Skip to main content
Log in

Ultrathin, Flexible and Freestanding Nickel Mesh Film for Transparent Thermoacoustic Loudspeakers

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

As one of the metallic mesh films extensively used in the manufacture of supercapacitors, the nickel film is produced by the direct-writing technique and a selective metal electrodeposited process. Nickel mesh possess offers a range of advantages, including ultrathin thickness, ultralight weight, and high transparency. The advantages of the nickel film can give it the potential to become a thermoacoustic (TA) device. However, studies of nickel films in thermoacoustic have not been published. By considering the thermoacoustic effect, we develop a flexible transparent freestanding loudspeaker based on nickel film. Further, the feasibility of nickel film as a thermoacoustic device is verified, and the influencing factors are analyzed.

Methods

First, the fabrication of the mesh nickel film mainly includes spin-coated photoresist, laser direct writing, and selective electrodeposition. A free-standing thermoacoustic experimental device can be set up by peeling off the nickel mesh and applying alternating current (AC). Then the TA model of nickel films is established by combining the thermoelastic coupling equation and the electrothermal energy conservation relation. The analytical expression for nickel film’s sound pressure (SP) is derived accordingly. On this basis, the experimental environment is set up. Then, an AC is applied to the nickel film to obtain the SP and verify its feasibility as a TA loudspeaker. Next, the accuracy of the TA model is verified by comparing the experimental and theoretical results. Finally, some important parameters affecting the nickel thin film TA emission, e.g. SP, input power, test distance, and test time are summarized and analyzed in detail.

Conclusion

The acoustic properties of the nickel film were tested through a series of experiments. The theoretical results agree well with the experimental ones, which validates the present nickel film TA model. It is shown that nickel film TA loudspeakers have many advantages, such as freestanding, transparency, flexibility, flat frequency response curve, and large output sound. The nickel film output sound is better than the previous TA devices. Nickel films can be manufactured as excellent TA loudspeakers. Therefore, it can be further explored or applied to various potential applications, such as wearable electronic devices, portable audio, or active noise control in vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen XL, Chavannes N, Ng GH, Tay YS, Mosig J (2015) Analysis and design of mobile device antenna–speaker integration for optimum over-the-air performance. IEEE Antennas Propagat. Mag. 57:97–109. https://doi.org/10.1109/MAP.2015.2397159

    Article  ADS  Google Scholar 

  2. Qiao YC, Gou GY, Wu F, Jian JM, Li XS, Hirtz T, Zhao YF, Zhi Y, Wang FW, Tian H, Yang Y, Ren TL (2020) Graphene-based thermoacoustic sound source. ACS Nano 14:3779–3804. https://doi.org/10.1021/acsnano.9b10020

    Article  CAS  PubMed  Google Scholar 

  3. Tong LH, Lai SK, Lim CW (2017) Broadband signal response of thermo-acoustic devices and its applications. J Acoust Soc Am 141:2430–2439. https://doi.org/10.1121/1.4979667

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hu HP, Zhu T, Xu J (2010) Model for thermoacoustic emission from solids. Appl Phys Lett 96:214101. https://doi.org/10.1063/1.3435429

    Article  ADS  CAS  Google Scholar 

  5. Venkatasubramanian R (2010) Nanothermal trumpets. Nature 463:619. https://doi.org/10.1038/463619a

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tian H, Yang Y, Li C, Mi WT, Mohammad AM, Ren TL (2015) A flexible, transparent, and ultrathin single-layer graphene earphone. RSC Adv 5:17366. https://doi.org/10.1039/C4RA16047A

    Article  ADS  CAS  Google Scholar 

  7. Aliev AE, Lima MD, Fang SL, Baughman RH (2010) Underwater sound generation using carbon nanotube projectors. Nano Lett 10:2374–2380. https://doi.org/10.1021/nl100235n

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Tu T, Ju ZY, Li YT et al (2019) A novel thermal, acoustic device based on vertical graphene film. AIP Adv 9:075302. https://doi.org/10.1063/1.5096220

    Article  ADS  CAS  Google Scholar 

  9. Wei YH, Qiao YC, Jiang GY et al (2019) A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13:8639–8647. https://doi.org/10.1021/acsnano.9b03218

    Article  CAS  PubMed  Google Scholar 

  10. Wang DB, He XY, Zhao J et al (2020) Research on the electrical-thermal-acoustic conversion behavior of thermoacoustic speakers based on multilayer graphene film. IEEE Sens J 20:14646–14654. https://doi.org/10.1109/JSEN.2020.3009434

    Article  ADS  CAS  Google Scholar 

  11. Zhang P, Tang XL, Pang Y et al (2020) Flexible laser-induced-graphene omnidirectional sound device. Chem Phys Lett 745:137275. https://doi.org/10.1016/j.cplett.2020.137275

    Article  CAS  Google Scholar 

  12. Tian H, Xie D, Yang Y et al (2011) Transparent, flexible, ultrathin sound source devices using Indium Tin oxide films. Appl Phys Lett 99:043503. https://doi.org/10.1063/1.3617462

    Article  ADS  CAS  Google Scholar 

  13. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:808–816. https://doi.org/10.1038/NPHOTON.2012.282

    Article  ADS  Google Scholar 

  14. Barnes TM, Reese MO, Bergeson JD et al (2012) Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv Energy Mater 2:353–360. https://doi.org/10.1002/aenm.201100608

    Article  CAS  Google Scholar 

  15. Tian H, Wang XF, Qiao YC et al (2020) Anomalous thermoacoustic effect in topological insulator for sound applications. Appl Phys Lett 117:123502. https://doi.org/10.1063/5.0017878

    Article  ADS  CAS  Google Scholar 

  16. Gou GY, Jin ML, Lee BJ et al (2019) Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano 13:12613–12620. https://doi.org/10.1021/acsnano.9b03889

    Article  CAS  PubMed  Google Scholar 

  17. Vesterinen V, Niskanen AO, Hassel J, Helisto P (2010) Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett 10:5020–5024. https://doi.org/10.1021/nl1031869

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shen S, Chen SY, Zhang DY, Liu YH (2018) High-performance composite Ag–Ni mesh-based flexible transparent conductive film as multifunctional devices. Opt Express 26:27545–27554. https://doi.org/10.1364/OE.26.027545

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Jiang ZP, Huang WB, Chen LS, Liu YH (2019) Ultrathin is a lightweight and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt Express 27:24194–24206. https://doi.org/10.1364/OE.27.024194

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Tong LH, Liu YS, Geng DX, Lai SK (2017) Nonlinear wave propagation in porous materials based on the Biot theory. J Acoust Soc Am 142:756–770. https://doi.org/10.1121/1.4996439

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hernandez-Rosales E, Cedeno E et al (2016) Thermoacoustic and thermoreflectance imaging of biased integrated circuits: voltage and temperature maps. Appl Phys. Lett. 109:041902. https://doi.org/10.1063/1.4959828

    Article  ADS  CAS  Google Scholar 

  22. Tong LH, Ding HB, Yan JW et al (2020) Strain gradient nonlocal Biot poromechanics. Int J Eng Sci 156:103372. https://doi.org/10.1016/j.ijengsci.2020.103372

    Article  MathSciNet  Google Scholar 

  23. Tian H, Xie D, Yang Y et al (2012) Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film. Appl Phys Lett 99:253507. https://doi.org/10.1063/1.3671332

    Article  ADS  CAS  Google Scholar 

  24. Liu YH, Xv JL, Gao X et al (2017) Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energ Environ Sci 10:2534–2543. https://doi.org/10.1039/c7ee02390a

    Article  CAS  Google Scholar 

  25. Chen JP, Huang WB, Jiang ZY et al (2020) Flexible and transparent planar supercapacitor based on embedded metallic mesh current collector. J Phys D Appl Phys 53:165501. https://doi.org/10.1088/1361-6463/ab6ea4

    Article  ADS  CAS  Google Scholar 

  26. Jiang ZY, Zhao YY, Huang WB et al (2021) Hierarchically nano branch structured freestanding metallic mesh electrode for high-performance transparent flexible supercapacitor. J Alloy Compd 861:158593. https://doi.org/10.1016/j.jallcom.2020.158593

    Article  CAS  Google Scholar 

  27. Liu YH, Xv JL, Shen S et al (2017) High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J Mater Chem A 5:9032–9041. https://doi.org/10.1039/c7ta01947e

    Article  CAS  Google Scholar 

  28. Liu YH, Jiang ZY, Xv JL (2019) Self-standing metallic mesh with MnO2 multiscale microstructures for high-capacity flexible transparent energy storage. Acs Appl Mater Inter 5:24047–24056. https://doi.org/10.1021/acsami.9b05033

    Article  CAS  Google Scholar 

  29. Xv JL, Liu YH, Gao X et al (2019) Toward wearable electronics: a lightweight all-solid-state supercapacitor with outstanding transparency, foldability, and breathability. Energy Storage mater 22:402–409. https://doi.org/10.1016/j.ensm.2019.02.013

    Article  Google Scholar 

  30. Jiang ZY, Zhao SQ, Huang WB et al (2022) Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency. Opt Express 28:26531–26542. https://doi.org/10.1364/OE.401543

    Article  ADS  Google Scholar 

  31. Jiang ZY, Zhao SQ, Chen LS et al (2021) Freestanding “core-shell” AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film. Opt Express 29:18760–18768. https://doi.org/10.1364/OE.423369

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wang YD (2015) Modeling of thermoacoustic emission from porous silicon. University of Science and Technology of China, Hefei (in Chinese)

    Google Scholar 

  33. McDonald FA, Wetsel GC (1978) Generalized theory of the photoacoustic effect. J Acoust Soc Am 60:S52–S52. https://doi.org/10.1121/1.2003396

    Article  Google Scholar 

  34. Lim CW, Tong LH, Li YC (2013) Theory of suspended carbon nanotube thin film as a thermal-acoustic source. J Sound Vib 332:5451–5461. https://doi.org/10.1016/j.jsv.2013.05.020

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51875374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Ethics declarations

Conflict of Interest

The authors declared no potential conflicts of interest concerning this article's research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, X., Zhu, F. et al. Ultrathin, Flexible and Freestanding Nickel Mesh Film for Transparent Thermoacoustic Loudspeakers. J. Vib. Eng. Technol. 12, 1037–1048 (2024). https://doi.org/10.1007/s42417-023-00892-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00892-x

Keywords

Navigation