article  Google Scholar 

  18. Sodano HA, Bae JS (2004) Eddy current damping in structures. Shock Vib Digest 36:469–478. https://doi.org/10.1177/0583102404048517

    Article  Google Scholar 

  19. Zuo L, Scully B, Nayfeh S (2009) Design of a new type of eddy current damper with increased damping density. Proc ASME Design Eng Tech Conf 1:1485–1489. https://doi.org/10.1115/DETC2009-87714

    Article  Google Scholar 

  20. Inoue T, Ishida Y, Sumi M (2008) Vibration suppression using electromagnetic resonant shunt damper. J Vib Acoust Trans ASME. https://doi.org/10.1115/1.2889916

    Article  Google Scholar 

  21. Palomera-Arias R (2005) Passive electromagnetic damping device for motion control of building structures. Technology

  22. Shi X, Zhu S (2015) Magnetic negative stiffness dampers. Smart Mater Struct 24:072002. https://doi.org/10.1088/0964-1726/24/7/072002

    Article  Google Scholar 

  23. Sodano HA, Bae JS, Inman DJ, Keith Belvin W (2005) Concept and model of eddy current damper for vibration suppression of a beam. J Sound Vib 288:1177–1196. https://doi.org/10.1016/j.jsv.2005.01.016

    Article  Google Scholar 

  24. Li Y, Li S, Wang J, Chen Z (2020) A new type of damper combining eddy current damping with rack and gear. JVC/J Vib Control. https://doi.org/10.1177/1077546320937110

    Article  Google Scholar 

  25. Diez-Jimenez E, Alén-Cordero C, Alcover-Sánchez R, Corral-Abad E (2021) Modelling and test of an integrated magnetic spring-eddy current damper for space applications. Actuators 10:1–18. https://doi.org/10.3390/act10010008

    Article  Google Scholar 

  26. Pan Q, He T, Xiao D, Liu X (2016) Design and damping analysis of a new eddy current damper for aerospace applications. Latin Am J Solids Struct 13:1997–2011. https://doi.org/10.1590/1679-78252272

    Article  Google Scholar 

  27. Xiao DH, Pan Q, He T (2014) Design and analysis of a novel Eddy current damper. Noise Vib Control 34(6):197–201

    Google Scholar 

  28. Xie H, Ma S, Li W (2014) The electromagnetic analysis and design of a new permanent magnetic eddy current damper. Lecture Notes in engineering and computer science, vol 2210

  29. Zheng J, Deng Z, Zhang Y, Wang W, Wang S, Wang J (2009) Performance improvement of high temperature superconducting maglev system by eddy current damper. IEEE Trans Appl Supercond 19:2148–2151. https://doi.org/10.1109/TASC.2009.2017899

    Article  Google Scholar 

  30. Zhang H, Kou B, Jin Y, Zhang L, Zhang H, Li L (2014) Modeling and analysis of a novel planar eddy current damper. J Appl Phys 115:1–4. https://doi.org/10.1063/1.4862516

    Article  Google Scholar 

  31. Laborenz J, Krack M, Panning L, Wallaschek J, Denk M, Masserey PA (2012) Eddy current damper for turbine blading: electromagnetic finite element analysis and measurement results. J Eng Gas Turbines Power 134:1–8. https://doi.org/10.1115/1.4004734

    Article  Google Scholar 

  32. Laborenz J, Siewert C, Panning L, Wallaschek J, Gerber C, Masserey PA (2010) Eddy current damping: a concept study for steam turbine blading. J Eng Gas Turbines Power 132:1–7. https://doi.org/10.1115/1.3205032

    Article  Google Scholar 

  33. Wang W, Dalton D, Hua X, Wang X, Chen Z, Song G (2017) Experimental study on vibration control of a submerged pipeline model by Eddy current tuned mass damper. Appl Sci (Switzerland). https://doi.org/10.3390/app7100987

    Article  Google Scholar 

  34. Chen F, Zhao H (2018) Design of eddy current dampers for vibration suppression in robotic milling. Adv Mech Eng 10:168781401881407. https://doi.org/10.1177/1687814018814075

    Article  Google Scholar 

  35. Chikkamaranahalli SB, Vallance RR, Damazo BN, Silver RM, Gilsinn JD (2005) Dynamic modeling and vibration analysis of a UHV scanning tunneling microscope. In: Proceedings of the 20th annual ASPE meeting, ASPE 2005

  36. Ebrahimi B, Khamesee MB, Golnaraghi MF (2008) Design and modeling of a magnetic shock absorber based on eddy current damping effect. J Sound Vib 315:875–889. https://doi.org/10.1016/j.jsv.2008.02.022

    Article  Google Scholar 

  37. Frederick JR, Darlow MS (1994) Operation of an electromagnetic eddy-current damper with a supercritical shaft. J Vib Acoust Trans ASME 116:578–580. https://doi.org/10.1115/1.2930467

    Article  Google Scholar 

  38. Kim JH, Lee YG, Kim CG (2015) An experimental study on a new air-eddy current damper for application in low-frequency accelerometers. J Mech Sci Technol 29:3617–3625. https://doi.org/10.1007/s12206-015-0805-7

    Article  Google Scholar 

  39. Lin CH, Hung SK, Chen MY, Li ST, Fu LC (2008) A novel high precision electromagnetic flexure-suspended positioning stage with an eddy current damper. In: 2008 international conference on control, automation and systems, ICCAS 2008, pp 771–776. https://doi.org/10.1109/ICCAS.2008.4694602

  40. Sang N, Zhang C, Yang M, Li R, Qiu S (2021) Damping force improvement of a dual-sided hybrid excitation eddy current damper by using steel-copper plate secondary. In: 13th international symposium on linear drives for industry applications (LDIA). IEEE, pp 1–6

  41. Schmid M, Varga P (1992) Analysis of vibration-isolating systems for scanning tunneling microscopes

  42. Amjadian M, Agrawal AK (2016) Analytical modeling of a simple passive electromagnetic eddy current friction damper. Act Passive Smart Struct Integr Syst 9799:97991B. https://doi.org/10.1117/12.2218913

    Article  Google Scholar 

  43. Bae JS, Hwang JH, Kwag DG, Park J, Inman DJ (2014) Vibration suppression of a large beam structure using tuned mass damper and eddy current damping. Shock Vib. https://doi.org/10.1155/2014/893914

    Article  Google Scholar 

  44. Chen J, Lu G, Li Y, Wang T, Wang W, Song G (2017) Experimental study on robustness of an eddy current-tuned mass damper. Appl Sci (Switzerland). https://doi.org/10.3390/app7090895

    Article  Google Scholar 

  45. Sodano HA, Bae JS, Inman DJ, Belvin WK (2006) Improved concept and model of eddy current damper. J Vib Acoust Trans ASME 128:294–302. https://doi.org/10.1115/1.2172256

    Article  Google Scholar 

  46. Palomera-Arias R, Connor JJ, Ochsendorf JA (2008) Feasibility study of passive electromagnetic damping systems. J Struct Eng 134:164–170. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(164)

    Article  Google Scholar 

  47. Sattarov RR (2016) Electromechanical transients in passive suspension systems with eddy current dampers. In: 2016 9th international conference on power drives systems, ICPDS 2016—conference proceedings. https://doi.org/10.1109/ICPDS.2016.7756676

  48. Karakoc K (2012) Modeling and design optimization of electromechanical brake actuator using eddy currents. Springer, Berlin

    Google Scholar 

  49. M Baermann (1971) Eddy-current and hysteresis brake for track-bound vehicles, p 18

  50. Smythe WR (1942) On Eddy Currents in a Rotating Disk. IEEE Trans 681–684

  51. Yu W, Yang G (2020) Eddy current damper capable of collecting electric energy. Vibroeng Proc 33:28–33. https://doi.org/10.21595/vp.2020.21672

    Article  Google Scholar 

  52. Zhang HY, Chen ZQ, Hua XG, Huang ZW, Niu HW (2020) Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control. Mech Syst Signal Process 145:106879. https://doi.org/10.1016/j.ymssp.2020.106879

    Article  Google Scholar 

  53. Zuo L, Chen X, Nayfeh S (2011) Design and analysis of a new type of electromagnetic damper with increased energy density. J Vib Acous Trans ASME 133:1–8. https://doi.org/10.1115/1.4003407

    Article  Google Scholar 

  54. Grant IS (1991) Electromagnetism, 2nd edn. Wiley, Manchester

    Google Scholar 

  55. Takayama Y, Sueoka A, Kondou T (2006) Modeling of eddy current damper composed of spherical magnet and conducting shell. In: American society of mechanical engineers, applied mechanics division, AMD. American Society of Mechanical Engineers (ASME), pp 217–220

  56. Perez-Diaz JL, Valiente-Blanco I, Cristache C, Sanchez-García-Casarubios J, Rodriguez F, Esnoz J, Diez-Jimenez E (2019) A novel high temperature eddy current damper with enhanced performance by means of impedance matching. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aafc11

    Article  Google Scholar 

  57. Valiente-Blanco I, Cristache C, Sanchez-Garcia-Casarrubios J, Rodriguez-Celis F, Perez-Diaz JL (2017) Mechanical impedance matching using a magnetic linear gear. Shock Vib. https://doi.org/10.1155/2017/7679390

    Article  Google Scholar 

  58. Chen M, Manuel L (2017) Design and theory of passive Eddy current dampers in building structures. In: Structures congress ASCE 2017, pp 262–274

  59. Zhangjiajie Glass Bridge—Wikipedia. https://en.wikipedia.org/wiki/Zhangjiajie_Glass_Bridge. Accessed 23 Feb 2021

  60. Klein M, Stumpf T (2019) Grand canyon glass bridge. Springer Vieweg, Wiesbaden, pp 29–33

    Google Scholar 

  61. Wahrhaftig A, Dantas J, Menezes C, Neduzha L (2023) Springs of variable stiffness in the control of seismic actions in buildings. Min Geol Petrol Eng Bull 38(2):23–52

    Google Scholar 

  62. Wahrhaftig A, Menezes C, Conceiçao R, Oliveira I, Ozdemir O (2023) Assessment of a hydraulic bottle jack as an effective device for controlling vibration and mitigating the effects of earthquakes. J Low Freq Noise Vib Act Control. https://doi.org/10.1177/14613484231198969

    Article  Google Scholar 

  63. Riley CP (2000) Design optimisation with electromagnetic finite element codes. IEE Colloq (Digest). https://doi.org/10.1049/ic:20000054

    Article  Google Scholar 

  64. Li S, Li Y, Wang J, Chen Z (2021) Theoretical investigations on the linear and nonlinear damping force for an eddy current damper combining with rack and gear. JVC/J Vib Control. https://doi.org/10.1177/1077546320987787

    Article  Google Scholar 

  65. Luo L, Yang FF, Wang YF, Liu JL (2011) Finite element analysis and test of damping torque of eddy current damper for docking mechanism. J Astronaut 32:1026–1034

    Google Scholar 

  66. Callister Jr. WD (2018) Materials science and engineering: an introduction, 10th edn

  67. (2021) Magnet Sales. https://magnetsales.co.uk/. Accessed 11 Mar 2021

  68. Li JY, Zhu S, Shen J (2019) Enhance the damping density of Eddy current and electromagnetic dampers. Smart Struct Syst 24:15–26. https://doi.org/10.12989/sss.2019.24.1.015

    Article  Google Scholar 

  69. Loong CN, Shan J, Shi Z, Chang CC (2020) Approximate analysis of Eddy-current force under time-varying velocity motion for structural control. J Sound Vib 475:115295. https://doi.org/10.1016/j.jsv.2020.115295

    Article  Google Scholar 

  70. Wang W, Yang Z, Hua X, Chen Z, Wang X, Song G (2021) Evaluation of a pendulum pounding tuned mass damper for seismic control of structures. Eng Struct 228:111554. https://doi.org/10.1016/j.engstruct.2020.111554

    Article  Google Scholar 

  71. Lian J, Zhao Y, Lian C, Wang H, Dong X, Jiang Q, Zhou H, Jiang J (2018) Application of an eddy current-tuned mass damper to vibration mitigation of offshore wind turbines. Energies. https://doi.org/10.3390/en11123319

    Article  Google Scholar 

  72. Liu S, Lu Z, Li P, Ding S, Wan F (2020) Shaking table test and numerical simulation of eddy-current tuned mass damper for structural seismic control considering soil-structure interaction. Eng Struct 212:110531. https://doi.org/10.1016/j.engstruct.2020.110531

    Article  Google Scholar 

  73. Saige D, Engelhardt J, Katz S (2017) Application of eddy current damper technology for passive tuned mass damper systems within footbridges. Proc Eng 199:1804–1809. https://doi.org/10.1016/j.proeng.2017.09.094

    Article  Google Scholar 

  74. Liu Y, Gao YF, Wang D (2020) Analysis of damping characteristics of a planar Eddy current damper. J North Univ China (Natural Science Edition) 41:209–213. https://doi.org/10.3969/j.issn.1673-3193.2020.03.004

    Article  Google Scholar 

  75. Niu H, Chen Z, Hua X, Zhang W (2018) Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping. Smart Struct Syst 22:727–741. https://doi.org/10.12989/sss.2018.22.6.727

    Article  Google Scholar 

  76. Bae JS, Hwang JH, Park JS, Kwag DG (2009) Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube. J Mech Sci Technol 23:3024–3035. https://doi.org/10.1007/s12206-009-0819-0

    Article  Google Scholar 

  77. Pérez-Díaz JL, Valiente-Blanco I, Cristache C (2016) Z-damper: a new paradigm for attenuation of vibrations. Machines. https://doi.org/10.3390/machines4020012

    Article  Google Scholar 

  78. Ebrahimi B, Khamesee MB, Golnaraghi F (2009) A novel eddy current damper: Theory and experiment. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/42/7/075001

    Article  Google Scholar 

  79. Paul S, Bird JZ (2014) Analytic 3-D eddy current model of a finite width conductive plate including edge-effects. In: International journal of applied electromagnetics and mechanics. IOS Press, pp 535–542

  80. Warmerdam T (2000) The design of a high-performance active damper. In: The 7th mechatronics forum international conference, Atlanta

  81. Huang ZW, Hua XG, Chen ZQ, Niu HW (2018) Modeling, testing, and validation of an Eddy current damper for structural vibration control. J Aerosp Eng 31:04018063. https://doi.org/10.1061/(asce)as.1943-5525.0000891

    Article  Google Scholar 

  82. Pluk KJW, Van Beek TA, Jansen JW, Lomonova EA (2014) Modeling and measurements on a finite rectangular conducting plate in an eddy current damper. IEEE Trans Ind Electron 61:4061–4072. https://doi.org/10.1109/TIE.2013.2279364

    Article  Google Scholar 

  83. Sodano HA, Inman DJ (2007) Non-contact vibration control system employing an active eddy current damper. J Sound Vib 305:596–613. https://doi.org/10.1016/j.jsv.2007.04.050

    Article  Google Scholar 

  84. Ao WK, Reynolds P (2019) Evaluation of eddy current damper for vibration control of a frame structure. J Phys Commun. https://doi.org/10.1088/2399-6528/ab1deb

    Article  Google Scholar 

  85. Shi W, Wang L, Lu Z, Gao H (2018) Study on adaptive-passive and semi-active eddy current tuned mass damper with variable damping. Sustainability (Switzerland) 10:1–19. https://doi.org/10.3390/su10010099

    Article  Google Scholar 

  86. Wang L, Shi W, Zhou Y, Zhang Q (2020) Semi-active eddy current pendulum tuned mass damper with variable frequency and damping. Smart Struct Syst 25:65–80. https://doi.org/10.12989/sss.2020.25.1.065

    Article  Google Scholar 

  87. Wang L, Nagarajaiah S, Shi W, Zhou Y (2020) Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control. Struct Des Tall Special Build 29:1–23. https://doi.org/10.1002/tal.1793

    Article  Google Scholar 

  88. Zhengqing Chen (2014) Outer cup rotary axial eddy current damper, p 8

  89. Li Y, Li S, Wang J, Chen Z (2020) Study on mechanical properties of eddy current damping-rack and gear damper. China Civ Eng J 53:44–50

    Google Scholar 

  90. Li Y, Tan P, Li S, He H (2023) A novel tuned inerter eddy current damper: modeling, optimization, and evaluation. Eng Struct 285:116026. https://doi.org/10.1016/j.engstruct.2023.116026

    Article  Google Scholar 

  91. Pu Y, Huang Z, Zhang H, Hua X, Xu Y (2023) Shock vibration control of SDOF systems with tubular linear Eddy current dampers. Appl Sci (Switzerland). https://doi.org/10.3390/app13042226

    Article  Google Scholar 

  92. Furlani E (2001) Permanent magnet and electromechanical devices. Academic Press, New York

    Google Scholar 

  93. Cheah SK, Sodano HA (2008) Novel eddy current damping mechanism for passive magnetic bearings. JVC/J Vib Control 14:1749–1766. https://doi.org/10.1177/1077546308091219

    Article  MathSciNet  Google Scholar 

  94. Wouterse JH (1991) Critical torque and speed of eddy current brake with widely separated soft iron poles. IEE Proc B Electr Power Appl 138:153–158. https://doi.org/10.1049/ip-b.1991.0019

    Article  Google Scholar 

  95. Schieber D (1972) Unipolar induction braking of thin metal sheets. Proc Inst Electr Eng 119:1499–1503. https://doi.org/10.1049/piee.1972.0296

    Article  Google Scholar 

  96. Zimmermann W (1921) Rechnung und Versuch bei der scheibenförmigen Wirbelstrombremse. Archiv für Elektrotechnik 10:133–156. https://doi.org/10.1007/BF01578439

    Article  Google Scholar 

  97. Liang L, Feng Z, Chen Z (2019) Seismic control of SDOF systems with nonlinear eddy current dampers. Appl Sci (Switzerland). https://doi.org/10.3390/app9163427

    Article  Google Scholar 

  98. Barnes L, Hardin J, Gross CA, Wasson D (1993) An eddy current braking system. In: 1993 25th Southeastern symposium on system theory, SSST 1993, pp 58–62.https://doi.org/10.1109/SSST.1993.522742

  99. Lu Z, Huang B, Zhang Q, Lu X (2018) Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations. J Sound Vib 421:153–165. https://doi.org/10.1016/j.jsv.2017.10.035

    Article  Google Scholar 

  100. Paul S, Bird JZ (2016) Improved analytic model for eddy current force considering edge-effect of a conductive plate. In: Proceedings—2016 22nd international conference on electrical machines, ICEM 2016, pp 789–795. https://doi.org/10.1109/ICELMACH.2016.7732616

  101. Tosi P, Sbarra P, De Rubeis V (2012) Earthquake sound perception. Geophys Res Lett 39:1–5. https://doi.org/10.1029/2012GL054382

    Article  Google Scholar 

  102. He T, Xiao D, Liu X, Shan Y (2013) Design and analysis of a novel eddy current damper based on three-dimensional transient analysis. J Vibroeng 15:46–64

    Google Scholar 

  103. Detoni JG, Cui Q, Amati N, Tonoli A (2016) Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications. J Sound Vib 373:52–65. https://doi.org/10.1016/j.jsv.2016.03.013

    Article  Google Scholar 

  104. Das AS, Nandi A, Neogy S (2008) Application of finite elements for determination of the damping coefficient of an eddy current damper using Matlab. Int J Mech Eng Educ 36:120–139. https://doi.org/10.7227/IJMEE.36.2.4

    Article  Google Scholar 

  105. John DJ (1962) Classical electrodynamics. New York

  106. (2016) How to make boundary conditions conditional in your simulation | COMSOL Blog. https://www.comsol.com/blogs/how-to-make-boundary-conditions-conditional-in-your-simulation/. Accessed 5 Mar 2021

  107. Chopra, A.K. (2007) Dynamics of structures. Pearson Education India

  108. Paul P, Ingale C, Bhattacharya B (2014) Design of a vibration isolation system using eddy current damper. Proc Inst Mech Eng C J Mech Eng Sci 228:664–675. https://doi.org/10.1177/0954406213489408

    Article  Google Scholar 

  109. Sodano HA, Inman DJ (2008) Modeling of a new active eddy current vibration control system. J Dyn Syst Meas Control Trans ASME 130:0210091–02100911. https://doi.org/10.1115/1.2837436

    Article  Google Scholar 

  110. Takayama Y, Sueoka A, Kondou T (2008) Modeling of moving-conductor type Eddy current damper. J Syst Design Dyn 2:1148–1159. https://doi.org/10.1299/jsdd.2.1148

    Article  Google Scholar 

  111. Wu X, Ye L (2018) Research and simulation analysis on control algorithm of Eddy current damper. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/170/4/042091

    Article  Google Scholar 

  112. Amjadian M, Agrawal AK (2017) A passive electromagnetic eddy current friction damper (PEMECFD): theoretical and analytical modeling. Struct Control Health Monit. https://doi.org/10.1002/stc.1978

    Article  Google Scholar 

  113. Hu G, Tong W, Yu L, Ding R (2017) The type hybrid damper that MR damper and eddy current damper are composed, p 9

  114. Hu Y, Zhao F, Li P, Chen J, Dong L, Zhang C (2017) A novel hybrid excitation eddy current damper for vibration suppression. In: 2016 IEEE international conference on information and automation, IEEE ICIA 2016, pp 642–647. https://doi.org/10.1109/ICInfA.2016.7831899

  115. Irazu L, Elejabarrieta MJ (2018) A novel hybrid sandwich structure: Viscoelastic and eddy current damping. Mater Des 140:460–472. https://doi.org/10.1016/j.matdes.2017.11.070

    Article  Google Scholar 

  116. Yan B, Wang Z, Ma H, Bao H, Wang K, Wu C (2021) A novel lever-type vibration isolator with eddy current damping. J Sound Vib 494:115862. https://doi.org/10.1016/j.jsv.2020.115862

    Article  Google Scholar 

  117. Abdo TM, Huzayyin AA, Abdallah AA, Adly AA (2019) Characteristics and analysis of an eddy current shock absorber damper using finite element analysis. Actuators. https://doi.org/10.3390/ACT8040077

    Article  Google Scholar 

  118. Haji Akbari Fini S (2016) Theory and simulation of electromagnetic dampers for earthquake engineering applications. University of British Columbia

  119. Li J, Yang G, Fan Y (2020) Modeling and optimization of tubular linear permanent magnet eddy current brake with Halbach array. Int J Appl Electromagn Mech. https://doi.org/10.3233/jae-201523

    Article  Google Scholar 

  120. Li D, Ikago K, Yin A (2023) Structural dynamic vibration absorber using a tuned inerter eddy current damper. Mech Syst Signal Process 186:109915. https://doi.org/10.1016/j.ymssp.2022.109915

    Article  Google Scholar 

  121. Starin S, Neumeister J (2001) Eddy current damper simulation and modeling. European Space Agency-Publications-ESA SP, pp 321–326

  122. Weinberger MR (1977) Drag force of an Eddy current damper. IEEE Trans Aerospace Electron Syst AES 13:197–200. https://doi.org/10.1109/TAES.1977.308456

    Article  Google Scholar 

  123. Asghar Maddah A, Hojjat Y, Reza Karafi M, Reza Ashory M (2017) Reduction of magneto rheological dampers stiffness by incorporating of an eddy current damper. J Sound Vib 396:51–68. https://doi.org/10.1016/j.jsv.2017.02.011

    Article  Google Scholar 

  124. Berardengo M, Cigada A, Guanziroli F, Manzoni S (2015) Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents. J Sound Vib 349:18–38. https://doi.org/10.1016/j.jsv.2015.03.036

    Article  Google Scholar 

  125. Pu H, Li J, Wang M, Huang Y, Zhao J, Yuan S, Peng Y, Xie S, Luo J, Sun Y (2020) Optimum design of an eddy current damper considering the magnetic congregation effect. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ab5bbb

    Article  Google Scholar 

  126. Wang Z, Chen Z, Wang J (2012) Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism. J Earthq Eng Eng Vib 11:391–401. https://doi.org/10.1007/s11803-012-0129-x

    Article  Google Scholar 

  127. Shi Z, Shan J, Loong CN, Wu W, Chang C-C, Shi W (2020) Experimental and numerical study on dynamic behavior of Eddy current damping with frequency dependence. J Eng Mech 146:04020116. https://doi.org/10.1061/(asce)em.1943-7889.0001852

    Article  Google Scholar 

  128. Liu Y, Wang K, Mercan O, Chen H, Tan P (2020) Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures. Eng Struct 211:110486. https://doi.org/10.1016/j.engstruct.2020.110486

    Article  Google Scholar 

  129. Xue S, Ban X, Xie L, Yu B (2020) Theoretical model and performance tests of rotational Eddy current dampers with cable. J Southwest Jiaotong Univ 55:317–322. https://doi.org/10.3969/j.issn.0258-2724.20170802

    Article  Google Scholar 

Download references

Funding

This work is supported by Science and Engineering Research Board, Department of Science and Technology, New Delhi, India; under the Teachers Associateship for Research Excellence Grant (TAR/2020/000218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargav B. Shobhana.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobhana, B.B., Panchal, V.R. & Matsagar, V.A. Research Developments of Eddy Current Dampers for Seismic Vibration Control of Structures. J. Vib. Eng. Technol. 12, 5953–5971 (2024). https://doi.org/10.1007/s42417-023-01229-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-01229-4

Keywords

Navigation