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Abstract
Purpose  Goal for the present research is investigating the axisymmetric wave propagation behaviors of fluid-filled carbon 
nanotubes (CNTs) with low slenderness ratios when the nanoscale effects contributed by CNT and fluid flow are considered 
together.
Method  An elastic shell model for fluid-conveying CNTs is established based on theory of nonlocal elasticity and nonlocal 
fluid dynamics. The effects of stress non-locality and strain gradient at nanoscale are simulated by applying nonlocal stress 
and strain gradient theories to CNTs and nonlocal fluid dynamics to fluid flow inside the CNTs, respectively. The equilib-
rium equations of axisymmetric wave motion in fluid-conveying CNTs are derived. By solving the governing equations, the 
relationships between wave frequency and all small-scale parameters, as well as the effects caused by fluid flow on different 
wave modes, are analyzed.
Results  The numerical simulation indicates that nonlocal stress effects damp first-mode waves but promote propagation of 
second-mode waves. The strain gradient effect promotes propagation of first-mode waves but has no influence on second-
mode waves. The nonlocal fluid effect only causes damping of second-mode waves and has no influence on first-mode waves. 
Damping caused by nonlocal effects are most affect on waves with short wavelength, and the effect induced by strain gradient 
almost promotes the propagation of wave with all wavelengths.

Keywords  Nonlocal fluid dynamics · Nonlocal strain gradient theory · Fluid-conveying carbon nanotubes · Axisymmetric 
wave propagation · Elastic shell model

Introduction

Since the development of application about micro/nano-elec-
tro-mechanical systems (M/NEMS) in chemical, medicine 
and mechanical engineering, fluid transmission at micro- 
and nanotubes or channels attracts lots of research interests. 
The key factor for the design and production of such fluid 
transmission structures is the fluid–structure interaction at 
the micro- or nanoscale, especially the dynamic behavior for 
fluid-conveying CNTs [1–3].

Theoretical analysis and experimental research are two 
general approaches for studying the dynamic characteristics 
of fluid-conveying CNTs. However, dynamic experimenta-
tion at the nanoscale is quite difficult to execute and con-
trol [2]; many theoretical and numerical methods have been 
employed, including molecular dynamics simulations (MD) 
[4, 5], classical elastic constitutive models [6], and small-
scale elastic models such as the coupled stress model, nonlo-
cal elastic model and elastic strain gradient model [7–16]. 
MD is the most reasonable approach because it calculates 
the interaction between all of the atoms in the system, but 
the application of MD is limited to some complex structures, 
such as fluid-conveying systems. Classical elastic models 
could provide reasonable results without complicated cal-
culations. However, some dynamic properties predicted by 
classical models are inaccurate since the size effects at nano- 
and microscales are ignored. Therefore, continuum models 
based on small-scale theory are the most appropriate tool for 
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analysis of micro- or nanoeffects on the mechanical proper-
ties of nanostructures. One of this continuum models is the 
nonlocal elastic model proposed by Eringen [17].

Since nonlocal constitutive equation is simple for calcu-
lation, many nonlocal continuum models have been estab-
lished to study the dynamic properties of CNTs [8–16]. 
However, the nonlocal constitutive equation can only predict 
the scale effects of solids, when fluid flow inside CNT must 
be modeled by other theories, such as the slip boundary the-
ory [14–16]. Thus, some unsatisfactory results are obtained, 
because slip boundary condition is inappropriate for liquids. 
Furthermore, the nonlocal constitutive equation for solids 
is also inadequate in some cases. For example, analyses of 
high-frequency wave propagation based on nonlocal beam 
and shell models are not accurate [10].

To correct the deficiencies of the nonlocal model, Lim 
and his colleagues developed a new constitutive equation 
that coupled two kinds of scale effect caused by stress non-
locality and strain gradients in a single combined equation 
[18]. By applying this new stress/strain equation, different 
kinds of nano- and micro-scale effects caused by strain and 
stress can be analyzed together, and many numerical results 
related to the dynamic behavior of nanostructures have been 
published on the basis of this coupling nonlocal strain gradi-
ent model.

Li C and his colleague employed the nonlocal strain gra-
dient elastic models to predict the dynamic behaviors of 
nanostructures, and found the stress nonlocality causes a 
softening effect when the strain gradient leads to a stiffening 
result [19–21]. Li L et al. applied this new model to study 
the vibration behavior for fluid-filled nanotubes, while more 
exact results were obtained than other numerical simula-
tion methods [22–24]. Zeighampour et al. established beam 
and shell models based on Lim’s theory [18] to investigate 
dynamic properties of double-walled fluid-conveying carbon 
nanotubes; while the slip boundary theory is employed to 
analyze the critical fluid velocity [25–30]. However, most 
of the numerical results obtained by these slip boundary 
models are not satisfactory, since the slip boundary condi-
tion is inappropriate for nano- or microscale liquid. To over-
come this shortcomings, the authors simulated the nanoscale 
effects induced by fluid flow based on nonlocal fluid dynam-
ics [17], while the dynamic nonlocal strain gradient beam 
models for fluid-conveying CNTs were developed [28, 29]. 
It was found the dynamic performances of fluid-conveying 
CNTs predicted by the new nonlocal fluid dynamic models 
agreed more closely with Monte Carlo simulation results 
than other continuum models, including slip boundary mod-
els [31, 32]. However, the beam models fail to analyze the 
CNTs with low slenderness ratios.

To predict dynamic properties of fluid-filled CNTs with 
low slenderness ratios, a nonlocal strain gradient shell model 
is developed to study the axisymmetric wave propagation 

characteristics. The equilibrium equation of axisymmetric 
wave motion in the fluid-conveying CNTs is obtained. The 
nanoscale effects leaded by fluid flow are simulated when 
using nonlocal fluid dynamics proposed by Eringen [17]. 
Thus the stress nonlocality and strain gradient induced by 
CNT and inner fluid are fully investigated.

Dynamic Model for a Fluid‑Filled Nanotube

The fluid-conveying CNT is seen as a cylindrical shell in the 
Cartesian coordinate system, as indicated in Fig. 1, where 
fluid flow through the shell with uniform velocity U. The 
length and radius of CNT are L0 and R, respectively.

According to Lim’s theory [18], the elastic constitutive 
relation of a fluid-filled membrane shell are shown in Eqs. 
(1–3) as follows [18]:

where �x , �� , and �x� are stress components along different 
directions;�x , �� , and �x� are corresponding strain compo-
nents; and � and � denote elastic constants. The scale effects 
in Eqs. (1, 2) are calculated by the nonlocal parameter ea, 
and the strain gradient parameter l . Thus the classical consti-
tutive equations are obtained when ea = l = 0 . The internal 
forces of the shell are obtained by integrating the stress ten-
sor at the cross section of the shell as follows [33]:

where h stands for the thickness of wall for CNT. Substitut-
ing Eqs. (1–3) into Eq. (4) yields

(1)

[
1 − (ea)2∇2

]
�x = �

(
1 − l2∇2

)(
�x + ��

)
+ 2�

(
1 − l2∇2

)
�x,

(2)

[
1 − (ea)2∇2

]
�� = �

(
1 − l2∇2

)(
�x + ��

)
+ 2�

(
1 − l2∇2

)
��

(3)�x� = 2��x� ,

(4)Nx,N� ,Nx� ,N�x = ∫
−h∕2

h∕2

(
�x, �� , �x� , ��x

)
dz,

Fig. 1   Shell model of fluid-conveying CNT in the Cartesian coordi-
nate system
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where � = E∕2(1 + �), � = E�
/(

1 − �2
)
 and � = 2�x� . The 

parameters E,� and � stand for Young’s modulus, Pois-
son’s ratio and shear strain, respectively. Since the bending 
moments are negligible for a membrane cylindrical shell, 
the dynamic equilibrium equations for a fluid-conveying 
nanotube in the axial, circumferential and radial directions 
( x , � , and r ) are [34]

where t stands for the variable of time, �f  and �c are the 
mass density for fluid and CNT, respectively. Considering 
the geometric relationships under axisymmetric conditions 
( �∕�� = 0 ), we have the following:

where u , v and w are displacements in the x, θ, and r direc-
tions, respectively. Using Eq. (11), Eqs. (8–10) simplify to
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1
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�t2
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N�

R
+ �f

R

2
U2 �

2w

�x2
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(11)�x = �u
/
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/
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(12)�ch
�2u

�t2
−

�Nx
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= 0,

(13)�ch
�2v

�t2
−
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= 0,

Equations (12–14) are axisymmetric governing equations 
of motion for fluid-conveying CNTs based on membrane 
cylindrical shell theory. Here, the nanoscale effects con-
tributed by CNTs are measured by stress nonlocallity and 
strain gradient, as shown in Eqs. (5–7). However, the scale 
effects leaded by fluid flow inside the CNTs are not negligi-
ble. Since slip boundary effect is inappropriate for liquids, 
the nonlocal fluid dynamic theory developed by Eringen is 
an acceptable option. According to nonlocal fluid dynamics 
principles, flow velocity,U , inside a nanotube is calculated 
as follows [17]:

where

In Eqs. (15, 16), � is the fluid viscosity coefficient, P is the 
pressure gradient, and (ea)f stands for the nonlocal parameter 
for the fluid. Considering Eqs. (5–7), Eqs. (12–14) change as

Equations (15–19) are the governing equations of axisym-
metric free vibration of fluid-conveying nanotubes on the 
basis of nonlocal fluid dynamic and nonlocal strain gradi-
ent. Obviously, Eq. (18) is not coupled with Eqs. (17, 19) in 
such a way because the torsional wave here is independent 
with the waves at longitudinal and radial direction. Now, if 
we only consider the axisymmetric wave motion governed 
by the coupled dynamic equations in terms of u and w, we 
yield the following expression [35]:
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(20)u = uei(kx−�t),
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where i =
√
−1 . Substituting Eqs. (20, 21) into Eqs. (17, 

19), we obtain

Equations (22, 23) can be expressed as following:

where

The existence of a non-zero solution for Eq. (24) requires

Employing the dimensionless form below:

Equation (24) reduces into dimensionless form as follows:
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where

By solving Eq. (26), the influence of scale effects on 
dynamic behaviors such as axisymmetric wave propaga-
tion and damping can be investigated in detail.

Results and Discussion

The dynamic characteristics of fluid-conveying CNTs 
could be investigated based on Eqs. (23–28). Some physics 
constants and parameters are defined as P = 1 × 103 Pa m−1; 
R = 1 × 10−8  m; h = 0.045 × 10−9  m; μ = 1 × 106  Pa·s; 
L0 = 1 × 10−9 m; E = 1.0 × 1012 Pa; �f  = 1 × 103 kg·m−3; 
�c = 2.27 × 103 kg·m−3 [31, 32].

Figure 2 indicates the relationship between the first-
mode frequency, Ω , and � for different values of �c . Here, 
the value of Ω decreases when �c increases from 0.01 to 
0.2 but increases when � increases from 0 to 0.2. Similar 
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Fig. 2   First-mode Ω vs � for different values of �c
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results are illustrated in Fig. 3, because the value of Ω con-
tinues to increase with decreasing �c but increases when � 
increases from 0.01 to 0.2. Thus, wave propagation at first 
mode is promoted by strain gradient effects and damped 
by nonlocal stress effects.

However, different results for the second-mode wave are 
indicated in Figs. 4 and 5. First, the value of Ω keeps increas-
ing when �c rises from 0.01 to 0.09 in Fig. 4, but remains 
constant when � decreases from 0 to 0.2. Similar results 
are shown in Fig. 5, where Ω increases when �c changes 
from 0 to 0.09, but stays constant when � takes different 
values. Therefore, the strain gradient effects do not influence 
second-mode wave propagation, but nonlocal stress effects 
promote wave propagation.

Figures 6 and 7 show the dispersion relation for first-
mode wave propagation that Ω is a function of wavenum-
ber K with different values of �c and � , respectively. The 

Fig. 3   First mode of Ω vs �c for different values of �

Fig. 4   Second-mode Ω vs � for different values of �c

Fig. 5   Second-mode Ω vs �c for different values of �

Fig. 6   First-mode Ω vs K for different values of �

Fig. 7   First-mode Ω vs K for different values of �c
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frequency grows with increasing wavenumber in Figs. 6 and 
7, which agrees with classical theory. Similar to our previous 
results, the effects of strain gradient and stress nonlocality 
have contrary influences on the first-mode wave propagation, 
because Ω keeps growing with increasing � in Fig. 6, and 
declines with increasing �c as seen in Fig. 7.

The dispersion relation for the second-mode wave 
is shown in Fig. 8 with different �c . The wave frequency 
increases with wavenumber K initially, then decreases when 
K goes beyond a critical value. Thus, waves with large wave-
length and low wavenumber are promoted, and waves with 
low wavelength and high wave number are damped. The crit-
ical value of K varies with �c but remains between 2 and 3, as 
shown in Fig. 8. Additionally, Fig. 8 shows that waves decay 
more rapidly when �c increases and nonlocal effects are more 
powerful, which cause a stronger wave-decay effect.

In addition to the effects dominated by strain gradient and 
stress nonlocality in CNTs, the results of the analysis for the 
nanoeffects contributed by inner fluid are also unnegligible. 
The influence of flow velocity U on the first-mode wave is 
illustrated in Figs. 9 and 10. Both figures indicate that the 
flow velocity, U, has no effect on the frequency, since Ω 
remains constant when U changes from 0 to 100. Since U 
is function of �f according to Eq. (15), the nonlocal effects 
induced by fluid flow only affect the flow velocity. Thus, 
the first-mode Ω also stays constant for any value of �f , as 
shown in Fig. 11.

However, the second-mode of Ω is a function of U, as 
shown in Fig. 12. The value of Ω continues to increase 
when U < 10, but decreases after U > 10. This outcome can 
be explained as the fluid flow with low velocity promotes 
the wave propagation, while flow with high velocity leads 
to wave damping.

Fig. 8   Second-mode Ω vs K with different values of �c

Fig. 9   First-mode Ω vs U for different values of �

Fig. 10   First-mode Ω vs U for different values of �c

Fig. 11   First-mode Ω vs �f for different values of �c
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Furthermore, the value of second-mode Ω only con-
tinues to decrease when �f  increases, as shown in Fig. 13. 
Moreover, Ω decreases sharply when 𝜉f < 0.03 initially, then 
decreases more slowly and approaches a constant value. In 
contrast to the effects of stress nonlocality on CNTs, the 
fluid nonlocality leads to wave damping. As discussed pre-
viously, the nonlocal effects of fluid flow only affect flow 
velocity. Thus, the flow velocity decreases with increasing 
�f , and lower velocities cause weaker vibrations and wave 
frequencies.

Conclusion

A shell model on the basis of nonlocal strain gradient theory 
is developed to simulate axisymmetric wave propagation in 
fluid-conveying CNTs when the nanofluid effect is measured 

by nonlocal fluid dynamics. By solving the governing equa-
tions of axisymmetric wave, the wave characteristics are ana-
lyzed in detail. The numerical results and wave behaviors are 
indicated as follows:

(1) The nonlocal stress effect induces the damping of first-
mode waves but promotes second-mode wave propagation.

(2) The strain gradient effect promotes the propagation 
of the first-mode wave but has no influence on second-mode 
waves.

(3) The nonlocal fluid effect leads to the damping of 
second-mode waves but exerts no influence on first-mode 
waves.

Therefore, three kinds of scale effect exert different influ-
ences on axisymmetric wave characteristic of fluid-convey-
ing CNTs. These numerical conclusions are meaningful for 
the design and processing of MEMS.
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