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Abstract
Background The paper presents modeling of space manipulators whose structures are composed of rigid and flexible compo-
nents. Due to their applications for variety of servicing missions, their dynamics and attitude are described using quaternions. 
Parameterization by the quaternions does not share Euler angles’ drawbacks and is computationally more efficient. Another 
challenge is the motion equations derivation method.
Methods Due to poor scalability of Lagrange method equations, authors decided to model the space robot as a set of links 
subjected to position constraints.The elastic effects are modeled with the assumed mode method successfully applied to a 
variety of ground manipulators with flexible links. The constrained dynamics approach and the assumed mode method are 
combined to derive a comprehensive space manipulator dynamics. Its dynamic model is readily scalable in terms of number 
of both rigid and flexible robotic arms and links.
Conclusions The paper contributes to the development of effective quaternion-based constrained dynamics for space struc-
tures equipped with flexible links. The theory is illustrated by simulation studies of an example of a space manipulator 
attitude dynamics.

Keywords Quaternion-based modeling · Flexible links spacecraft · Free-floating spacecraft

Introduction

Servicing dedicated spacecraft equipped with robotic manipula-
tors, which we refer to later as the space manipulators become 
more widely used in variety of applications like on-orbit ser-
vicing, asteroid mining, active space debris removal and space 
mining. Examples of such missions can be found in [1] and 
references there. Servicing spacecraft equipped with the space 
manipulator is a complex dynamic system embedded into dis-
ciplines of mechanics and aerospace engineering. The dynam-
ics between the space manipulator and the base-spacecraft are 
coupled, the system requires nonlinear control systems to meet 
capture or manipulation goals, ensure mission completion as 

well as disturbance and vibration compensations. Effects of 
the space manipulator operations on the orientation and posi-
tion of the base were studied in many works; see e.g. [2]. Spe-
cifically, effects of fast-moving space manipulator mounted on 
small base-spacecraft were critical to position and orientation 
disturbances of the base as discussed in [3, 4]. There are thus 
increasing needs for the spacecraft with space manipulator 
applications, and reasons for which engineers developing space-
craft control and sensor systems, communication systems and 
operation plans need to understand their complex dynamics. 
However, dynamics modeling and control of the space manipu-
lator are not part of a typical mechanics, aerospace or control 
activities. Literature dedicated to dynamics modeling, control, 
application and performance analysis of the space manipula-
tor is vast; see example of the overview in [5]. Generally, two 
commonly used methods for modeling the space manipulator 
are based on the recursive Newton–Euler and the Lagrangian 
methods. In [6], a presentation of the Newton–Euler dynamics 
for developing motion equations of the space manipulator is 
provided. When the space manipulator is equipped with flexible 
links, equations of motion can be developed using the direct 
path method [7]. The Lagrangian method based upon system 
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kinetic and potential energies, uses a set of generalized coordi-
nates describing link positions. However, the most often Euler 
angles are used for the space manipulator reorientation descrip-
tion. They can be not convenient for descriptions of complex 
space manipulator maneuvers.

When controlling motion of the space manipulator sys-
tem, the dynamic coupling between its base and the manipu-
lator may become dominant. The base may not be actuated 
and then any space manipulator motion causes its rotation 
and translation. From the point of view of most servicing 
tasks, it is not desirable. A detailed overview of methods 
of how to handle dynamic couplings in space manipulator 
systems for control applications can be found in [8].

Considering free space manipulator rotations in space, 
quaternions are the more suitable parameters for the attitude 
description. Not only they do not share Euler angles’ draw-
backs, but they are also computationally more efficient. How-
ever, implementation of quaternions reveals other challenges 
due to nonlinear relations with respect to space manipula-
tor angular velocities and a constraint equation they add to 
the space manipulator dynamics. Introduction of quaternion 
parameterization to the Lagrange based dynamics modeling 
can be found in some works but the derivation procedure was 
developed for ground fixed manipulators subjected to position 
constraints only [9]. In the recent paper [10], authors proposed 
the space manipulator modeling developing the modified 
method of a dynamically equivalent manipulator (DEM) in 
the quaternion parameterization. Originally, the DEM method 
is developed using the Euler angles for kinematic description 
of the space manipulator made equivalent to the fixed ground 
one; see [10] for details and references. The modified DEM 
method enables development of the space manipulator kin-
ematics and dynamics models in quaternions. It delivers a tool 
for conducting reliable simulation studies and tests for various 
maneuvers and mission scenarios for the space manipulator and 
it offers an attractive control design tool. However, preliminary 
research revealed that the DEM approach is a bit limited and is 
not suitable for modeling the space manipulator equipped with 
flexible links. The reason is that effective scaling of elasticity 
effects along with the entire system geometry is challenging 
and may require intensive computation times. Each link scaling 
changes not only its length and mass but also location of the 
mass center. It changes the modal characteristics of the flexible 
link. Even assuming that a complex cross-section shape chang-
ing along the link length could retain its characteristics, there 
are still two factors preventing from the proper transformation 
from the space manipulator to its equivalent DEM. The first 
is the magnitude of deflection. Having the same modal state, 
the transverse deflection has a different value due to a different 
length of the link. The second is that the DEM method does 
not conserve the linear acceleration and the equivalent motion 
of an equivalent manipulator does not excite vibrations in the 
same way as the original space manipulator. For these reasons, 

a free-floating model of the space manipulator was selected and 
elastic links are added to its structure.

The novelty of the paper consists of development of a gen-
eral comprehensive and scalable model of the space manipula-
tor with multiple arms consisting of multiple links including 
flexible links.

The paper is organized as follows. After Introduction, 
“Space Manipulator Constrained Dynamics Modeling using 
Quaternion Description” presents the space manipulator rigid 
part of dynamics modeling using the constrained mechanical 
system approach in quaternion parameterization. In “Mod-
eling a Space Manipulator with a Flexible Link”, the elastic 
link model is presented. “Modeling of the Space Manipula-
tor Flexible Link” develops the complete space manipulator 
model equipped with a flexible link. Thus, the rigid and elastic 
sub-structures are combined into one system dynamic model. 
In “Numerical Study of the Rigid-Flexible Space Manipulator 
Model”, a simulation study illustrates the dynamics behavior of 
the space manipulator with the flexible arm. The paper closes 
with conclusions and the reference list.

Space Manipulator Constrained Dynamics 
Modeling Using Quaternion Description

In this section, a model of a rigid, free-floating space 
manipulator is derived resulting in the constrained dynam-
ics. Equations of motion for the rigid space manipulator are 
derived, e.g. in [11], using Euler’s angles for the attitude 
description. Due to the reasons discussed in “Introduction”, 
this description is not the most suitable for space system 
maneuvers. Therefore, authors have introduced the quater-
nion representation to model the space manipulator dynam-
ics. Two concepts have been researched. The first attempt 
was to apply the Lagrange equations using quaternions to 
derive the space manipulator equations of motion. This 
approach, however, occurred to be inefficient for increasing 
number of the space manipulator links. Due to poor scal-
ability, authors decided to model the space manipulator as 
a set of links, which are separate bodies subjected to posi-
tion constraints. In this formulation each link possesses six 
degrees of freedom and its state is described by the follow-
ing 13-element state vector.

 where ri(t) are inertial, translational coordinate vectors of 
the center of mass of a body i, vi(t) = ṙi(t) is inertial trans-
lational velocity vector, qi(t) = qi

I
B
(t) is a quaternion rotat-

ing from the body to the inertial frame, �i(t) is the angular 
velocity vector determined in the body frame.

(1)xi(t) =
[
rT
i
(t) vT

i
(t) qT

i
(t) �T

i
(t)

]T
,
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The Lagrange multipliers method is adopted then and 
equations governing a model composed of b rigid bodies 
are of the following form:

In Eq. (2), M(x(t)) = diag
[
m1 I1(x(t)) ... mb Ib (x(t))

]
 

is a mass matrix, B(x(t)) is a matrix satisfying the equation:

where �(x(t)) represents the position constraint equations, 
w(t) =

[
vT
i
(t) �T

i
(t)

]T , �(t) is a vector of Lagrange multipli-
ers, f (t) is a vector of forces and torques, �(x(t)) satisfies 
the equation:

The links of the space manipulator are connected by two 
constraint equations that describe a revolute joint. A position 
constraint of the form:

is needed to connect extremities of links i and j . sP
1i
(x(t)) and 

sP
1j
(x(t)) are vectors from the centers of mass of links i and j 

to the joint location. Another equation is required to con-
strain the rotational motion to a single axis. It has the form:

The vectors sP
2i
(x(t)) and sP

2j
(x(t)) describe joints rotation 

vectors of links i and j . Equation (6) preserves that those 
axes are parallel. The combined Eqs.  (5) and (6) fully 
describe the revolute joint connection between links i and j
.

The free-floating regime of the space manipulator motion 
requires the conservation of angular and linear momentum, 
which form the holonomic and non-holonomic constraint 
equations, respectively:

In (7) and (8), r���
i

(t) stands for a position of a body with 
respect to system’s center of mass and it is expressed in the 
inertial reference frame, b indicates the number of bodies. 
Constrained dynamic system models, when solved numeri-
cally, tend to exhibit unstable solutions and the instabilities 
increase with the simulation time. To stabilize the solution 
for the space manipulator dynamics, the Baumgarte numeri-
cal stabilization method is used [12]. It requires that the 

(2)
[
M(x(t)) B(x(t))T

B(x(t)) O

][
ẇ(t)

�(t)

]
=

[
f (t)

�(x(t))

]
.

(3)�̇(x(t)) = B(x(t))w(t) + �t(x(t)) = 0,

(4)�̈(x(t)) = B(x(t))ẇ(t) − �(x(t)) = 0.

(5)�1(x(t)) = ri(t) + sP
1i
(x(t)) − rj(t) − sP

1j
(x(t)) = 0,

(6)�2(x(t)) = sP
2i
(x(t)) × sP

2j
(x(t)) = 0.

(7)
∑b

i=1
mivi(t) = p0,

(8)

∑b

i=1

(
mi

(
r���
i

(t) × vi(t)
)
+ qi

I
B
(t)⊗

(
Ii(x(t))�i(t)

)
⊗ qi

I
B

∗
(t)
)
= L0.

differentiated constraint Eqs. (5) and (6) are augmented as 
follows:

In (9), � and � are the stabilization gains which shall 
be selected for the simulation. For the non-holonomic con-
straint, it is enough that only the first gain is applied. The 
constraint equation in the form (9) secures the constraints 
satisfaction during the space manipulator model motion. 
With the Baumgarte method introduced, Eq. (2) turns into:

The matrix differential Eq. (10) describes the rigid, multi-
link, free-floating space manipulator. This dynamics will be 
combined with an elastic space manipulator link model in 
“Modeling a Space Manipulator with a Flexible Link”.

Modeling of the Space Manipulator Flexible 
Link

The flexible link behavior is discretized to efficiently include 
it into the space manipulator system. Comparison of effec-
tiveness for modeling two commonly used models, i.e. 
assumed mode method (AMM) and finite element method 
(FEM) can be found in [13] and [14]. The latter paper rec-
ommends the AMM for a uniform cross-section link and 
recommends it as the more suitable for numerical simula-
tions. The AMM is then chosen to be implemented to the 
space manipulator dynamics model derivation in this paper. 
The behavior of a flexible link can be described by a finite 
number of vibration modes. The mode shapes are obtained 
as solutions of Euler–Lagrange partial differential equation 
(Euler–Bernoulli beam theory) with proper boundary condi-
tions [15]:

 where x(t) is the coordinate along the beam length, �(x(t)) 
describes deflection perpendicular to x , E is the elastic mod-
ulus, I is the second moment of area of the beam’s cross-
section, � is the mass per unit length, q(x) is an external 
transverse load.

In the flexible link model, each mode is described by its 
state �i(t) . The physical deflection is the product of mode 
states and the relevant mode shape functions �i(x).

(9)�̈(x(t)) + 2��̇(x(t)) + �2�(x(t)) = 0.

(10)

[
M(x(t)) B(x(t))T

B(x(t)) 0

][
ẇ(t)

�(t)

]
=

[
f (t)

�(x(t)) − 2��̇(x(t)) − �2�(x(t))

]
.

(11)
�2

�x(t)2

(
EI

�2�(x(t))

�x(t)2

)
= −�

�2�(x(t))

�t2
+ q(x),

(12)w(x(t)) =
∑∞

i=1
�i(x)�i(t).
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Infinite series are not appropriate for practical applications 
so a reasonable truncation should be applied. The first trun-
cated mode should lie outside the frequency of interest e.g. the 
system bandwidth.

Modeling a Space Manipulator 
with a Flexible Link

The model for a rigid spacecraft equipped with the space 
manipulator was derived in “Space Manipulator Constrained 
Dynamics Modeling using Quaternion Description”. The 
complexity of adding elastic effects results from the complex 
nature of the satellite maneuvers when vibrations are excited 
by flexible appendage and then they are transmitted upon rigid 
parts of spacecraft. The coupling between rigid motion and 
elastic modes can be expressed by the following equation used 
in for instance in [16, 17]:

Computation of reactions exerted on the spacecraft rigid 
part are expressed by:

 where �(t) is a vector of flexible mode states, �i is the natu-
ral frequency of i-th mode, � i is the damping ratio of i-th 
mode, L(x(t)) is the modal matrix.

It should be noted that the system model size increases 
with each additional mode considered. Combining the above 
equations with the rigid part of the space manipulator model 
dynamics derived in “Space Manipulator Constrained Dynam-
ics Modeling using Quaternion Description” requires some 
care that should be taken with respect to the reference frames. 
The modal matrix L must be transformed to a frame coherent 
with accelerations. In this case, each link’s state is expressed 
in the inertial frame. This is the convenient frame to express 
accelerations, because there is no need for additional complex 
transformations. For this reason, in each simulation time step, 
the modal matrix is transformed to the inertial frame as well. 
Let us rewrite Eqs. (13) and (14) as:

(13)M(x(t))

[
r̈(t)

�̇(t)

]
=

[
F(t)

T(t)

]
− L(x(t))T�̈(t).

(14)

�̈(t) + ����
(
2�i� i

)
�̇(t) + ����

(
�2
i

)
�(t) = L(x(t))

[
r̈(t)

�̇(t)

]
,

(15)
�
M(x(t)) L(x(t))T

�⎡⎢⎢⎣

r̈(t)

�̇(t)

�̈(t)

⎤⎥⎥⎦
=

�
F(t)

T(t)

�
,

(16)

�
L(x(t)) Ik

�⎡⎢⎢⎣

r̈(t)

�̇(t)

�̈(t)

⎤⎥⎥⎦
= −����

�
2�i� i

�
�̇(t) − ����

�
�2
i

�
�(t),

Ik stands for the identity matrix of size k , which denotes 
number of flexible modes considered in the model. Combin-
ing Eqs. (10), (15) and (16), we can obtain the final rigid-
flexible space manipulator dynamics model. As an exam-
ple for simulation studies, we consider a simple model. It 
consists of a base and a two-link robotic arm. Its scheme is 
shown in Fig. 1. The space manipulator base b and the links 
li are modeled in the same way as separate six degrees of 
freedom bodies which translational and rotational states are 
described with respect to the inertial frame. Rotational joints 
ji are modelled by their constraint equation descriptions. 
The clamped-free elastic model is applied to the last link of 
the space manipulator. The first mode is introduced in both 
transverse directions.

To compose matrices properly, it has to be considered 
that the state vector in (10) includes all three bodies and the 
elastic modes are applied only to the last link. It yields

 where L
′

=
[
012×2 L

]
 . Equation (17) describes the com-

plete constrained system dynamics with the elastic link. 
Matrix B(x(t)) is of size 16 × 18 so the total number of con-
straints is 16: 5 per each link and 3 for each linear and angu-
lar momentum conservation. The total size of left-hand side 
matrix is 36 × 36. 36 states represent 18 linear and angular 
accelerations, 2 elastic modes and 16 constraints.

Numerical Study of the Rigid‑Flexible Space 
Manipulator Model

The numerical example, which illustrates the effectiveness 
of the rigid-flexible dynamics derived in the paper, is pre-
sented in this section. For clarity, the study is performed for 

(17)

⎡⎢⎢⎢⎣

�
M(x(t)) L(x(t))

′T

L(x(t))
′

I2

� �
B(x(t))T

016x2

�

B(x(t)) 016x2 016x16

⎤
⎥⎥⎥⎦

⎡⎢⎢⎣

ẇ(t)

�̈(t)

�(t)

⎤⎥⎥⎦

=

⎡⎢⎢⎣

f (t)

−����
�
2�i� i

�
�̇(t) − ����

�
�2

i

�
�(t)

�(x(t)) − 2��̇(x(t)) − �2�(x(t))

⎤⎥⎥⎦
,

Fig. 1  A two-link space manipulator model
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a case of planar motion. The model derived in the previous 
section is also compared to the analogous, but fully rigid 
space manipulator. The initial state for the space manipulator 
is with its stretched robotic arm.

All velocities and modes are equal to zero. The simulation 
lasts 5 s and the open-loop control input is applied as the 
sinusoid of the amplitude equal to 0.5 Nm and period of 1 s. 
The torque is applied to both joints and it acts in Z axis, so 
the space manipulator remains on the XY-plane. The flexible 
link first mode frequency is 5 Hz and the damping coefficient 
is equal to 3e − 2. Mass of the base is 4 kg, its inertia is 0.4 
kg m2 and the side length is equal to 1 m. Both robotic arm’s 
links are identical. They are 1 m long, their mass is 1 kg each 
and inertia equals to 0.1 kg m2.

Figure 2 presents the modal state and its derivative. At the 
beginning, the mode excites at higher frequency and later, 
it is damped and slows down to match the control input 
frequency.

These results are compared to the analogous rigid manip-
ulator behavior with the same open-loop control input. The 
top plot in Fig. 3 shows the elastic space manipulator end 
effector trajectory with respect to the end effector of the rigid 
one in the inertial frame. In the bottom plot, the absolute dif-
ference as a function of time is presented. The end effector 
trajectory differences result from two factors, i.e. different 
joint angles due to influence of the vibrating link and the 
elastic deflection itself. The links adopted for the example 

are short and the difference in magnitudes of end effector 
motions, on the top plot of Fig. 3, reaches to over 1.7 mm. 
For much longer links typical for the space manipulator, if 
precision motions of the end effector are required, the dif-
ference may matter.

Figure 4 presents the differences in the base and joints 
angles between flexible and rigid models. The differences 
lay within fraction of degree. As a reference for relative dif-
ferences the base and joint angles of the flexible case are 
shown in Fig. 5.

Conclusions and Future Research Prospects

The paper presents a complete quaternion-based constrained 
space manipulator system modeling combined with the 
assumed mode method for adding elastic effects from its 
flexible links. The rigid-flexible space manipulator dynamics 
model proved its effectiveness in numerical simulations, and 
suitability for a scalable dynamical system models deriva-
tion. The complete rigid-flexible space manipulator dynam-
ics is planned to be applied to develop a multi-link space 
manipulator model dedicated for servicing space missions. 
Also, the effectiveness of the dynamics modeling is planned 
to be verified for controller designs for space missions.

Fig. 2  Course of the flexible 
mode state and its derivative 
over the simulation
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Fig. 3  Comparison of end effec-
tors trajectories in inertial frame

Fig. 4  Comparison of base and 
joint angles between flexible 
and rigid model
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