
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies (2023) 11:2155–2165 
https://doi.org/10.1007/s42417-022-00693-8

ORIGINAL PAPER

Analytical Approximate Solutions of a Magnetic Spherical Pendulum: 
Stability Analysis

Galal M. Moatimid1 · T. S. Amer2 

Received: 23 January 2022 / Revised: 16 August 2022 / Accepted: 2 September 2022 / Published online: 28 September 2022 
© The Author(s) 2022

Abstract
Purpose Under certain conditions, the governing equation of motion of magnetic spherical pendulum results in a cubic-
quintic Duffing equation. The current work aims to achieve an analytical bounded procedure of this equation.
Methods This may be accomplished by grouping nonlinear expanded frequency, Homotopy perturbation method (HPM), 
and Laplace transforms. Therefore, this technique helps disregard the appearance of the source of secular terms.
Results To validate the obtained explanation, based on the method of Runge–Kutta of the fourth order (RK4), the numerical 
calculation is performed. On the other hand, the linearized stability analysis is carried out to explore stability neighbouring 
the fixed points. Moreover, the time history of the attained solution and the corresponding phase plane plots are obtained to 
expose the influence of the affecting factors in the behavior of motion.
Conclusions A comparison between both solutions gives a good matching between them, which explores the worthy accuracy 
of the approach in question. Several phase portraits are planned toward illustrating the different types of stability and insta-
bility near the equilibrium points, where the relation between the expanded and the cyclotron frequency (that are generated 
by the magnetic field) is characterized for diverse standards of the azimuthal angular velocity.

Keywords Magnetic Spherical Pendulum · Duffing Equation · Homotopy Perturbation Method · Expanded Frequency 
Analysis · Linearized Stability

Introduction

Pendulum prototypes are very convenient for investigation 
explanations in practical engineering. They represent a phys-
ical process, which can be thought of as condensed educa-
tional models; on behalf of instance, see manufacturing and 
spaceships [1]. Additionally, they contribute to demonstrat-
ing the essential nonlinear dynamic approaches. Therefore, 
pendulum models have provided a large number of appli-
cations in dynamic systems and, more recently, nonlinear 
controlling. For these aspects, see Beruno [2] and refer-
ences cited therein for the historical background. Beruno [2] 

introduced novel nonlinear problem-solving methodologies 
and techniques and they are used to solve the fundamental 
issue of a massive solid rotating around a fixed rotation, i.e. 
the set of Poisson-Euler equations. The magnetic spheri-
cal pendulum in this paper is represented by a mechani-
cal system that consists of a spherical pendulum, whereas 
its bob is electrically charged as a point charge. Simulta-
neously, it moves under the influence of the gravitational 
force along through a constant magnetic field. The concept 
of the magnetic spherical pendulum in the literature of clas-
sical mechanics stands for the configuration of a charged 
particle. It is suspended by a weightless rigid rod from a 
fixed point, moving in a sphere, and subjected to constant 
uniform gravity together with a uniform magnetic field, see 
Refs. [3] and [4]. Actually, this is an old topic since it was 
established throughout the problems of classical mechanics, 
which has been constructed in a number of textbooks [5] 
and [6]. This literature proved that the full quantitative solu-
tions of the governing equation require the use of the elliptic 
functions. Porta and Montiel [7] obtained a solution for the 
equation of motion of the spherical pendulum with magnetic 
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monopolies located at the origin of the coordinates. Gener-
ally, they applied the simplest contemporary methodology 
for the magnetic spherical pendulum. Yildirim [8] worked 
on a master thesis on the same topic. He concluded that the 
Poisson formalism represents the most efficient category for 
classical mechanics. Cushman and Bates [9] showed that the 
mechanically magnetic spherical pendulum is situated in the 
center of the sphere and acted upon by gravitational forces 
just on the particle as well as a homogeneous force owing to 
magnetic monopolies.

Linear/nonlinear differential equations have gained con-
siderable interest given their wide-ranging applications. 
They have an important influence on many branches of pure 
and applied mathematics, applied mechanics, engineering, 
analytical chemistry, biology, quantum physics, astronomy, 
and many other applications. For many decades, researchers 
paid attention to the analytical solutions of these equations. 
Therefore, it has become increasingly important in all tra-
ditional and recently developed methods for solving these 
equations. There are many numerical and analytical methods 
used in solving nonlinear oscillator equations. Kyzioł and 
Okniński [10] examined such approximate solutions using 
the theory of algebraic curves. Precisely, they determined 
periodic steady-state solutions for the Duffing-Van der Pol 
oscillator (DVdP) to determine the amplitude’s dependence 
on the forcing frequency. Rawashdeh and Maitama [11] pro-
posed the natural decomposition method (NDM) for solving 
the Riccati differential equation together with two nonlinear 
differential equations. This method gave a more significant 
improvement over the existing techniques. Zeghdoudi et al. 
[12] gave a brief description and some examples of the con-
cept of symmetry classification of the Liénard equation. 
Beléndez et al. [13] examined a one-dimensional, undamped, 
and unforced cubic-quintic Duffing oscillator. In view of 
comprehensive elliptic integral, of first and second kinds 
involving the Jacobian functions, they obtained a solution. 
Mosta and Sibanda [14] presented an original presentation 
of a continuous linearization technique to the traditional Van 
der Pol (VdP) and Duffing oscillator. They demonstrated a 
planned scheme may be employed to attain limit cycle and 
bifurcation figures of the controlling equation of motion. Cui 
et al. [15], based on the Homotopy analysis method, obtained 
and examined the stable and unstable bounded solutions of 
VdP. By means of the Floquet theory, they analyzed the sta-
bility analysis. Moreover, their consequences are authorized 
to view the spectral analysis. Kudryashov [16] examined the 
force-free Duffing-Van der Pol equation. He used Painlevé’s 
test for the considered equation. Furthermore, he demon-
strated the effectiveness of the technique by obtaining the 
first integral and the complete solution of the second-order 
differential equation. Chandrasekhar et al. [17] displayed 
that the force-free DVdP, under certain restrictions, is com-
pletely integrable. Furthermore, they described a method for 

constructing a conversion that eliminates the time-dependent 
element of the first integral and yields a coherent approach. 
Cherevko et al. [18] examined a comprehensive prototypical 
of DVdP that describes the relaxation oscillation in the lim-
ited mind hemodynamics. They investigated the equation for 
diverse patients seeing the individualities of their container 
schemes. In a study on oscillatory systems with pure cubic 
nonlinearity, chains with two and more degrees of freedom 
are the main focus before elastic systems were discussed 
[19]. A periodic force was used to activate a purely nonlinear 
and damped two-mass oscillator [20]. When numerical solu-
tions were checked with analytically generated ones, they 
agreed well.

Characteristically, many problems arising in a wide array 
of technical grounds involving models of computational 
chemistry, hydrodynamics, and theoretical physics have been 
all effective in utilizing ordinary/partial differential equa-
tions. Unfortunately, few of these problems may have exact 
solutions. Consequently, the other methods may be solved 
in the light of the numerical techniques or along with the 
analytical perturbation ones. Generally, the analytical solu-
tions are preferred, where all the classical perturbation meth-
ods depend upon the presence of minor parameters in the 
given problem. Really, the absence of this parameter yields 
more restrictions in the phenomenon in question. Conse-
quently, a novel perturbation procedure has been proposed 
by He [21–25]. This technique is addressed by the Homot-
opy perturbation method (HPM). The straightforwardness 
of this approach is attributed to the fact that it needs no 
small parameter. Therefore, it is a promising and powerful 
approach, and it can remain utilized in various classes in 
the field of differential equations. The procedure for con-
sidering the HPM is as follows. The problem is divided into 
two portions. They are divided by an embedding restric-
tion, which is called the embedded Homotopy parameter. 
Ayati and Biazar [23] used the HPM to find an exact solu-
tion or a closed approximate solution for some problems. 
They showed that the convergence of this approach has been 
briefly elaborated. El-Dib and Moatimid [24] modified the 
HPM to obtain perfect explanations for linear as well as 
nonlinear differential equations. The main concept in the 
process depends on guessing an appropriate guessing func-
tion, regularly, like a power series. All subsequent orders, 
because of the cancelation of the first order, are likewise 
neglected. Consequently, the residual zero-order solution 
will be confirmed to become a precise one. Moatimid [28] 
utilized the HPM to attain analytical bounded solutions, in a 
smoothly vertically rotated parabola, a sliding bead moves. 
In [29–31], the authors investigated the vibrating motion 
of two different dynamical systems using the HPM. Once 
more, in view of the importance of the Duffing oscillator in 
numerous occurrences in practical engineering, Moatimid 
[32] examined the stability analysis of a parametric Duffing 
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oscillator. Utilizing the HPM, an analytical bounded solution 
of motion is attained.

Considering the foregoing consideration and the possible 
uses in sciences, technology, biological issues, and applied 
mechanics, the present study focuses on analyzing the 
magnetic spherical pendulum. Therefore, the current work 
focuses on examining this problem. To facilitate the presen-
tation, the remaining of the manuscript is systematized as 
follows: Sect. 2 emphasizes on the methodology of the con-
trolling equation. In Sect. 3, a modified analytical bounded 
approximate solution originating from the knowledge of the 
nonlinear extended frequency is introduced. In addition to 
the representation of the time history of this solution, the 
accompanying phase plane plots are used to highlight the 
influence of the affecting factors of the motion behavior. The 
evaluation of this solution and the numerical one reveals a 
good matching, indicating that the chosen approach is accu-
rate. For various values of the azimuthal angular velocity, 
the relationship between the expanding frequency and the 
cyclotron one is plotted to show the possible values of the 
expanding frequency. The linearized stability analysis is 
depicted throughout Sect. 4. The phase portraits are drawn 
in this Section. The findings of the whole examination are 
summarized as concluding remarks in Sect. 5.

Methodology of the Problem

A magnetic spherical pendulum is considered a mechanical 
system; whereas its bob is electrically charged as a point of 
mass m and carries a positive charge e . It is attached to a 
weightless rigid rod of length a , simultaneously, the other 
end is hanged at a fixed point o . It moves under the action 
of a constant gravitational field g together with a constant 
magnetic field B that acts in the negative z− direction. This 
uniform magnetic field comes from the magnetic monopole, 
which is located at the center of the sphere. The physical 
model is drawn as in Fig. 1

The Cartesian coordinates (x, y, z) are used for clarity in 
such a way that the position vector of the pendulum is given 
as follows: 

The velocity is given in the following form:

Therefore, the kinetic energy K.E. of the pendulum 
produces

Because the charged pendulum moves in a uniform mag-
netic field B = −B k , the Lagrangian function of the problem 
must include the magnetic term V . eA

c
 , where A is the magnetic 

potential and c is the light speed in the medium under consid-
eration. In other words, the potential energy due to the mag-
netic field is given by V . eA

c
; for instance, see Eyal and Goldstein 

[33]. Keep in mind that the following relationship between 
both the magnetic field B and the magnetic potential A is given 
by: B = ∇ ∧ A . As known, the uniform magnetic field has a 
practical importance. One may show that one of the possibili-
ties of the vector potential is A =

1

2

(
B ∧ r

)
 . It follows that A 

may be written as follows:

From Eqs. (2) and (4), one gets the value of (V . eA)
/
c as

At this end, the charged pendulum is affected by two poten-
tial energies; namely, the gravitational potential energy, which 
is represented by the term −mga cos � and the magnetic poten-
tial energy, which is exemplified by the term −� . B , where 
� =

e

2c

(
r ∧ V

)
.

From Eqs. (1) and (2), one finds

Therefore, the magnetic potential energy is given by the 
term − ea2B sin

2 𝜃

2c
�̇�.

The total energy of the charged pendulum is then specified 
as:

(1)r = a sin � cos� i + a sin � sin� j − a cos � k

(2)

V = a
(
�̇� cos𝜑 cos 𝜃 − �̇� sin 𝜃 sin𝜑

)
i

+ a
(
�̇� sin𝜑 cos 𝜃 + �̇� sin 𝜃 cos𝜑

)
j

+ a�̇� sin 𝜃 k

(3)K.E. =
ma2

2

(
�̇�2 + �̇�2 sin

2 𝜃
)

(4)A =
1

2
Ba

(
sin� i − cos� j

)
sin �

(5)
V . eA

c
= −

1

2c
eBa2�̇� sin

2 𝜃

(6)(𝜇)z =
ea2 sin2 𝜃

2c
�̇�

Fig. 1  Sketch of the model under consideration
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Finally, the Lagrangian of the pendulum is then given by:

where, the cyclotron frequency �C is defined as: �C =
eB

mc
.

It should be noted that 1∕c appears in the Gauss system of 
units, meanwhile, it will be absent in SI System. Therefore, 
the system having two degrees of independence. Therefore, 
the governing equations of motion along the coordinates � 
and � , respectively, may be written as:

and

where h is a constant of integration to really be estab-
lished based on the initial conditions.

As seen, Eq. (8) shows that the system movement is unaf-
fected by the surroundings of the azimuthal angle �.

On the contrary, Eq. (10) reads �̇� = 𝜔C +
h

ma2 sin2 𝜃
 , there-

fore, Eq. (9) then becomes

To facilitate the current investigation, one may consider 
that the horizontal angular velocity may be uniform, namely, 
�̇� = 𝜎 . In this case, Eq. (9) then becomes

To simplify the governing equation of motion (12), for 
more convenience, it needs to be interpreted in a non-dimen-
sional manner. To achieve this goal, consider a as a charac-
teristic length and 

√
a∕g equally as a characteristic time. It 

follows that Eq. (12) may be written as follows:

On using the Taylor expansion, for small values of � , one 
may consider sin � ≅ � − �3∕3!,cos � ≅ 1 − �2∕2! . Equa-
tion (13) then becomes

(7)(K.E.)T =
ma2

2

(
�̇�2 + �̇�2 sin

2 𝜃
)
−

ea2B sin
2 𝜃

c
�̇�

(8)

L
(
𝜃, �̇�, �̇�

)
= ma2

[
�̇�2

2
+ sin

2 𝜃

(
�̇�2

2
− �̇�𝜔c

)]
+ mga cos 𝜃

(9)�̈� +
g

a
sin 𝜃 −

(
�̇�2 − 2𝜔C�̇�

)
sin 𝜃 cos 𝜃 = 0

(10)ma2 sin2 𝜃
(
�̇� − 𝜔C

)
= h

(11)�̈� +
g

a
sin 𝜃 −

[(
h

ma2 sin2 𝜃

)2

− 𝜔2

C

]
sin 𝜃 cos 𝜃 = 0

(12)�̈� +
g

a
sin 𝜃 −

(
𝜎2 − 2𝜎𝜔C

)
sin 𝜃 cos 𝜃 = 0

(13)�̈� + sin 𝜃 −
(
𝜎2 − 2𝜎𝜔C

)
sin 𝜃 cos 𝜃 = 0

(14)�̈� + 𝜔2𝜃 − 𝛼𝜃3 + 𝛽𝜃5 = 0

where �2 = 1 + �(2�C − �),� =
1

3

(
�(2�C − �) +

1

2

)
,  

and � =
�

12
(2�c − �).

To the real natural frequency, it should be considered 
that: � ≤ 2�C . The parameters ω, α and β are specified as 
the natural frequency, cubic stiffness, and quintic stiffness 
parameters, respectively.

All terms in the governing equation that is given in (14) 
may be treated as non-dimensional ones, and all these coef-
ficients are of a positive nature. Equation (14) is known as 
a free force undamped cubic-quintic Duffing oscillator. It is 
important to note that the nonlinear behaviors of a flexible 
elastic are modeled using a cubic-quintic Duffing oscillator, 
see Lenci et al. [34]. For nonlinear wave systems, see Huang 
and Zhang [35]. On behalf of the transmission of a small elec-
tromagnetic pulsate in a nonlinear medium, see Maimistov 
[36], then for the Duffing temporal oscillator, see Hamdan and 
Shabaneh [37].

A Periodic Analytical Approximate Solution

As aforementioned, the governing equation of motion (14) is 
a nonlinear one. Essentially, it does not have any exact solu-
tion. Consequently, it must be examined by a perturbation 
technique. As seen in our previous works [28] and [32], the 
traditional HPM yields secular terms, which are unfortunately 
physically undesired, and we do not have any authority to 
cancel them. Therefore, a modification of the classical HPM, 
namely the expanded nonlinear frequency, is needed. For this 
purpose, the Homotopy equation in this case may be formu-
lated as follows:

To achieve a special solution, for a sake of simplicity, one 
may be based on the initial criteria as follows:

By means of the previous comprehended works [28] and 
[32], the natural frequency �2 may be expanded as follows:

In accordance with the systematic HPM, the dominant 
function �(t) may be extended in the following way:

(15)�̈� + 𝜔2𝜃 + 𝜌
(
𝛽𝜃5 − 𝛼𝜃3

)
= 0, 𝜌 ∈ [0, 1]

(16)�(0) = 0 and �(0) = 1

(17)Ω2 = �2 +

n∑
i=1

�i�i

(18)�(t;�) =

n∑
i=1

�i�i(t)
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Taking Laplace transforms (LT) of the combinations of Eqs. 
(15–17), one gets

Employing the inverse Laplace transforms to Eq. (19), one 
finds

Consequently, the nonlinear part may be formulated by way 
of:

where

Exploiting the development of the dominant function �(t;�) 
that is given in Eq. (18), then associating the coefficient of like 
initial � on both borders, we catch the following orders:

(19)
LT{�(t;�)} =

1

s2 + Ω2
−

�

s2 + Ω2
LT

{
��3(t;�) − ��5(t;�) −

(
�1 + ��2

)
�(t;�)

}

(20)
�(t;�) =

1

Ω
sin Ωt − �L−1

T

[
1

s2 + Ω2
LT

{
��3(t;�)

−��5(t;�) −
(
�1 + ��2

)
�(t;�)

}]

(21)

N

(
n∑
i

�i�i

)
= N0(�0) + �N1(�0, �1)

+ �2N2(�0, �1, �2) + ...

+ �nNn(�0, �1, �2, ...�n)

(22)Nn(�0, �1, �2, ...�n) =
1

n!
lim
�→0

�

��n
N

(
n∑
i

�i�i

)

(23)�0 ∶ �0(t) =
1

Ω
sin Ωt

(24)� ∶ �1(t) = −L−1
T

[
1

s2 + Ω2
LT

{
��3

0
− ��5

0
− �1�0

}]

Inserting Eq.  (23) into Eq.  (24), the uniform effective 
development needs a withdrawal of the secular relationships. 
Actually, because of the nature of the initial conditions, the 
coefficient of the function cos Ωt is identical. By contrast, the 
elimination of the coefficient of the function sin Ωt yields

The conclusion is that the uniform expression of �1(t) 
becomes

Once more, using Eqs. (23) and (26) as a starting point in 
the second order of Eq. (20), one finds that the elimination of 
the secular term results in

Therefore, the suitable solution �2(t) then becomes

Considering the HPM, the approximate bounded expan-
sion of the cubic-quintic Duffing problem that is given in 
Eq. (14) may be written as follows:

(25)�1 =
10� − 12�Ω2

16Ω4

(26)
�1(t) =

1

384Ω7

{
4
(
9�Ω2 − 10�

)
sin Ωt

+3
(
5� − 4�Ω2

)
sin 3Ωt − � sin 5Ωt

}
.

(27)�2 =
1

6144Ω10
(1980�2 − 2880��Ω2 + 1008�2Ω4)

(28)

�2(t) =
1

12288Ω13
{
1

12
(9599�2 − 13500��Ω2

+ 4464�2Ω4) sinΩt − 3(110�2 − 151��Ω2

+ 48�2)Ω4 sin 3Ωt +
1

3
(130�2 − 153��Ω2

+ 36�2Ω4) sin 5Ωt +
1

24
(72��Ω2

− 95�2) sin 7Ωt +
�2

8
sin 9Ωt}.

Fig. 2  Represents a the 
AS and b the phase plane of 
the AS at � = 0.1,�c = 1 and 
Ω = 1.00879
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where the functions �0(t), �1(t) and �2(t) are dominant 
functions given by Eqs. (23), (26) and (28), correspondingly. 
This approximate solution (29) demands that the mathemati-
cal function arguments remain of actual real nature. For this 
objective, and by putting Eqs. (17), (25) and (27) together, 
one obtains a sixth-order equation in Ω2 as follows:

(29)�(t) = lim
�→1

(
�0(t) + ��1(t) + �2�2(t) + ...

)

The necessary stability requirements need that Ω2 is real 
and positive. This equation has three positive roots with 
values (Ω = 0.259951, 0.41857, 1.00879).

Now, we are going to represent the time history of 
acquired analytical solution (AS) in (29) graphically to 
reveal the behavior of the examined problem. Therefore, 

(30)
Ω12 − �2Ω10 +

3 �

4
Ω8 +

5 �

8
Ω6 −

21 �2

128
Ω4 +

15 ��

32
Ω2 −

165

512
�2 = 0

Fig. 3  Represents a the 
NS and b the phase plane of 
the NS at � = 0.1,�c = 1 and 
Ω = 1.00879

Fig. 4  Reveals the compari-
son between the AS and NS 
when � = 0.1,�c = 1 and 
Ω = 1.00879 : a time histories of 
both solutions and b the phase 
plane of both solutions

Fig. 5  Describes the com-
parison between the AS and NS 
when �c = 1 and Ω = 1.00879 : 
a at � = 0.01 and b at � = 0.2
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Fig.  2 Is graphed for one of the roots of the Eq.  (30) 
i.e. Ω = 1.00879 and when �c = 1 and � = 0.1 using our 
computer codes of Mathematica software (12.0.0.0). An 
inspection of a part (a) of this figure shows that the behav-
ior of the attained solution has the form of periodic wave, 
which yields an induction about the steady-state manner of 
this solution. On the other hand, the phase plane diagram 
of the expression �(t) versus the function ��(t) is plotted 
in part (b) of Fig. 2, to obtain a symmetric closed curve, 
which asserts that the solution has a stable manner.

On the other hand, the numerical solution (NS) of the 
governing Eq. (14) and the corresponding phase plane 
plot, at the same considered values of �c , are represented 
graphically in parts (a) and (b) of Fig. 3 respectively. 
The comparison between AS and NS is graphed in parts 
of Fig. 4 to explore the consistency between them, which 

exhibits better accuracy of the utilized modified HPM. 
Moreover, the effects of other values of � on the behavior 
of both solutions are presented in the parts (a) and (b) of 
Fig. 5 when � = 0.01and � = 0.2 , respectively. Figure 6 
is calculated from the same preceding values of � and 
�c when Ω = (0.259951, 0.41857, 1.00879) to examine 
the behavior of the AS with the various values of Ω . It's 
worthy to mention that the time histories of the AS with 
various values of Ω having periodic waves. For the plot-
ted waves, one can observe that the frequency of oscil-
lations rises, the amplitudes of the waves decrease, and 
the wavelengths decrease with the increase of Ω values, 
as seen in part (a). The corresponding phase plane curves 
are plotted in part (b) to detect the steady-state behavior 
of the obtained results. Therefore, the energy of the sys-
tem depends on the value of the amplitude that change 
with the frequency. Consequently, it can be utilized in 
engineering applications that use the spherical pendulum.   

Figure  7 examines the influence of the values of 
�(= 0.01, 0.1, 0.2) on the curves of the plane �c Ω in 
accordance with Eq. (30). We have two curves coincid-
ing with each other at Ω = 0 for each value of Ω to yield 
three positive roots plus their additive inverses. The inter-
section of these curves with �c axis � = 0.01, � = 0.1 and 
� = 0.2 will satisfy the equality �c = �∕2 to gain the val-
ues �c = 0.005,�c = 0.05 and �c = 0.1 , respectively.

Linearization of Stability

The generalized linear methodology has utilized the autono-
mous system of the Duffing cubic-quintic equation that is 
given by (14). Through this whole Section, the linearized 
approach, using the expression correlates �̇� = 𝜑 Eq. (14) is 
transformed to the subsequent organization:

where

It follows that

Therefore, the following five fixed points exist:

(31)�̇� = f (𝜃,𝜑) and �̇� = h(𝜃,𝜑)

(32)f (�,�) = � and h(�,�) = −�2� + ��3 − ��5

(33)f (�0,�0) = 0 and h(�0,�0) = 0

(34)
�0 = 0

�2�0 − ��3
0
+ ��5

0
= 0

}

(35)
�0 = 0

�0 = ±

�
�±

√
�2−4��2

2�

⎫⎪⎬⎪⎭

Fig. 6  a Illustrates the AS and b describes the phase plane of the AS 
at � = 0.1 and �c = 1 when Ω(= 0.259951, 0.41857, 1.00879)

Fig. 7  Presents �c Ω plane at �(= 0.01, 0.1, 0.2)
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The second equation of (34) is represented graphically in 
parts (a), (b) and (c) of Fig. 8 to show the relation between 
�0 and � for different values of �(= 0.01, 0.1, 0.2) when 
�c = 1,�c = 2 and �c = 3 , correspondingly. It remains clear 
that there are three roots of this equation for each value of � , 
in which one of them is zero that corresponds to the trivial 
solution of this equation and the other two roots are equal 
with different signs at any value of �.

It follows from (35) that nearby are equilibrium points, if 
the following circumstances are met:

The accompanying Jacobian matrix is obtained by 
expanding the functions f (�,�) and h(�,�) as well as around 

(36)
𝛼2 − 4𝛽𝜔2 ≥ 0

𝛼±
√
𝛼2−4𝛽𝜔2

2𝛽
> 0

�

the fixed points with the Taylor series, keeping just the linear 
term in mind as follows:

The determinant of the Jacobian matrix must be vanished 
at the fixed points:

From the above matrix, the eigenvalues are as follows:

Clearly, when all eigen values of the Jacobian which is 
computed near the fixed points possess negative real com-
ponents, it follows that the equilibrium is stable. On the 

(37)J =

(
0 1

−�2 + 3��2
0
− 5��4

0
0

)

(38)
|||||

−Λ 1

−�2 + 3��2
0
− 5��4

0
−Λ

|||||
= 0

(39)Λ1,2 = ±

√
−�2 + 3��2

0
− 5��4

0

Fig. 8  Shows ��0 plane when �(= 0.01, 0.1, 0.2) : a at �c = 1 , b at �c = 2, and c at �c = 3
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contrary, the equilibrium point becomes unstable, if at least 
one root of the eigen values has a positive real portion. To 
characterize the stability and instability maps, it is much 

more useful to study a set of randomly selected systems. 
The details may be found in our previous work [38]. The 
numerical calculations are carried out throughout Table 1. 

Concluding Remarks

Numerous academics who interested in analyzing nonlin-
ear differential equations really would like to attain ana-
lytic as well as numerical approaches. Certain approaches 
such as Pade’ approximations, differential transforma-
tion technique, Adomian decomposition process, har-
monic balancing procedure, and so on, are deeply used 
by these authors. In fact, the cubic-quintic Duffing oscil-
lator is among the most advanced mathematical models 
for understanding a mechanical system with only one 
degree of freedom. Aimed at these foundations, the exist-
ing research looks at analytic approximation as well as 
stability configuration. Undesirably, the classical HPM 
fails to ignore the existence of the source of the secular 
terms. Therefore, to arrive this objective, a mixture of a 
modified HPM and Laplace transforms has been provided. 
Consequently, the attained approximate solution takes on 
a periodic structure as time passes. For different values 
of the azimuthal angular velocity, numerical validations 
are done to verify the analytical approximation result. 
With the rise of these values, the distinction among them 
becomes evident. A regular solution, on the other hand, 
is achieved using the concept of the nonlinear expanded 
frequency examination, in which it is graphically displayed 
versus the cyclotron one to illustrate the positive effect of 
the specified rotational velocity on its behavior. Indeed, 
this strategy is characterized by its simplicity, power, and 
clarity. Along with this method, a characterized equation 
is attained and numerically solved. Additionally, the sta-
bility behavior neighboring the fixed points is examined. 
The phase portraits are planned for suitability to guarantee 
the mechanisms of stability and instability near the fixed 
points. Generally, the present work final observations may 
be described as follows:

• The mathematical procedure of the expanded frequency 
results in

• The periodic, regular expansion via an adapted, 
expanded frequency is given in Eq. (17) and plotted 

Table 1  Summarizes the fixed 
points, nature of the eigenvalues 
as well as the stability/
instability behaviors

Sample selected scheme Equilibria point Nature of the Eigenvalues Stability/Unstability

1 � = 0.2, �C = 3.0 (0, 0) Pure imaginary
Λ1,2 = ±1.882 i

A stable center
See Fig. 9

2 � = 0.01, �C = 2.0 (±2.62, 0) Real, and different signs
Λ1,2 = ±1.1.36

Stable node
See Fig. 10

Fig. 9  Shows a stable center

Fig. 10  Shows a stable node
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through some various representations to show the 
action of the different parameters on the motion.

• The bounded approximate solution given in 
Eq. (29).

• The estimated importance of the nonlinear 
expanded frequency given in Eq.  (30) and is 
graphed versus the cyclotron one to demonstrate 
the positive impact of the specified values of angu-
lar velocity on its behavior.

• Lengthways the linearization stability theory, one gets

• The equilibrium points are attained from Eqs. (34) 
and (39). Furthermore, the standards of the eigen-
values are found in Eq. (39).

• Table 1 illustrates the different types of the values 
of the eigenvalues, and hence the nature of stabil-
ity/instability.

• Two figures of the phase portraits, conforming to 
the diverse nature of the eigenvalues, are plotted.
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