
ORIGINAL PAPER

Simulation of a Subjected Rigid Body Motion to an External Force
and Moment

Asmaa Amer1 • T. S. Amer2 • A. A. Galal3

Received: 31 October 2022 / Revised: 16 April 2023 / Accepted: 11 May 2023 / Published online: 27 June 2023
� The Author(s) 2023

Abstract
Purpose This work intends to investigate the rigid body’s motion around a specific fixed point (analogous to Lagrange’s

scenario) in the presence of a gyrostatic moment (GM) besides the attraction of a Newtonian force field (NFF). This task is

carried out by presuming that the body is quickly rotating about one of the major or minor principal axes of the inertia

ellipsoid.

Method The controlling system of six nonlinear differential equations (DEs) along with three first integrals is boiled down

to an appropriate system of two DEs in addition to only one integral. Therefore, the analytic solutions of this system are

obtained utilizing the approach of Poincaré small parameter (APSP).

Results Euler’s angles for the motion under investigation are derived to assess this motion at any instant of time.

Additionally, phase plane graphs are displayed using computer codes to depict the stability behavior of the dynamical

motion at any time.

Conclusion These achieved outcomes are thought of as a generalization of the ones that were found in some of previous

works, in the absence of all applied forces and moments. This work presents a distinctive contribution in several crucial

areas, particularly in engineering applications that have used the gyroscopic theory to determine the orientation and

maintain the stability of various vehicles, such as spaceships, airplanes, submarines, and racing cars.

Keywords Nonlinear dynamics � Rigid bodies � Perturbation approaches � Euler’s angles � Newtonian force field �
Gyrostatic moment

Abbreviations
GM Gyrostatic moment

NFF Newtonian force field

DEs Differential equations

AA Averaging approach

AMS Approach of multiple scales

APSP Approach of Poincaré small parameter

EMF Electromagnetic field

Introduction

Researchers’ interest has recently been drawn to study the

problem of a rigid body (RB) in space. The reason is due to

the diversity of its engineering, mechanical, and physics

applications in daily life. Additionally, a great deal of

scientific research has been done to examine the solutions

to this problem. This problem demands complicated

mathematical techniques because it is controlled by a

nonlinear system of DEs besides three first integrals [1, 2].

The key challenge for researchers today is obtaining the

full solution to this issue due to the difficulty of obtaining a

general added fourth integral. This integral has been

achieved for several special cases such as the cases of

Euler, Lagrange, Kowalevski, Joukovsky, Volterra,
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Goryachev–Chaplygin, Kowalevski–Yehia’s case, and

others. In these scenarios, both the location of the body’s

center of mass and the magnitudes of the main moments of

inertia are restricted. For more integrable scenarios, check

out [2].

Since it is difficult or almost impossible, so far, to obtain

the fourth integral in its full generality, attention has been

directed toward the approximate solutions to this issue

using the perturbation techniques [3–6] such as the

approaches of Krylov–Bogoliubov–Mitropolski, multiple

scales (AMS), averaging (AA), APSP, and others. These

methods allow many researchers to obtain approximate

solutions with great accuracy for the RB motion under the

influence of different fields and moments.

The Krylov–Bogoliubov–Mitropolski is utilized in

[7–10] to gain the approximate solutions of the rotatory

motion of RB under the impact of a uniform gravitational

field [7]. The obtained outcomes were generalized in [8]

and [9] when the body is influenced by a GM and a

Newtonian field of force, respectively. In [10], the authors

constricted the body’s motion such that the body’s inertia

ellipsoid is close to its inertia rotation. It should be noticed

that the established solutions in [7] feature singular points

when the body’s frequency has integer data or their

inverses, while the corresponding ones in [8–10] do not

have any singularities. The reason is due to that the authors

of [7, 8] used Amer’s frequency which is dependent on the

GM.

The AMS is used in a wide range of research related to

the planar motion of a RB pendulum, e.g., [11–15] when its

suspension is fixed [11], moves in a route of Lissajous

curve [12], and moves on an elliptic route [13]. The

motion’s regulating systems were obtained using Lagran-

ge’s equations and solved according to the AMS procedure.

The gained outcomes are graphed to show how different

parameters affect the studied motion. Some of the reso-

nance scenarios are grouped and examined in view of the

obtained solvability criteria. The stability and instability

criteria of Routh–Hurwitz [14] are used to examine the

arisen fixed point. The numerical solutions of a RB pen-

dulum are investigated in [15] near the equilibrium’s

location. The motion of a triple RB pendulum with a fixed

pivot point was studied in [16, 17] numerically and

experimentally. The bifurcation and stability analysis, as

well as numerical computing of a dynamical model with

limiters rigid motion, are studied in [16]. In [17], it is

demonstrated that the numerical and experimental results

agree well for the motion of the same model.

The AA has been utilized frequently over the previous

four decades to obtain solutions for the spinning motion of

a symmetric RB, see [18–23]. This motion was investi-

gated when the body is exposed to three different criteria: a

uniform field of gravity, a NFF, and the existence of the

GM, as studied respectively, in [18–21], and [22, 23]. The

authors have taken into their consideration the impact of

the perturbing moments on the body’s motion. The fun-

damental equation of the body’s angular momentum is

used to create the guiding equations of motion (EOM), in

which a small parameter is inserted according to some

applied hypothesis. The proper solutions of the AA systems

of the corresponding ones of the EOM are obtained. In

[22], it is considered that the inertia’s ellipsoid and rota-

tions of the body are close to each other, in addition to the

action of the electromagnetic field (EMF) on the body. The

extension of this work is examined in [23], where the EOM

are numerically examined by converting them to a system

of two second-order DEs. The AA regulating system in

[39] is solved numerically when the conditions of

Lagrange’s gyroscope as well as some initial conditions of

the angle of nutation are considered. The attained outcomes

in [24] have been generalized in [25] and [26], when the

applied perturbing moments slightly change over time and

the body is exposed to external forces and moments,

respectively. For additional details on how AA might be

applied to address the RB’s problems, see [27].

The APSP, on the other hand, has been widely used in

several studies e.g., [28–40] to obtain approximate solu-

tions of a RB, whether the movement is considered under

the influence of a gravitational field or a NFF, or in the

presence of an EMF, or in the existence of the GM, or

under the influence of a group of these forces and moments,

or even under the influence of all of them. In [28, 29], the

RB movement is examined in a field of uniform gravity,

while the influence of the NFF on this motion is investi-

gated in [30]. It must be noted that the obtained solutions

comprised separate singular points when the system’s fre-

quency had integer values or multiple inverses. These

singularities have been treated forever in [31] when the

motion is impacted only by the third component of the GM

in addition to the NFF. In [32] and [33], the conditions of

Euler–Poinsot and Kovalevskaya, respectively, were

applied to the RB motion taking into account the influence

of the entire GM. The achieved solutions are completely

free of singularities at all for any value of the system’s

frequency. Recently, this methodology is applied in [34] to

investigate the movement of the RB in accordance with

Bobylev–Steklov requirements, in which the body was

being affected by the GM, EMF, and NFF. In [35], the

authors proposed that the body’s center of mass is some-

what offset from its axis of dynamical symmetry when it is

acted by the EMF and the GM. The gained results are

considered a generic form of those which were obtained in

[36] and [37]. For more information about how the strategy

of this approach can be applied to address various SB’s

problems, see [38] and [39].
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The vibrations of the linear time-varying systems using

some perturbation techniques have been studied in [40].

Based on analytical approximations of the relevant ordi-

nary linear time-varying DEs, three conventional pertur-

bation methods, namely the AA, harmonic balancing

method, and AMS with linear scales have been employed.

The accuracy of these techniques has been demonstrated by

the study of vibrations with constant and increasing

deployment velocities. Also, the dynamic properties of a

deployable or retractable damped cantilever beam are

examined experimentally and theoretically in [41]. Both

the period decrement approach and the enveloped fitting

method are used to calculate the time-varying damping as a

function of the beam length.

The analytic approximate solutions for the governing

equations for a restricted gyrostatic system are presented in

[42] and [43] utilizing the large parameter technique. Some

applications for the RB motion in a space have been

examined in [44] when the body is supposed to be

restricted under the influence gravity force, NFF, and GM.

The stability is investigated for a free rotation of one-rotor

gyrostat with the existence of internal moment in [45]. In

an analogy way to Euler’s case, the lowest time of reducing

rotation for a free dynamically asymmetric RB is examined

in [46]. This body is affected by a one component of the

GM and a viscous friction torque. The rotational law of

optimal control for the sluggish body is defined, and the

corresponding time and phase routes are assessed. The

generalization of this problem is achieved in [47] when the

body is acted by a full GM due to the action of three rotors,

a small slowing viscous friction torque, and a minor control

torque with close but unequal coefficients. An ideal

decelerating law for the body’s rotation has been developed

to control the body’s motion.

In this study, the movement of a RB around a fixed point

that is near Lagrange’s gyroscope, under the impact of the

NFF and the GM is investigated. The regulating EOM are

derived in light of the principal angular momentum equa-

tion of the RB motion. This system is reduced via the APSP

to one of two acceptable quasi-linear DEs from second

order in terms of two variables only, and only one integral.

The latter system is solved analytically, and therefore the

other variables are achieved. The obtained outcomes are

graphed according to various values of the body’s param-

eters to reveal the impact of these parameters on the

motion’s behavior. Angles of Euler are derived to deter-

mine the orientation of the body at any instant. Further-

more, the plots of the phase plane are drawn to discuss the

dynamical motion’s stability. This study’s significance

stems from its wide-ranging applicability in life as well as

in engineering applications where the gyroscopic theory

has been used to establish the orientation and maintain the

stability of various vehicles such as submarines, space-

ships, racing cars, and airplanes.

Problem’s Depiction

This section presents a RB with mass M rotating in space

around a specified fixed point O in the body, wherein it is

regarded as an original of two Cartesian systems. The first

one Ongf is assumed to be fixed in space while the second

frame Oxyz is fixed in the body’s structure and rotates with it

and whose axes are running parallel to the inertia main axes.

It should be mentioned that a quick rotation of the body

around its z-axis has been considered to generate an angle

h0 � p=2 with f-axis. The body’s movement is controlled by

an NFF that emerges from the center O1 at a significant

distance R from O, in addition to the impact of the GM

‘ � ð‘x; 0; ‘zÞ about the main inertia’s axes, see Fig. 1.

Let I � ðA0ð1 þ ed1Þ; A0ð1 þ ed2Þ; CÞ be the inertia

moments tensor, where dj ðj ¼ 1; 2Þ are dimensionless

values of order unity, A0 stands for the unique value of

inertia moments, C 6¼ A0 is the value of the inertia moment

about z-axis, and e is a tiny parameter. Moreover, rG ¼
ðx0; y0; z0Þ is the coordinates of the body’s center of mass,

K ¼ ðc; c0; c00Þ denotes the cosine directions of the unit

vector along f-axis, x � ðp; q; rÞ is the RB’s angular

velocity along the principal axes ðOx;Oy;OzÞ, and g is the

gravitational acceleration. Therefore, the regulating system

of the EOM can be constructed according to the principal

equation of the body’s angular momentum hO and the first

time derivative of the unit vector K, as shown below

dhO
dt

þ x ^ ðhO þ ‘Þ ¼ GO;
dK
dt

¼ K ^ x: ð1Þ

Fig. 1 Displays the problem’s dynamic design
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where GO is an external force given by GO ¼ MgðrG ^
KÞ þ NðIK ^ KÞ and N ¼ 3k

�
R3; k is the coefficient of

the attracting center O1.

The corresponding form to system of Eq. (1) is shown

below

A0ð1 þ e d1Þ
dp

dt
þ ½C � A0ð1 þ e d2Þ� q r þ q‘z

¼ Mgðy0 c
00 � z0c

0Þ þ N½C � A0ð1 þ e d2Þ� c0c00;

A0ð1 þ e d2Þ
dq

dt
þ ½A0ð1 þ e d1Þ � C� rpþ r‘x � p‘z

¼ Mg ðz0 c� x0c
00Þ þ N½A0ð1 þ e d1Þ � C� cc00 ;

C
dr

dt
þ A0e ðd2 � d1Þ p q� q‘x

¼ Mg ðx0 c
0 � y0cÞ þ NA0e ðd2 � d1Þ cc0;

dc
dt

¼ r c0 � q c00;
dc0

dt
¼ p c00 � rc;

dc00

dt
¼ q c� pc0;

ð2Þ

Based on the system of Eq. (2), the available first inte-

grals have the forms

A0ð1 þ e d1Þ p2 þ A0ð1 þ e d2Þ q2

þ Cr2 � 2Mgðx0cþ y0c
0 þ z0c

00Þ
þ N½A0ð1 þ e d1Þ c2 þ A0ð1 þ e d2Þ c02 þ Cc002�
¼ A0ð1 þ e d1Þ p2

0 þ A0ð1 þ e d2Þ q2
0

þ Cr2
0 � 2Mgðx0c0 þ y0c

0
0 þ z0c

00
0Þ þ N½A0ð1 þ e d1Þ c2

0

þ A0ð1 þ e d2Þ c020 þ Cc
002
0 �;

½A0ð1 þ e d1Þ pþ ‘x� cþ A0ð1 þ e d2Þ qc0

þ ðCr þ ‘zÞc00 ¼ ½A0ð1 þ e d1Þ p0 þ ‘x� c0

þ A0ð1 þ e d2Þ q0c
0
0 þ ðCr0 þ ‘zÞ c000

c2 þ c02 þ c002 ¼ 1;

ð3Þ

where p0; q0; r0; c0; c
0
0; and c000 stand, respectively, for

p; q; r; c; c0; and c00 values at initial time.

To proceed with the body’s dynamical motion, the fol-

lowing presumptions are considered

c
ffiffiffiffiffi
c000

q
p1 ¼ p ; c

ffiffiffiffiffi
c000

q
q1 ¼ q; r0 r1 ¼ r; c000c1 ¼ c;

c000c
0
1 ¼ c0; c000 c

00
1 ¼ c00;

x0 ¼ Lx00 ; y0 ¼ Ly00 ; z0 ¼ Lz00 ;

L ¼ rG
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0 þ z2

0

q
; s ¼ r0 t;

k ¼ N c000
�
c2; c2 ¼ MgL=C ; e ¼ c

ffiffiffiffiffi
c000

q .
r0;

A1 ¼ C � A0ð1 þ e d2Þ
A0ð1 þ e d1Þ

;

B1 ¼ A0ð1 þ e d1Þ � C

A0ð1 þ e d2Þ
;C1 ¼ A0e ðd2 � d1Þ

C
;

a ¼ A0ð1 þ e d1Þ
C

; b ¼ A0ð1 þ e d2Þ
C

;

A0 ¼ ðA r0Þ�1 ¼ ½A0ð1 þ e d1Þ r0��1;

B0 ¼ ðB r0Þ�1 ¼ ½A0ð1 þ e d2Þ r0��1;C0 ¼ ðC r0Þ�1:

ð4Þ

where r0 has been assumed to be high and ðx00; y00; z00Þ are

dimensionless values.

The substitution of the presumptions (4) into the EOM

(2) and integrals (3) yields

_p1 þ A1q1r1 þ A0q1‘z ¼ e½a�1ðy00c001 � z00c
0
1Þ þ kA1c

0
1c

00
1� ;

_q1 þ B1r1p1 � B0ðp1‘z � e�1r1‘xÞ
¼ e½b�1ðz00c1 � x00c

00
1Þ þ kB1c1c

00
1 � ;

_r1 þ e2C1p1 q1 � eC0q1‘x ¼ e2ðx00c01 � y00c1 þ kC1c1c
0
1Þ;

_c1 ¼ r1c
0
1 � e q1c

00
1 ; _c01 ¼ e p1c

00
1 � r1c1;

_c001 ¼ eð q1c1 � p1c
0
1Þ;

ð5Þ

and

r2
1 ¼ 1 þ e2 S1; r1 c

00

1 ¼ 1 þ e S2; c
2
1 þ c

02
1 þ c

02
1 ¼ ðc00

0Þ
�2:

ð6Þ

Here, the dots denote the differentiation regarding to s
and

S1 ¼ a ðp2
10 � p2

1Þ þ bðq2
10 � q2

1Þ
� 2 x00ðc10 � c1Þ þ y00ðc010 � c01Þ þ z00ð1 � c001Þ½ �
þ k½a ðc2

10 � c2
1Þ þ bðc02

10 � c
02
1 Þ þ ð1 � c0021 Þ�; S2

¼ aðp10c10 � p1c1Þ þ bðq10c010 � q1c01Þ
þ ðcC ffiffiffiffiffiffiffi

c000
p Þ�1½‘xðc10 � c1Þ þ ‘zð1 � c001Þ�;

ð7Þ

One can display S1 and S2 in expressions of power series

of e as follows

Si ¼ Si1 þ 22�i e Si2 þ � � � ; ð i ¼ 1; 2 Þ: ð8Þ

where

S11 ¼ a ðp2
20 � p2

2Þ þ bX2ð _p2
20 � _p2

2Þ � 2 x00ðc20 � c2Þ � 2 y00ð _c20 � _c2Þ
þ k½aðc2

20 � c2
2Þ þ bð _c2

20 � _c2
2Þ�;

S12 ¼ a ½k ðp20 � p2Þ þ k1ðp20 c20 � p2 c2Þ �
� bX2 ½a�1y00ð _p20 � _p2Þ
� k2ð _p20 _c20 � _p2 _c2Þ� � x00 q1 ðp20 � p2Þ
� y00 q2 ð _p20 � _p2Þ þ ðz00 � kÞS21

þ k½aq1ðp20 c20 � p2 c2Þ þ b q2ð _p20 _c20 � _p2 _c2Þ �;
S21 ¼ 2 ð p20 c20 � p2 c2 Þ � bX ½ ð _p20 _c20 � _p2 _c2Þ þ y1ðc20 � c2Þ�;
S22 ¼ a½q1ðp2

20 � p2
2Þ þ kðc20 � c2Þ þ k1ðc2

20 � c2
2Þ�

þ b ½ �Xq2ð _p2
20 � _p2

2Þ
þ Xa�1y00 ð _c20 � _c2Þ � Xk2ð _c2

20 � _c2
2Þ

þ y1q1 ðp20 � p2Þ � y3S21�;

ð9Þ

where
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X ¼ A�1
1 ð1 � A�1A�1

1 r�1
0 ‘zÞ;

k ¼ x00b
�1X�2 ðA1 þ A�1 r�1

0 ‘z Þ ;
k1 ¼ ð1 � X2Þ�1 ½z00 ðA1b

�1 � a�1Þ þ kðA1 � x2Þ
þ ðb�1z00 þ kB1ÞA�1r�1

0 ‘z�;
k2 ¼ k1 þ a�1z00 � kA1;

q1 ¼ ð1 � X2Þ�1 ð1 þ B1 � B�1r�1
0 ‘zÞ;

q2 ¼ q1 � X; X2 ¼ x2 þ ðA1B
�1 � A�1B1Þr�1

0 ‘z;

x2 ¼ �A1B1;

y1 ¼ ðcC
ffiffiffiffiffi
c000

q
Þ�1‘x; y3 ¼ ðcC

ffiffiffiffiffi
c000

q
Þ�1‘z

ð10Þ

The z and x axes’ positive branches have been chosen in

a way that prevents them from forming an obtuse angle

with the f-axis direction, i.e.,

c0 � 0 ; 0\c000\1: ð11Þ

System’s Reduction Processes

The specific objective of this section is to reduce the

equations of system (5) and integrals (6) to another suit-

able quasi-linear system of two second-order DEs and only

one integral. To achieve this goal, r1 and c001 must be

rewritten in the following way while taking integrals (6)

into account

r1 ¼ 1 þ 1

2
e2 S11 þ � � � ;

c001 ¼ 1 þ e S21 þ e2ð S22 �
1

2
S11 Þ þ � � � ;

ð12Þ

In this context, we differentiate the first and fourth

Equations in (5) and then using (12) to yield

We can infer from a close examination of the two

equations above that they have frequencies of X and 1.

Amer’s frequency [31] is the name given to the frequency

X, and it has a real value. The terms r�2
0 ; r�3

0 ; . . . can be

disregarded because it has been assumed that r0 would

have a large value. Therefore, using the formulas in (5) and

(12), we may rewrite q1 and c01 as follows

q1 ¼ ðA�1
1 r�1

1 � A�2
1 A�1r�1

0 r�2
1 ‘z þ � � � Þ

½ea�1ðy00c001 � z00c
0
1 þ kaA1c

0
1c

00
1Þ � _p1�;

c01 ¼ r�1
1 ð _c1 þ e q1 c

00
1Þ:

ð15Þ

Introducing p2 and c2 as two additional variables

p2 ¼ p1 � e ð kþ k1 c2Þ; c2 ¼ c1 � e q1 p2; ð16Þ

then we can write q1 and c01 in terms of p2; c2; _p2, and _c2 as

follows

q1 ¼ �X _p2 þ e½Xða�1y00 � k2 _c2Þ� þ e2fX½ðkA1 � a�1z00Þq1 þ S11� _p2

� 1

2
A�1

1 S11 _p2 þ XS21ðkA1 _c2 þ a�1y00Þg þ . . .;

c01 ¼ _c2 þ eq2 _p2 þ e2½Xða�1y00 � k2 _c2 � S21 _p2Þ �
1

2
S11 _c2� þ . . .;

ð17Þ

The substitution of (8), (9), (12), (16), and (17) into (13)

and (14) produces the following quasi-linear autonomous

system with two degrees of freedom and just one integral,

€p2 þ X2p2 ¼ CA1B
�1y1 þ eFðp2; _p2; c2; _c2; eÞ;

€c2 þ c2 ¼ B�1r�1
0 ‘x þ eUðp2; _p2; c2; _c2; eÞ;

ð18Þ

and

c2
2 þ _c2

2 þ 2 e ðq1c2p2 þ S21Þ
þ e2fq2

1p
2
2 þ q2

2 _p
2
2 þ 2 _c2½A�1

1 ða�1y00 � k2 _c2 � _p2S21Þ

� 1

2
S11 _c2� þ S2

21 þ 2 ð S22 �
1

2
S11 Þ g ¼ ðc000Þ

�2 � 1 :

ð19Þ

€p1 þ X2p1 ¼ e�1 ðA1B
�1r�1

0 ‘xÞ þ e f�C�1A1r
�1
0 ‘xq

2
1 þ A1B

�1r�1
0 ‘xS1 þ z00ða�1 � A1b

�1Þc1

þA1b
�1x00 þ kðx2 � A1Þc1 þ ½b�1ðx00 � z00c1Þ � kB1c1�A�1r�1

0 ‘zg þ e2f�x2p1S1

þA�1b�1x00S2 þ A1C1p1q
2
1 � A1x00c01q1 þ A1y

0
0q1c1 þ a�1y00q1c1 � a�1y00p1c01

�a�1z00p1 þ A1k½p1ð1 � c
02
1 Þ þ q1ð1 � C1Þc1c

0
1 � S2ð1 þ B1Þc1� þ

1

2
r�1

0 ‘zp1ðA�1B1

�A1B
�1Þ½S1 þ 2z00ð1 � c001Þ � kð1 � c0021 Þ� þ A�1r�1

0 ‘zðb�1x00 � kB1c1ÞS2g þ . . .;

ð13Þ

€c1 þ c1 ¼ B0‘x þ e ½ B0‘xS2 þ p1ð1 þ B1 � B0‘zÞ þ C0c01q1‘x� þ e2½ð1 þ B1Þp1S2

�c1S1 � B0p1‘zS2 þ p1q1c01ð1 � C1Þ þ x00c021 � y00c1c01 � z00b�1c1 þ b�1x00
�q2

1c1 þ kðC1c021 � B1Þc1� þ ::::;
ð14Þ
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Here

Formalization of the Periodic Solution

Determining the periodic solutions of (18) while account-

ing for the positive sign of X2 is the main objective of this

section. According to the autonomously of this system, it is

evident that the below requirements have no bearing on the

generality of the solutions p; q; r; c; c0; and c00.

p2ð0; 0Þ ¼ CA1B
�1y1; _p2ð0; 0Þ ¼ 0; _c2ð0; eÞ ¼ 0:

ð21Þ

The generating form of system (18) has the form

€p
ð0Þ
2 þ X2p

ð0Þ
2 ¼ 0 ; €cð0Þ2 þ cð0Þ2 ¼ 0; ð22Þ

which allows solutions with period T0 ¼ 2p n fill out the

form

p
ð0Þ
2 ¼ M1 cos XsþM2 sin Xs; cð0Þ2 ¼ M3 cos s;

ð23Þ

where Mj ðj ¼ 1; 2; 3 Þ are determinable constants.

Based on the preceding, the desirable solutions of sys-

tem (18) can be assumed in the following form with period

TðeÞ ¼ T0 þ aðeÞ

F ¼ F1 þ eF2 þ e2 F3 þ � � � ;U ¼ U1 þ eU2 þ e2 U3 þ � � � ;
F1 ¼ � kB�1r�1

0 ‘x � C�1r�1
0 A�1

1 ‘x _p
2
2 þ A1B

�1r�1
0 ‘xS11 þ z00ð a�1 � A1b

�1Þc2 þ A1b
�1x00

þkðx2 � A1Þc2 þ ðb�1x00 � b�1z00c2 � kB1c2ÞA�1r�1
0 ‘z;

F2 ¼ f2 � q1k1ð1 � X2Þp2;F3 ¼ f3 � k1 u2 � q1kk1ð1 � X2Þ � q1k
2
1c2ð1 � X2Þ;

U1 ¼ B�1 r�1
0 ‘xS21 � C�1 r�1

0 ‘x _c2A
�1
1 _p2;

U2 ¼ q1ð1 � X2Þðkþ k1c2Þ þ /2;U3 ¼ /3 � q1f2 � q2
1k1ð1 � X2Þp2;

f2 ¼ 2A1B
�1r�1

0 ‘xS12 þ ðA1b
�1x00S21 � x2S11p2Þ þ A1C1p2A

�2
1 ½ _p2

2 � 2 _p2ða�1y00 � k2 _c2Þ�
þx00 _c2 _p2 � y00A

�1
1 ðA1 þ a�1Þ _p2c2 � a�1y00p2 _c2 � a�1z00p2 þ A1kp2ð1 � _c2

2 � 2 _c2q1 _p2Þ
þkc2 _c2 _p2ðC1 � 1Þ � A1kc2S21ð1 þ B1Þ þ

1

2
r�1

0 ‘zp2S11ðA�1B1 � A1B
�1Þ þ q1k1CA1B

�1y1

�k1ðB�1r�1
0 ‘xS21 � C�1r�1

0 ‘x _c2A
�1
1 _p2Þ;

u2 ¼ B�1r�1
0 ‘xS22 � C�1r�1

0 ‘xq2 _p
2
2A

�1
1 þ C�1r�1

0 A�1
1 ‘x _c2ða�1y00 � k2 _c2Þ � c2S11

þð1 þ B1 � B�1r�1
0 ‘zÞp2S21 � ð1 � C1Þp2 _c2A

�1
1 _p2 þ x00 _c2

2 � y00c2 _c2 � z00b
�1c2

þx00b
�1 � c2X

2 _p2
2 þ kC1c2 _c

2
2 � kB1c2;

f3 ¼ C�1r�1
0 A�1

1 ‘xða�1y00 � k2 _c2Þ
2 � ð2x2p2S12 � A1b

�1x00S22Þ � x2S11ðkþ k1c2Þ
þA�1

1 C1ðkþ k1c2Þ½ _p2
2 � 2 _p2ða�1y00 � k2 _c2Þ� � x00 _c2ða�1y00 � k2 _c2Þ þ x00q1 _p

2
2

�q1p2 _p2y
0
0A

�1
1 ðA1 þ a�1Þ � a�1y00p2ðq1 _p2 þ q1Þ � a�1y00 _c2ðkþ k1c2Þ � a�1z00ðk

þk1c2Þ þ A1kðkþ k1c2Þð1 � _c2
2 � 2 _c2q2 _p2Þ þ A1kð1 � C1Þ½c2 _c2ðA�1a�1y00 � k2 _c2Þ

�A�1
1 c2q1 _p

2
2 � q1p2A

�1
1 _c2 _p2� � A1kS22c2ð1 þ B1Þ � A1kS11q1p2ð1 þ B1Þ þ

1

2
r�1

0 ‘z

�ðA�1B1 � A1B
�1Þ ½p2ð2S12 � 2z00S21 þ 2kS21Þ þ ðkþ k1c2ÞS11� þ ½1

2
z00ða�1 � A1b

�1Þ

�c2S11 þ
1

2
A�1r�1

0 ‘zðkB1c2 � b�1x00ÞS11 þ ð2kA1 � a�1z00ÞS21p2� þ A1B
�1r�1

0 ‘xS11

þq1k1z
0
0ða�1 � A1b

�1Þc2 þ q1k1A1b
�1x00 þ kq1k1ðx2 � A1Þc2 þ q1k1ðb�1x00 � b�1z00c2

�kB1c2ÞA�1r�1
0 ‘z � q1k1x2ðkþ k1c2Þ;

u3 ¼ �C�1r�1
0 A�2

1 ‘x _p2ða�1y00 � k2 _c2 � _p2S21 �
1

2
S11A1 _c2Þ þ C�1r�1

0 ‘x _c2f½A�1
1 ðkA1 � a�1z00Þq1

þA�1
1 S11� _p2 �

1

2
A�1

1 S11 _p2 þ A�1
1 ðkA1 _c2 þ a�1y00ÞS21g þ C�1r�1

0 A�1
1 ‘xq2 _p2ða�1y00 � k2 _c2Þ

�q1p2S11 � 2c2S12 þ ð1 þ B1 þ B�1r�1
0 ‘zÞ½p2S22 þ ðkþ k1c2ÞS21� þ ð1 � C1Þp2A

�1
1

�ða�1y00 � k2 _c2Þ _c2 � ð1 � C1Þp2A
�1
1 q2 _p

2
2 � ð1 � C1Þ _p2 _c2A

�1
1 ðkþ k1c2Þ þ 2x00 _c2q2 _p2

�y00c2q1 _p2 � y00q1p2 _c2 � z00b
�1q1p2 þ 2c2A

�2
1 _p2ða�1y00 � k2 _c2Þ � q1p2A

�2
1 _p2

2 þ 2kC1

�c2 _c2q2 _p2 þ kC1q1p2 _c2
2 � kB1q1p2 þ 2b�1x00S21 � b�1z00c2S21 � 2kBc2S21 �

1

2
B�1r�1

0

� ‘zp2½S11 þ 2z00ð1 � c001Þ � kð1 � c
002
1 Þ�:

ð20Þ
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p2ðs; eÞ ¼ ðM1 þ b1 Þ cosXsþ ðM2 þ b2 Þ sinX sþ
X1

n¼1

en GnðsÞ;

c2ðs; eÞ ¼ ðM3 þ b3 Þ cos sþ
X1

n¼1

en HnðsÞ;

ð24Þ

where b1;Xb2; and b3 denote the initial value’s deviation

of p2; _p2;and c2 for the system (18) from their corre-

sponding values of the system (22). These variations are

functions ofe, in which they are vanishing at e ¼ 0. One

may establish the required criteria for these solutions (22)

at t ¼ 0 by the relations given below

p2ð0; eÞ ¼ M1 þ b1; _p2ð0; eÞ ¼ X ðM2 þ b2Þ;
c2ð0; eÞ ¼ M3 þ b3; _c2ð0; eÞ ¼ 0:

ð25Þ

Using the next operator, the functions GnðsÞ and

HnðsÞ; ð n ¼ 1; 2; 3; � � � Þ can be identified as follows [48]

D ¼ d þ od

oM1

b1 þ
od

oM2

b2 þ
od

oM3

b3 þ
1

2

o2d

oM2
1

b2
1 þ � � � ;

D ¼ Gn; Hn

d ¼ gn; hn

 !

:

ð26Þ

The function gjðsÞ and hjðsÞ adopt the following forms.

gnðsÞ ¼
1

X

Zs

0

Fð0Þ
n ðt1Þ sinXðs� t1Þ d t1;

hnðsÞ ¼
Zs

0

Uð0Þ
n ðt1Þ sinðs� t1Þ d t1; ðn ¼ 1; 2Þ ;

ð27Þ

where

Fð0Þ
n ðsÞ ¼ 1

ðn� 1Þ! ð
dn�1F

den�1
Þc0¼e¼0; Uð0Þ

n ðsÞ

¼ 1

ðn� 1Þ! ð
dn�1U
den�1

Þc0¼e¼0:

It is worthy to mention that system (18), as seen in its

right sides, starts with a small parameter of order zero.

Consequently, we can determine the functions F
ð0Þ
n and

Uð0Þ
n as follows

Fð0Þ
n ¼ Fnð pð0Þ2 ; _p

ð0Þ
2 ; cð0Þ2 ; _cð0Þ2 Þ; Uð0Þ

n

¼ Unð pð0Þ2 ; _p
ð0Þ
2 ; cð0Þ2 ; _cð0Þ2 Þ; ð n ¼ 1; 2 Þ:

In view of the above, solutions (23) can be rewritten as

p
ð0Þ
2 ¼ E cos ðXs� gÞ; cð0Þ2 ¼ M3 cos s;

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2

q
; l ¼ tan�1 M2=M1:

ð28Þ

The substitution of (28) into (9) yields

S
ð0Þ
11 ¼ E2½aðcos2 g � 1

2
Þ þ bX2X2ðsin2 g � 1

2
Þ þ 1

2
ðbX2X2 � aÞ cos 2ðXs� gÞ�

� 2M3½x00ð 1 � cos s Þ þ y00 sin s� � 1

2
kM2

3C1ð1 � cos 2sÞ;

S
ð0Þ
21 ¼ M3Efa cos gþ 1

2
ðbXX� aÞ cos½ðX� 1 Þs� g� � 1

2
ð bXXþ a Þ

� cos½ðXþ 1 Þs� g�g þ M3y1ð1 � cos sÞ;

S
ð0Þ
12 ¼ aEfk½ cos g� cos ðXs� gÞ � þ k1M3 cos g� 1

2
k1M3 cos ½ðXþ 1Þs� g�

þ cos ½ðX� 1Þs� g �g � bX2EXfa�1y00½ sin gþ sinðXs� g Þ � þ k2

2
M3

� ½cos ððX� 1Þs� gÞ � cos ððXþ 1Þs� gÞ�g � x00q1E½cos g � cos ðXs� gÞ�
� y00q2EX½ sin g þ sin ðXs� g Þ � þ ðz00 � kÞSð0Þ21 þ kaq1EM3fcos g

� 1

2
½cos ððXþ 1Þs� g Þ þ cos ððX� 1Þs� g Þ� � 1

2
kbq2EM3Xfcos ½ðX� 1Þs� g� � cos ½ðXþ 1Þs� g�g;

S
ð0Þ
22 ¼ aq1E

2f cos2 g� 1

2
½1 þ cos 2ðXs� g Þ�g þ akM3ð 1 � cos s Þ þ 1

2
k1M

2
3

� ð1 � cos sÞg � bXq2E
2X2fsin2 g� 1

2
½1 � cos 2ðXs� gÞ�g þ bXa�1y00M3 sin s

þ 1

2
bXk2M

2
3ð1 � cos 2sÞ þ y1q1E½cos g� cosðXs� g Þ� � y3S

ð0Þ
21 :

ð29Þ
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Substituting (28) and (29) into (20), we get

F
ð0Þ
1 ¼ 0;

Uð0Þ
1 ¼ �y1r

�1
0 B�1‘xM3 cos sþ � � � ;

F
ð0Þ
2 ¼ LðXÞ ðM1 cosXsþM2 sinXsÞ þ � � � ;

Uð0Þ
2 ¼ M3NðXÞ cos sþ � � � ;

ð30Þ

where

LðXÞ ¼ A1k � ½a�1z00 þ q1k1ð1 � X2Þ�

� 2aA1kr
�1
0 B�1‘x þ ½1

2
r�1

0 ‘zðA�1B1

� A1B
�1Þ � x2�½aM2

1 þ bX2X2M2
2

� 1

2
ðaþ bX2X2Þ � 2M3x

0
0

� 1

2
kM2

3C1 �
1

2
ðbX2X2 � aÞðM2

1 þM2
2Þ� þ :::;

NðXÞ ¼ �ðaM2
1 þ bX2X2M2

2Þ
þ ð1 þ bÞðM2

1 þM2
2ÞX2X2 þ 2 x00M3

� ½b�1z00 � q1k1ð1 � X2Þ�

þ kð1
2
M2

3C1 � B1Þ � akr�1
0 B�1‘x þ � � � :

ð31Þ

The functions gn; _gn; hn; and _hn ðn ¼ 1; 2Þ can be

obtained using the expressions (27), (30), and (31) as

follows

g1ðT0Þ ¼ 0; g2ðT0Þ ¼ � pnX�1M2LðXÞ;
_g1ðT0Þ ¼ 0; _g2ðT0Þ ¼ pnM1LðX Þ;
h1ðT0Þ ¼ 0; h2ðT0Þ ¼ 0; _h1ðT0Þ ¼ 0;

_h2ðT0Þ ¼ pnM3NðX Þ:

ð32Þ

The proposed solutions (24) and their related first

derivatives must satisfy the following constraints for peri-

odicity to acquire Mj; bi; and the correction a of the period.

w1 ¼ p2ðT0 þ a; eÞ � p2ð0; eÞ ¼ 0 ;

w2 ¼ _p2ðT0 þ a; eÞ � _p2ð0; eÞ ¼ 0 ;

w3 ¼ c2ðT0 þ a; eÞ � c2ð0; eÞ ¼ 0 ;

w4 ¼ _c2ðT0 þ a; eÞ � _c2ð0; eÞ ¼ 0 :

ð33Þ

Notably, the existence of the integral (19) is related to

the above mentioned third condition w3 ¼ 0. Accordingly,

one can use the criteria (25) and (33) to get

2 ðM3 þ b3 Þw3 þ w2
3 þ e h1ðw1;w2;w3;w4; e Þ ¼ 0: ð34Þ

In this case, h1 stands for an entire function

whereh1ð0; 0; 0; eÞ ¼ 0. WhenM3 6¼ 0, we obtain w3 ¼

k1ðw1;w2;w3;w4; eÞ; where k1 is a function that fulfills the

condition k1ð0; 0; 0; eÞ ¼ 0: Then the condition w3 ¼ 0 in

(34) is compatible with the removal of the other conditions,

i.e.,

w1 ¼ w2 ¼ w4 ¼ 0: ð35Þ

At s ¼ 0, the substitution of (25) into (19) yields

M2
3 þ 2M3b3 þ b2

3 þ 2 e q1 ðM1 þ b1 ÞðM3 þ b3Þ þ � � �
¼ ð c000Þ

�2 � 1:

If c000 is independent of e, then M3 and b3 can be pro-

duced in the following forms

M3 ¼ ð1 � c
002
0 Þ1=2ðc000Þ

�1; 0\M3\1; b3

¼ �eq1ðM1 þ b1Þ þ � � � : ð36Þ

By disregarding terms of order a2 and extending the

conditions (33) regarding a power series, we obtain

p2ð T0; e Þ þ a _p2ð T0; e Þ þ � � � � p2ð 0; e Þ ¼ 0;

_p2ð T0; e Þ þ a €p2ð T0; e Þ þ � � � � _p2ð 0; e Þ ¼ 0;

_c2ð T0; e Þ þ a €c2ð T0; e Þ þ � � � � _c2ð 0; e Þ ¼ 0:

Utilizing the criteria (25) into the aforementioned rela-

tions, the independent conditions of periodicity (35) can be

rewritten as follows

p2ð T0; e Þ þ aX ðM2 þ b2 Þ � ðM1 þ b1 Þ ¼ 0;

_p2ð T0; e Þ � X ðM2 þ b2 Þ þ aX2ðM1 þ b1 Þ þ aCB�1A1y1 ¼ 0;

_c2ð T0; e Þ � a ðM3 þ b3 Þ þ a r�1
0 B�1‘x ¼ 0:

ð37Þ

The correction of period aðeÞ can be achieved after using

(24) and (36) besides the last equation of (37), in the form

aðeÞ ¼ e ðM3 þ b3 � r�1
0 B�1‘xÞ�1 ð _F1ðT0Þ þ e _F2ðT0Þ

þ e2 _F3ðT0Þ þ � � � Þ:
ð38Þ

Utilizing (24), (32), and the first two equations of (37)

and (38) to create the below system that determines b1 and

b2

� p n b2X
�1fL1ðXÞ � X2N1ðX Þ

½ 1 þ ðr�1
0 B�1‘xÞ ðM3 þ b3 � r�1

0 B�1‘xÞ�1 �g
þ e ðG2ðT0Þ þ � � � Þ ¼ 0;

p n b1fL1ðX Þ þ N1ðX ÞðCA1B
�1y1 � X b1Þ

½ 1 þ ðr�1
0 B�1‘xÞ ðM3 þ b3 � r�1

0 B�1‘xÞ�1g
þ e ½ _G2ðT0Þ þ � � � � ¼ 0:

ð39Þ
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Replacing M1; M2; M3 by b1; b2;M3 þ b3, respec-

tively, the functions L1ðXÞ and N1ðXÞ can be obtained as

follows

L1ðXÞ � X2N1ðXÞ ¼ ð b2
1 þ b2

2 Þ W1ðXÞ þ z00W2ðXÞ
þ kW3ðXÞ þW4ðXÞ; ð40Þ

where

W1ðXÞ ¼
1

2
ðbX2X2 � a ÞðX2 þ 1

2
yÞ � ð1 þ bÞX4X2;

W2ðXÞ ¼ b�1X 2 � a�1;

W3ðXÞ ¼ A1 þ
1

4
C1yðM3 þ b3 Þ2 þ X2b1;

W4ðXÞ ¼ B�1r�1
0 ak‘xðX2 � 2A1Þ

� q1k1ð1 � X4Þ þ 1

2
y½1

2
ðaþ bX2X2Þ

þ 2x00ðM3 þ b3 Þ þ ðab2
1 þ bX 2X2b2

2Þ� þ
1

2
X 2ðaþ bX2X2Þ

Based on (39), it is possible to get the formulations for

bn ðn ¼ 1; 2Þ in terms of e whose first terms begin with

Table 1 Shows the relevant data which are used to display the temporary motion and phase plane plots in various graphs

M x00 y00 z00 d1 d2 R c000 A0 C r0 c0

300 kg 0:7 m 0:3 m 0:1 m 50 45 1000 m 0:001 15 11 5 rad: s�1 0:001

Fig. 2 The time history of the obtained approximate solutions p1; q1; r1; c1; c
0
1; and c001 over time t when ‘z ¼ 30 kg m2 s�1 with different values of

‘xð¼ 30; 60; 90Þ kg m2 s�1
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Oðe3Þ. Consequently, the periodic solutions up to the first

approximate order have the following forms

A closer examination of the aforementioned solutions

revealed that they exhibit periodic behaviors with various

values of the gyrostat’s physical parameters. It is empha-

sized that for any rational value of the frequency X, the

gained solutions do not have any singular point. The reason

is going back to the use of the frequency of Amer that

depends on the third projection of the GM on the z-axis. As

seen from the mathematical forms of these solutions, we

expect that the waves of these solutions will behave the

forms of periodic waves, due to that these results include

trigonometric functions. Moreover, the solutions p1; q1;

and c001 will be varied with the GM values owing to that

these solutions include the components ‘x and ‘z of the

GM.

Rigid Body Orientations

The goal of the current section is to demonstrate the RB’s

orientation at any specific instant in view of the achieved

solutions and angles of Euler. Such angles are specified by

the angles of nutation, self-rotation, and precession, that are

always represented as h; u; and w, respectively.

In light of the fact that system (18) is regarded as

autonomous (18), the acquired solutions (41) will remain

periodic if t is changed to ðt þ t0Þ, where t0 denotes any

interval. As a result, we may formulate Euler’s angles as

follows [1]

cos h ¼ c00;
dw
d t

¼ pcþ qc0

1 � c002
; tanu0 ¼ c0

c00
;

du
d t

¼ r � dw
d t

cos h:
ð42Þ

The required Euler’s angles for the investigated problem

can be obtained by at once substituting (4) and (41) into

(42)

/0 ¼ ðp=2Þ þ r0 hþ � � � ; h0 ¼ tan�1 M3;

h ¼ h0 � e ½ h1ðt þ hÞ � h1ðhÞ � � e2 ½ h2ðt þ hÞ � h2ðhÞ �;
w ¼ w0 þ c cos ec h0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h0

p
f ½ w1ðt þ hÞ � w1ðhÞ �

þ e ½ w2ðt þ hÞ � w2ðhÞ �
þ e2 ½ w3ðt þ hÞ � w3ðhÞ � g;

/ ¼ /0 þ r0 t � c cot h0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h0

p
f½/1ðt þ hÞ � /1ðhÞ�

þ e ½/2ðt þ hÞ � /2ðhÞ�g
� e2 ftan h0 ½/3ðt þ hÞ � /3ðhÞ�
þ c cot h0

ffiffiffiffiffiffiffiffiffiffiffiffi
cos h0

p
½/4ðt þ hÞ � /4ðhÞ�g;

ð43Þ

where

p1 ¼ efX�2½x00b�1ðA1 þ A�1r�1
0 ‘zÞ� þ k1M3 cos sg þ � � � ;

q1 ¼ eXða�1y00 þ k2M3 sin sÞ þ e2Xða�1y00 � kA1M3 sin sÞ½M3y1ð 1 � cos s Þ� þ � � � ;

r1 ¼ 1 þ 1

2
e2f�2M3½x00 ð 1 � cos s Þ þ y00 sin s� � 1

2
kM2

3C1ð 1 � cos 2s Þg þ � � � ;

c1 ¼ M3 cos sþ � � � ;

c01 ¼ �M3 sin sþ e2 fXða�1y00 þ k2M3 sin sÞ � 1

2
M3 sin s½2M3½x00ð 1 � cos s Þ þ y00 sin s�

þ 1

2
kM2

3C1ð 1 � cos 2s Þ�g þ � � � ;

c001 ¼ 1 þ e½M3 y1 ð 1 � cos s Þ� þ e2f akM3ð 1 � cos s Þ þ 1

2
M2

3ð 1 � cos 2s Þðak1 þ bXk2Þ

þ bXa�1y00M3 sin s�M3y1y3 ð 1 � cos s Þ þM3½x00 ð 1 � cos s Þ þ y00 sin s�

þ 1

4
kM2

3C1ð 1 � cos 2s Þg þ � � � ;

aðeÞ ¼ e p n ½ 1 þ ðM3 þ b3 � r�1
0 B�1‘xÞ�1 ðr�1

0 B�1‘xÞ�½2 x00 M3 � z00b
�1 þ q1k1ð1 � X2Þ

þ kð1
2
M2

3C1 � B1Þ � r�1
0 B�1ak‘x� þ � � � :

ð41Þ
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h1ðtÞ ¼ �y1 cos r0 t;

h2ðtÞ ¼ ðy1y3 � ak� x00 Þ cos r0 t � ðbXa�1 þ 1Þy00 sin r0 t

� 1

2
tan h0ðak1 þ bXk2 þ

1

2
kC1Þ cos 2r0 t;

w1ðtÞ ¼ 0;

w2ðtÞ ¼ r�1
0 ðX�2x00b

�1A1 sin r0 t � A�1
1 a�1y00 cos r0tÞ

þ 1

4
tan h0½k1ð2t þ r�1

0 sin 2r0 tÞ

þ k2ðr�1
0 A�1

1 sin 2r0t � 2X tÞ�;

w3ðtÞ ¼
1

4
Xy1 tan h0fa�1y00ð2 cos r0t � r�1

0 cos 2r0tÞ � kA1 tan h0½2t

� r�1
0 ðcos 2r0t � 4 sin3 r0 tÞ�g;

/1ðtÞ ¼ w1ðtÞ; /2ðtÞ ¼ w2ðtÞ; /4ðtÞ ¼ w3ðtÞ;
/3ðtÞ ¼ x00ðr0t � sin r0tÞ � y00 cos r0t

þ 1

8
kC1 tan h0ð2r0t � sin 2r0tÞ:

By carefully selecting the initial values h0; w0; /0, and

r0, we can estimate the orientation of the RB’s motion in

view of the previous Eqs. (43) of Euler’s angles. According

to these equations, we can predict that the behavior of h
and u will be impacted and have periodic forms with the

change of the GM, while the behavior of the angle w
increases in the opposite direction.

Numerical Simulations

The current section’s goal is to analyze the achieved

solutions (41) and angles of Euler (43) at various values of

the acted parameters on the RB’s motion. Consequently,

the following relevant data in Table 1 are used to display

the temporary motion and phase plane plots in various

graphs.

Fig. 3 The fluctuation of p1; q1; r1; c1; c
0
1; and c001 versus t when ‘x ¼ 30 kg m2 s�1 with the increase of ‘zð¼ 30; 60; 90Þ kg m2 s�1 values
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The included curves in potions (a–f) of Figs. 2 and 3

depict the temporal histories of the solutions

p1; q1; r1; c1; c
0
1; and c001. These curves are drawn when ‘x ¼

30 kg m2 s�1; ‘zð¼ 30; 60; 90Þ kg m2 s�1 and ‘z ¼
30kg:m2:s�1; ‘xð¼ 30; 60; 90Þ kg m2 s�1, as presented in

Figs. 2 and 3, respectively. It is notable that the represented

waves of these solutions have the periodicity forms, as

expected before, with the change of the projections of the

GM on the main axes of inertia x and z. Moreover, the

inspection of the portions of Fig. 2 shows that, the solutions

q1 and c001 are influenced with the change of ‘x values,

where the amplitude’s waves increase with the increase of

‘x values, while the number of oscillations remains sta-

tionary. On the other hand, the other solutions are slightly

affected to some extent with the variation of ‘x even though

the curves of these solutions are also periodic. Curves of

Fig. 3 illustrate that the waves describing the behavior of

p1; q1; and c001 have been impacted with the various values

of ‘z, in which the waves’ amplitudes increase with the

increase of ‘z, as displayed in portions (a) and (b) of Fig. 3,

while the amplitudes of the waves illustrating the solution

c001 decrease with the increase of ‘z, as drawn in Fig. 3f. The

reminder waves of the solutions p1; q1; and c01 have no

variation with the same values of ‘z. These remarks agree

with the obtained solutions (41). The phase plane plots of

the explored curves in Figs. 2 and 3 are graphed in the

corresponding potions of these figures with portions of

Figs. 4 and 5. The latter Figs. 4 and 5 included closed

curves which assert that the behaviors of the plotted solu-

tions are stable and free of chaos. Based on the variation of

the solutions with the values of ‘x and ‘z, we find that there

is a corresponding change in plotted closed curves in

Figs. 4 and 5.

Fig. 4 The phase plane

diagrams of the solutions

p1; q1; r1; c1; c
0
1; and c001 at ‘z ¼

30 kg m2 s�1 with distinct

values of

‘xð¼ 30; 60; 90Þ kg m2 s�1
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The curves shown in portions of Figs. 6 and 7 are meant

to demonstrate the temporal evolution of the angles h;w;
and / under distinct values for ‘x and ‘z. The represented

curves in portions (a–c) of Figs. 6 and 7 have been

impacted with the change of the GM values. It is obvious

that the waves of the angles h and u oscillate periodically,

as seen in potions (a) and (b) of these figures, respectively.

As contrasted to this, the behavior of the angle w has a

negative direction when time goes on, as drawn in part

(c) of the same figures. These curves are in full agreement

with Eqs. (43).

Conclusion

The positive impact of the NFF and the GM on the rotatory

motion of a RB, about one of its fixed points has been

examined for an analogs case of Lagrange’s gyroscope.

The governing system of motion that consists of six non-

linear DEs of first order has been derived using the prin-

cipal equation of the angular momentum for the body’s

motion. The three first integrals of this system related to

energy, area, and geometric integral have been obtained.

This system is reduced, using the APSP, to an appropriate

one of two quasi-linear DEs of second order and one

integral in terms of just two variables. It has been found

Fig. 5 The graphs of the

solutions’ phase plane when

‘x ¼ 30 kg m2 s�1 according to

the various values of

‘zð¼ 30; 60; 90Þ kg m2 s�1
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Fig. 6 Reveals the variation of hðtÞ;/ðtÞ; and wðtÞ at ‘z ¼ 30 kg m2 s�1 for various values of ‘xð¼ 30; 60; 90Þ kg m2 s�1

Fig. 7 Shows the waves of hðtÞ;uðtÞ; and wðtÞ at ‘x ¼ 30 kg m2 s�1 for various values of ‘zð¼ 30; 60; 90Þ kg m2 s�1
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that the obtained approximate solutions are valid for any

value of the RB’s frequency and do not have any singu-

larities at all. The body’s geometric interpretations have

been estimated at any given time using Euler’s angles. The

achieved results have been drawn according to the values

of the impacted parameters to show the behavior of the

body’s motion. Additionally, the stability of the dynamical

motion is discussed using phase plane plots. These results

are regarded as a generalization of those that were obtained

in [7, 28, 30] for the absence of all applied forces and

moments except NFF, and in [31] at (‘x ¼ 0; A 6¼ B). This

study presents an important contribution in a variety of

critical domains, including the industrial uses of spacecraft,

aircraft, and submarines.
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