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Abstract
Purpose  In the work there are presented results of the synthesis and additional validation of previously developed mathemati-
cal models of two different mechanical oscillators with 1 degree of freedom and harmonic excitation: (i) with magnetically 
modified elasticity generating a double symmetrical minimum of potential; (ii) with linear mechanical springs and with a 
one-sided limiter of motion.
Methods  In the first case, original mathematical models of non-linear magnetic springs were developed, allowing for effec-
tive and fast numerical simulations of the bifurcation dynamics of a real mechanical oscillator with Duffing type stiffness. 
In the second system, various models of impact were proposed and tested: continuous models based on the generalized 
Hunt–Crossley model and original discontinuous versions of this model based on the restitution coefficient and with a finite 
duration of the collision. In the frame of the present work, a system consisting of magnetic springs used in the first system 
and obstacles from the second oscillator was built and investigated. The system was built as a new configuration of a special 
universal stand used in the earlier studies mentioned here.
Results and Conclusion  In the current study, the parameters of the models identified in previous studies on two different 
systems were used, the synthesis of which is the current work. A very good agreement was obtained between numerical 
simulations and experimental data, thus demonstrating the correctness and effectiveness of the adopted mathematical models.

Keywords  Duffing oscillator · Bifurcations · Magnetic spring · Linear rolling bearing · Impact oscillator · Impact 
modeling · Finite impact duration · Restitution coefficient · Discontinuous impact model

Introduction

Mathematical modeling of a single-degree-of-freedom 
oscillator system with a mechanical spring and a motion 
limiter, as well as a periodically forced one, is a fairly 

common topic of consideration in scientific publications. 
Commonly used mathematical models of impact treated as 
soft and based on Hertzian contact stiffness and various 
damping models [1–8] do not allow for a precise descrip-
tion of the real impact. The precursors of works on this 
type of systems are articles by Shaw and Holmes [9, 10]. 
For example, in the work [1], an oscillator with one degree 
of freedom with periodic excitation and perfectly plas-
tic impacts was analyzed. Discontinuous mappings that 
undergo period doubling bifurcations and other complex 
transitions resulting from discontinuities were used for 
modeling and analysis. Peterka and Vacik proposed in 
the work [2] an explanation of the rules of transition to 
chaotic motion and an illustration of both periodic and 
chaotic motion. In turn, Foale and Bishop [3] presented 
evidence that discontinuous bifurcations occurring in 
oscillators with shocks can be interpreted as the limits 
of classical bifurcations occurring in smooth dynamical 
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systems. In works [11–13], some modifications of the soft 
impact models known from the literature were proposed, 
assuming a simple model of resistance in a linear bear-
ing consisting of a constant component, dependent on the 
direction of movement, and a component proportional 
to the velocity. In the literature devoted to the study of 
mechanical systems with impacts, one can encounter rigid, 
usually based on the coefficient of restitution [1–6, 9, 10, 
14–17] and soft models of impacts. Soft models assume 
local compliance (of obstacle or bumper) at the collision 
place, usually modeled based on Hertz theory or in the 
form of spring and damper configurations. In the work 
[18], the full form of the Hunt–Crossley model [19, 20] in 
the form of F = kh(n1) + �h(n2)h(n3) was used to describe the 
impacts occurring in typical engineering devices, assum-
ing the parameters k,n1 , n2 , n3 and � as constants and with 
the aim of developing a computational tool to predict sys-
tem dynamics. Moreover, in the work [21], an attempt was 
made to build discontinuous equivalents of the previously 
tested models of continuous impacts over time (so-called 
soft impacts) assuming the compliance of the obstacle. 
These models assume a step change in velocity based on 
the coefficient of restitution. Special algebraic functions 
were proposed to describe the dependence of the restitu-
tion coefficient on the velocity before the impact, as well 
as taking into account the duration of the impact, also 
described by special functions.

In addition, due to the widespread use of permanent 
neodymium magnets, the experimental magneto-mechan-
ical system built as part of this work turns out to be a 
very good tool for testing, among others, magnetic vibra-
tion damper [22], magnetic springs as elements absorbing 
vibration energy [22, 23] or generating non-linear elastic-
ity [24–26], etc. In the work [26], an oscillator with one 
degree of freedom and stiffness similar to that of Duffing 
oscillators. A pair of neodymium magnets set perpendicu-
larly to the direction of motion in a position corresponding 
to the static equilibrium position of the oscillator with 
mechanical springs generated a system with two potential 
minima. Original stiffness functions were proposed, the 
parameters were identified and the obtained models were 
validated for five different versions of stiffness models.

In the present paper, it has been shown that the pro-
posed continuous and discontinuous impact models [18, 
21] and the adopted model of non-linear elasticity [26] 
can be used to study the bifurcation dynamics of an oscil-
lator with a stiffness generating a double potential mini-
mum and a one-sided motion limiter. The main purpose 
of the work was to compare the results obtained from the 
experiment and numerical calculations, proving that the 
mathematical model, which combines a new discontinu-
ous impact model and a special odd form of the rational 
function describing the magnetic force, is a good tool for 

analyzing the dynamic behavior of the proposed oscillator 
configuration.

The work is divided into seven sections, where “Experi-
mental Rig” is entirely devoted to the description of the con-
struction and operation of the proposed experimental setup, 
and “Physical and Mathematical Model” presents mathe-
matical modeling with particular emphasis on the proposed 
model of the magnetic interaction force and the comparison 
of the continuous and discontinuous model of the impact. In 
“Model Versions and Their Parameters”, different versions 
of the proposed models are described along with identifica-
tion methods and their parameters are given. “Experimental 
and Numerical Investigations” presents results of validation 
of the proposed mathematical models made by numerical 
and experimental analysis of bifurcation dynamics of the 
investigated system. The last section presents concluding 
remarks and indicates the prospects for further applications 
of the adopted models.

Experimental Rig

The experimental stand designed and constructed for the 
purposes of the research is shown in Fig. 1. It is a one-
degree-of-freedom oscillator with an unilateral limiter 
(bumper) of motion (10) and inertial excitation generated 
by unbalanced mass m0 (1), moving at a constant radius of 
e = 60mm , placed on the disk (12) rotating in the axis of 
the servo motor (13). The main part of the oscillator is the 
cart (6) integrated with the Hall sensor (7), moving along 
the profile rail (8), at the top of which a magnetic tape (9) 
is glued in a specially made groove. The repeatability of 
angular position of the unbalanced mass (1) is achieved 
by using a slot optocoupler (14). The special non-linear 
stiffness is realized by the simultaneous action of mechani-
cal springs (2) fixed in holders (11) placed on the trolley 
(3) and supports (15) and a pair of repulsive neodymium 

Fig. 1   Experimental stand of the investigated oscillator
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magnets (4) placed transversely to the movement of the 
cart, one of which is mounted on the cart and the other on 
the fixed plate (5).

Physical and Mathematical Model

Figure 2 shows the physical model of the real system 
(Fig. 1) investigated in this work. It is a combination of 
models of a one-degree-of-freedom oscillator with mag-
netic elasticity generating stiffness similar to Duffing type 
stiffness [26] and an oscillator with a one-sided motion 
limiter [21] The position of the cart of mass m is described 
by the x coordinate. It is assumed that in the initial posi-
tion x = 0 (zero position) the forces of the springs with 
stiffness described as k/2 are balanced, and the axes of 
perpendicular neodymium magnets intersect the assumed 
position of static equilibrium. In addition to the force gen-
erated by the magnetic field between the magnets, the cart 
is subjected to a resistance force of linear bearings consist-
ing of a viscous component cẋ and a non-linear smoothed 
version of the rolling resistance with a model equivalent 
to the model of dry friction T ẋ√

ẋ2+𝜖2
 , where T denotes a 

constant value of the resistance force and � is a regulariza-
tion parameter of a function which is the equivalent of the 
signum function.

The inertial excitation force f0𝜙̇
2 sin𝜙 (where: 

f0 = m0e ) is realized by rotation of the unbalanced mass 
m0 on the radius e with the angular frequency 𝜙̇ . In the 
presented configuration, the adjustable distance in the 
equilibrium position x = 0 between the right-side stops is 
xI , and between the faces of the magnets is z.

Mathematical Model of the System with Hunt–
Crossley Model of Collisions

Based on our previous works [18, 21, 26], we start the 
mathematical description of the physical concept pre-
sented in Fig. 2 with assumption of compliant impacts 
against the obstacle

where the total resistance force FR is given by the formula

and FSAi is the total elastic force coming from mechanical 
and magnetic springs, where Ai(i = 1, 3, 5,… , n) according 
to [26] is a special nth degree model of elasticity

where ai and bi are some constant parameters.
The impact force is modelled based on the following 

function (generalized Hunt–Crossley model) [21]

where kI and b are the coefficients of stiffness and damping, 
h is the obstacle penetration, while n1 , n2 and n3 are other 
parameters of the contact with obstacle.

Mathematical Model of the System 
with Discontinuous Model of Collisions

In this section, we present, based on work [21], a discon-
tinuous equivalent of the Hunt–Crossley impact model 
described in “Mathematical Model of the System with 
Hunt–Crossley Model of Collisions”. It is proposed opera-
tion of this model in the following three regimes: 

	 I.	 Free motion of the oscillator, where the following 
governing equations of motion is valid: 

(1)mẍ + FR(ẋ) + FSAi(x) + FI(x, ẋ) = m0e𝜙̇
2 sin𝜙,

(2)FR(ẋ) = cẋ + T
ẋ√

ẋ2 + 𝜖2
,

(3)FSAn(x) = kx +
a1x + a3x

3 +⋯ + anx
n

1 + b2x
2 + b4x

4
⋯ + bn+1x

n+1
,

(4)FI =

⎧⎪⎨⎪⎩

kI(h
n1 + hn2b�ḣ�n3 signḣ)

for hn1 + hn2bḣ�ḣ�n3−1 ≥ 0

0

for hn1 + hn2bḣ�ḣ�n3−1 < 0,

(5)h =

{
x − xI for x ≥ xI
0 for x < xI ,

(6)
mẍ + FR(ẋ) + FSAi(x) = m0e𝜙̇

2 sin𝜙

for x < xI .

Fig. 2   The physical model of the investigated oscillator
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	 II.	 Temporary sticking of the oscillator and obstacle 
during a collision in which the following equation is 
satisfied 

	 III.	 Permanent contact of the cart and obstacle, when the 
following relations holds 

In addition, the models in Eqs. 6, 7, and 8 are supplemented 
by the following dependencies

where Timp is the impact duration; �− the restitution coef-
ficient; t− , v−(t+, v+)—time and velocity at the end of mode 
I (model II). Ti0 , 0 , Ti1 , �1 , �Ti , �� are the system param-
eters. At the end of mode I, when an obstacle is detected 
(x = xI), there is always a transition to mode II. At the 
end of mode II, for t = t+ , there is checked the condition: 
|v+| < 𝜖v and m0e𝜙̇

2 sin𝜙 − FSAi(x) > 0 , where �v the thresh-
old value of the post-impact velocity (it was assumed to 
be equal to 10−4 m∕s ). If this condition is true, the system 
goes to mode 3, otherwise, returns to mode 1 with the ini-
tial speed v+ . At the end of mode 3, when the normal force 
m0e𝜙̇

2 sin𝜙 − FSAi(x) crosses zero, the system goes back to 
mode 1 with zero initial velocity. For more details see the 
work [21].

Model Versions and Their Parameters

The experimental stand examined in the current work was 
created on the basis of a system with Duffing stiffness, 
which was the object of research in the work [26], by add-
ing to it the same buffer as used in the works [18, 21]. For 
this reason, in the current work, certain types of models 
with all their parameters (concerning the excitation ampli-
tude, resistance in bearings and total stiffness) were used 
on the basis of work [26] and relevant fragments of models 
from works [18, 21] concerning only impacts of the oscil-
lator against the bumper were added to them, with the 
parameter xI = 0 . No additional parameter identification 
was performed here. Thus, based on the work [26], the 
total mass of the oscillator m = 6.73766 kg (determined on 

(7)x(t) = xI for t < t+.

(8)x(t) = xI ��� m0e𝜙
2 sin𝜙 − FSAi(x) > 0.

(9)t+ = t− + Timp,

(10)v+ = −� ⋅ v−,

(11)Timp(v
−) = (Ti0 − Ti1) exp(−�Ti|v−|) + Ti1,

(12)�(v−) = (�0 − �1) exp(−��|v−|) + �1,

the basis of direct measurements) and the regularization 
coefficient of the model � = 10−6 m∕s are assumed here. 
Other parameters adopted here were identified in that work 
on the basis of selected periodic orbits, for selected ver-
sions of the model of elastic forces, which are presented 
in Table 1. The models A1 and A3 denote different degrees 
of model of elasticity (3). The parameters of the impact 
models are taken from works [18, 21], where they were 
identified on the basis of vanishing free vibrations with 
impacts. The selected versions of these models used in 
the current work with the corresponding parameters are 
presented in Tables 2 and 3. The versions of Hunt–Cross-
ley models are denoted by the symbols C and C1, where 
the exponents n1 = n2 = 1.5 are not identified. In the case 
of model C, the obstacle stiffness kI belongs to the set of 
estimated parameters. In model C1, it is assumed to be 
high (kI = 1012 N∕m3∕2), thus the impacts can be regarded 
as infinitely short events. Discontinuous models of impacts 
are denoted by symbol G and H. In the case of model H 
all the parameters are estimated, i.e. it is assumed vari-
able impact duration and restitution coefficient. In model 
G some of the parameters are predefined and not identified, 
so that the model G is characterized by a variable coef-
ficient of restitution but the impact duration time is equal 
to zero. In the current work, the combined model will be 
validated, which has been marked as XY, where X = A1 , 
A3 means the type of stiffness model, and Y = C,C1,G,H 
means the impact model.

Table 1   Model versions with parameter values for the system without 
obstacle [26]

Parameter/model A1 A3

m0e [kgm] 0.025152 0.02476
k [N∕m] 1115.2 1149.9
c [Ns∕m] 12.373 13.324
T [N] 1.2267 1.1002
a1 [N∕m] − 1763.5 − 1982.3
a3 [N∕m

3] – −4.1578106

b2 [1∕m
2] 4907.6 10,578

b4 [1∕m
4] – − 0.044258

Table 2   Hunt–Crossley model versions of impact with the corre-
sponding parameter values [18, 21]

Model/
param-
eter

kI × 10−8 N∕m3∕2 b m3∕2−n2−n3 sn3 n1 n2 n3

C 2.3983 0.8485 1.5 1.5 0.18667
C1 104 0.84208 1.5 1.5 0.18619
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Experimental and Numerical Investigations

In the current section, we present the results of experimental 
validation of mathematical models presented in “Physical 
and Mathematical Model” and “Experimental and Numeri-
cal Investigations”. The first panel of Fig. 3 (EF) exhibits 
experimental forcing, i.e. time history of angular velocity 
𝜙̇(t) = 𝜔(t) applied in the experiment. It increases slowly 
and linearly until it reaches 25.1 rad/s after time 2800 s, 
after which it quickly drops to zero. The chart also shows a 
window showing the time and frequency ranges, for which 
the other bifurcation plots presented in this figure were 
made. They are only made for increasing frequency �(t) . 
The next panel (Experiment-EF) shows the experimental 
bifurcation diagram, in which the position of the real sys-
tem was sampled at moments of time meeting the condition 
� = 2�i (i ∈ Z), where � is the angular position of the unbal-
ance mass, for slowly increasing frequency of experimental 
forcing according to the plot situated above. The next plot 
(Model A1C-EF) shows the same kind of bifurcation dia-
gram obtained numerically for the model A1C and for the 
same forcing time history as used in the experiment (EF). 
In the next panel (Model A1C-CF), there is a numerical 
bifurcation diagram for the same model (A1C), but for a 
differently constructed time history of forcing frequency 
changes, called here “classical changes” (CF). It means that 
the bifurcation diagram consists of 300 Poincaré sections 
computed for 300 constant values of the forcing frequency � 
uniformly spanned over the interval (0, 25) rad/s. Each Poin-
caré map consists of 70 points corresponding to the steady 
state motion after ignoring the 20 points of the transient 
motion starting from the final state of the previous Poincaré 
map. This diagram was made in order to compare it with the 
diagram obtained for the continuous change of excitation 
frequency and check whether the speed of this continuous 
change is not too high. Comparing the two diagrams (Model 
A1C-EF and Model A1C-CF), it can be concluded that there 
are no significant differences between them and that the con-
tinuous change of excitation frequency used in the experi-
ment is appropriate. Therefore, the remaining four panels 
of Fig. 3 exhibit bifurcation diagrams of the same type (for 
“classical changes” of bifurcation parameter) and for other 
versions of the model (Model A1C1-CF, Model A3C-CF, 
Model A1G-CF, Model A1H-CF). The observation of the 
bifurcation diagram in Fig. 3 allows us to conclude that cer-
tain phenomena occur in the real system and in all versions 

of the models shown here and they are as follows. For small 
excitation frequencies, the oscillator is in a position close to 
x = 0 , it does not oscillate or the oscillations are so small 
that they are invisible. With an increase in the excitation fre-
quency, for its certain value, there is observed a sudden jump 
to a periodic orbit with a period equal to the period of forc-
ing. Subsequently, this periodic attractor undergoes period 
doubling bifurcation and then goes into a chaotic regime. 
Only in the case of models A1C1 and A1G, this regime is 
interrupted by a very wide periodic window, and in the case 
of other models and in the real system, this window does 
not occur. However, for each mathematical model and dur-
ing the experiment, this chaotic region ends in an inverted 
period doubling cascade and returns to a period-1 orbit. In 
general, there is a very good agreement between the bifur-
cation dynamics of particular mathematical models and the 
dynamics observed during the experiment. Only the models 
A1C1 and A1G show slightly different dynamics and less 
agreement with the experiment. It is worth noting that both 
of these models are characterized by an infinitely or negli-
gibly short duration of the impact. So the duration of the 
impact turns out to be important in modeling the dynamics 
of the system. Both of the applied models of elastic forces 
(A1 and A3) work well in modeling the tested system.

Concluding Remarks

In this work we validated previously developed models of 
non-linear elasticity containing an odd form of a rational 
function and impact models, continuous—based on the gen-
eralized Hunt–Crossley model and discontinuous—based on 
a special algorithm switching between different regimes and 
functions describing the restitution coefficient and impact 
duration.

The main and original achievements of the work include: 

1.	 Construction of an original experimental system with 
non-linear stiffness and a one-sided motion limiter, 
which is a combination of systems previously studied 
by the authors.

2.	 Development of a mathematical model of the tested sys-
tem by combining previously used model.

3.	 Successful validation of the mathematical model, paying 
attention to its different versions and elements.

Table 3   Discontinuous model 
versions of impact with the 
corresponding parameter values 
[21]

Model/param-
eter

�0 �1 ��s∕m Ti0 ms Ti1 ms �Ti s/m

G 0.6242 0.0000 0.5061 0 – 0
H 0.6150 0.1350 0.6594 6.2193 4.0689 2.1733
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Fig. 3   Time history of angular 
velocity 𝜙̇(t) = 𝜔(t) applied in 
the experiment-(EF); experi-
mental bifurcation diagram 
(Experiment-EF); numerical 
bifurcation diagram for the 
A1C model obtained for the 
experimental forcing (Model 
A1C-EF); five numerical bifur-
cation diagrams obtained for 
the“classic”change in forcing 
frequency (Model A1C, A1C1, 
A3C, A1G, A1H-CF)
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4.	 Demonstrating that the impact duration is an important 
element of impact modeling in the tested system.

5.	 Particularly noteworthy is the positive validation of the 
discontinuous model, presented for the first time in [21], 
for the next configuration of the experimental setup.

From pt. 4 it results that the application of the classical dis-
continuous impact model based on the restitution coefficient 
and infinitely short duration of the impact cannot lead to 
satisfactory results when simulating real systems with col-
lisions. A certain solution may be to use here a model with a 
compliant obstacle of the Hunt–Crossley type, but it involves 
a greater computational effort. An alternative is the discon-
tinuous model with finite duration of the collision tested in 
this work, which, as shown, allows to obtain results as good 
as the Hunt–Crossley model.

Acknowledgements  This work has been supported by the Pol-
ish National Science Centre, Poland under the grant OPUS 18 no. 
2019/35/B/ST8/00980. This article has been completed while the third 
author, Mohammad Parsa Rezaei, is the Doctoral Candidate in the 
Interdisciplinary Doctoral School at the Lodz University of Technol-
ogy, Poland.

Data availability  Data will be made available on reasonable request.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Shaw SW, Holmes P (1983) Periodically forced linear oscilla-
tor with impacts: chaos and long-period motions. Phys Rev Lett 
51:623–626. https://​doi.​org/​10.​1103/​PhysR​evLett.​51.​623

	 2.	 Peterka F, Vacík J (1992) Transition to chaotic motion in mechani-
cal systems with impacts. J Sound Vib 154(1):95–115. https://​doi.​
org/​10.​1016/​0022-​460X(92)​90406-N

	 3.	 Foale S, Bishop SR (1994) Bifurcations in impact oscillations. 
Nonlinear Dyn 6(3):285–299. https://​doi.​org/​10.​1007/​BF000​
53387

	 4.	 Budd C, Dux F, Cliffe A (1995) The effect of frequency and clear-
ance variations on single-degree-of-freedom impact oscillators. 
J Sound Vib 184(3):475–502. https://​doi.​org/​10.​1006/​jsvi.​1995.​
0329

	 5.	 Peterka F (1996) Bifurcations and transition phenomena in an 
impact oscillator. Chaos Solitons Fractals 7(10):1635–1647. 
https://​doi.​org/​10.​1016/​S0960-​0779(96)​00028-8. Non-linear 
Dynamic and Chaos in Mechanical Systems

	 6.	 Hinrichs N, Oestreich M, Popp K (1997) Dynamics of oscillators 
with impact and friction. Chaos Solitons Fractals 8(4):535–558. 
https://​doi.​org/​10.​1016/​S0960-​0779(96)​00121-X. Nonlinearities 
in Mechanical Engineering

	 7.	 Peterka F (2003) Behaviour of impact oscillator with soft and 
preloaded stop. Chaos Solitons Fractals 18(1):79–88. https://​doi.​
org/​10.​1016/​S0960-​0779(02)​00603-3

	 8.	 Ing J, Pavlovskaia E, Wiercigroch M, Banerjee S (2008) Experi-
mental study of impact oscillator with one-sided elastic constraint. 
Philos Trans R Soc A: Math Phys Eng Sci 366(1866):679–705. 
https://​doi.​org/​10.​1098/​rsta.​2007.​2122

	 9.	 Shaw SW, Holmes PJ (1983) A periodically forced piecewise 
linear oscillator. J Sound Vib 90(1):129–155. https://​doi.​org/​10.​
1016/​0022-​460X(83)​90407-8

	10.	 Shaw SW, Holmes PJ (1983) A periodically forced impact 
oscillator with large dissipation. J Appl Mech 50(4a):849–857. 
https://​doi.​org/​10.​1115/1.​31671​56. https://​asmed​igita​lcoll​
ection.​asme.​org/​appli​edmec​hanics/​artic​le-​pdf/​50/​4a/​849/​54572​
25/​849_1.​pdf

	11.	 Kaźmierczak M, Kudra G, Awrejcewicz J, Wasilewski G (2015) 
Mathematical modelling, numerical simulations and experimental 
verification of bifurcation dynamics of a pendulum driven by a 
dc motor. Eur J Phys 36(5):055028. https://​doi.​org/​10.​1088/​0143-​
0807/​36/5/​055028

	12.	 Witkowski K, Kudra G, Wasilewski G, Wiądzkowicz F, 
Awrecjewicz J (2017) Experimental and numerical investigations 
of one-degree-of-freedom impacting oscillator. DAB &M of TUL 
Press, Łódź

	13.	 Awrejcewicz J, Supeł B, Lamarque C-H, Kudra G, Wasilewski 
G, Olejnik P (2008) Numerical and experimental study of regular 
and chaotic motion of triple physical pendulum. Int J Bifurc Chaos 
18(10):2883–2915. https://​doi.​org/​10.​1142/​S0218​12740​80221​59

	14.	 Peterka F (2000) Dynamics of double impact oscillators. Facta 
Universitatis 2(10):1177–1190

	15.	 Wagg D, Bishop S (2000) A note on modelling multi-degree of 
freedom vibro-impact systems using coefficient of restitution 
models. J Sound Vib 236(1):176–184. https://​doi.​org/​10.​1006/​
jsvi.​2000.​2940

	16.	 Luo G, Xie J, Guo S (2001) Periodic motions and global bifur-
cations of a two-degree-of-freedom system with plastic vibro-
impact. J Sound Vib 240(5):837–858. https://​doi.​org/​10.​1006/​
JSVI.​2000.​3259

	17.	 Mehran K, Zahawi B, Giaouris D (2012) Investigation of the near-
grazing behavior in hard-impact oscillators using model-based TS 
fuzzy approach. Nonlinear Dyn 69(3):1293–1309

	18.	 Witkowski K, Kudra G, Wasilewski G, Awrejcewicz J (2019) 
Modelling and experimental validation of 1-degree-of-freedom 
impacting oscillator. Proc Inst Mech Eng Part I: J Syst Control 
Eng 233(4):418–430. https://​doi.​org/​10.​1177/​09596​51818​803165

	19.	 Jian H, Jisheng M, Dalin W, Shijie D (2015) Research on collision 
with low restitution coefficient. In: 2015 4th International confer-
ence on advanced information technology and sensor application 
(AITS), pp 84–87. https://​doi.​org/​10.​1109/​AITS.​2015.​30

	20.	 Hunt KH, Crossley FRE (1975) Coefficient of restitution inter-
preted as damping in vibroimpact. J Appl Mech 42(2):440–445. 
https://​doi.​org/​10.​1115/1.​34235​96. https://​asmed​igita​lcoll​ection.​
asme.​org/​appli​edmec​hanics/​artic​le-​pdf/​42/2/​440/​54546​60/​440_1.​
pdf

	21.	 Witkowski K, Kudra G, Awrejcewicz J (2022) A new discon-
tinuous impact model with finite collision duration. Mech Syst 
Signal Process 166:108417. https://​doi.​org/​10.​1016/j.​ymssp.​2021.​
108417

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.51.623
https://doi.org/10.1016/0022-460X(92)90406-N
https://doi.org/10.1016/0022-460X(92)90406-N
https://doi.org/10.1007/BF00053387
https://doi.org/10.1007/BF00053387
https://doi.org/10.1006/jsvi.1995.0329
https://doi.org/10.1006/jsvi.1995.0329
https://doi.org/10.1016/S0960-0779(96)00028-8
https://doi.org/10.1016/S0960-0779(96)00121-X
https://doi.org/10.1016/S0960-0779(02)00603-3
https://doi.org/10.1016/S0960-0779(02)00603-3
https://doi.org/10.1098/rsta.2007.2122
https://doi.org/10.1016/0022-460X(83)90407-8
https://doi.org/10.1016/0022-460X(83)90407-8
https://doi.org/10.1115/1.3167156
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/50/4a/849/5457225/849_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/50/4a/849/5457225/849_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/50/4a/849/5457225/849_1.pdf
https://doi.org/10.1088/0143-0807/36/5/055028
https://doi.org/10.1088/0143-0807/36/5/055028
https://doi.org/10.1142/S0218127408022159
https://doi.org/10.1006/jsvi.2000.2940
https://doi.org/10.1006/jsvi.2000.2940
https://doi.org/10.1006/JSVI.2000.3259
https://doi.org/10.1006/JSVI.2000.3259
https://doi.org/10.1177/0959651818803165
https://doi.org/10.1109/AITS.2015.30
https://doi.org/10.1115/1.3423596
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/42/2/440/5454660/440_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/42/2/440/5454660/440_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/42/2/440/5454660/440_1.pdf
https://doi.org/10.1016/j.ymssp.2021.108417
https://doi.org/10.1016/j.ymssp.2021.108417


744	 Journal of Vibration Engineering & Technologies (2024) 12:737–744

1 3

	22.	 Afsharfard A (2018) Application of nonlinear magnetic vibro-
impact vibration suppressor and energy harvester. Mech Syst Sig-
nal Process 98:371–381. https://​doi.​org/​10.​1016/j.​ymssp.​2017.​05.​
010

	23.	 Nguyen HT, Genov D, Bardaweel H (2019) Mono-stable and bi-
stable magnetic spring based vibration energy harvesting systems 
subject to harmonic excitation: dynamic modeling and experimen-
tal verification. Mech Syst Signal Process 134:106361. https://​doi.​
org/​10.​1016/j.​ymssp.​2019.​106361

	24.	 Bednarek M, Lewandowski D, Polczyński K, Awrejcewicz J 
(2021) On the active damping of vibrations using electromagnetic 
spring. Mech Based Des Struct Mach 49(8):1131–1144. https://​
doi.​org/​10.​1080/​15397​734.​2020.​18193​11

	25.	 Polczyński K, Wijata A, Awrejcewicz J, Wasilewski G (2019) 
Numerical and experimental study of dynamics of two pendulums 

under a magnetic field. Proc Inst Mech Eng Part I: J Syst Control 
Eng 233(4):441–453. https://​doi.​org/​10.​1177/​09596​51819​828878

	26.	 Witkowski K, Kudra G, Wasilewski G, Awrejcewicz J (2022) 
Mathematical modelling, numerical and experimental analysis 
of one-degree-of-freedom oscillator with duffing-type stiffness. 
Int J NonLinear Mech 138:103859. https://​doi.​org/​10.​1016/j.​ijnon​
linmec.​2021.​103859

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ymssp.2017.05.010
https://doi.org/10.1016/j.ymssp.2017.05.010
https://doi.org/10.1016/j.ymssp.2019.106361
https://doi.org/10.1016/j.ymssp.2019.106361
https://doi.org/10.1080/15397734.2020.1819311
https://doi.org/10.1080/15397734.2020.1819311
https://doi.org/10.1177/0959651819828878
https://doi.org/10.1016/j.ijnonlinmec.2021.103859
https://doi.org/10.1016/j.ijnonlinmec.2021.103859

	Mathematical Modelling and Experimental Validation of Bifurcation Dynamics of One-Degree-of-Freedom Oscillator with Duffing-Type Stiffness and Rigid Obstacle
	Abstract
	Purpose 
	Methods 
	Results and Conclusion 

	Introduction
	Experimental Rig
	Physical and Mathematical Model
	Mathematical Model of the System with Hunt–Crossley Model of Collisions
	Mathematical Model of the System with Discontinuous Model of Collisions

	Model Versions and Their Parameters
	Experimental and Numerical Investigations
	Concluding Remarks
	Acknowledgements 
	References




