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Abstract
Background In this article, to the development of the theory and methods for calculating vibrations of dissipative mechani-
cal systems consisting of solids, which include both deformable and non-deformable bodies is discussed. Theoretically, 
the problem in the mathematical aspect, there are not enough developed solution methods and algorithms for dissipative 
mechanical systems has not yet been posed. The problems of choosing a nucleus and its rheological parameters, their influ-
ence on the frequency and damping coefficient systems have not been studied
Purpose The goal of the work is to formulate the statement, develop the solution methods and the algorithm for studying 
the problems of the dynamics of dissipative mechanical systems consisting of thin-walled plates (or shells) with attached 
masses and point development theory.
Methods A method and algorithm for solving problems of eigen and forced vibrations of dissipative mechanical systems 
consisting of rigid and deformable bodies, based on the methods of Muller, Gauss, Laplace and Runge integral transform, 
are developed.
Results To describe the dissipative properties of the system as a whole, the concept of a global damping coefficient (GDC) 
is introduced. In the case of a dissipatively homogeneous system of the GDC, it is determined by the imaginary part of the 
first modulo complex natural frequency. In the role of GDC in the case of a dissipatively inhomogeneous system, are the 
imaginary parts of both the first and second frequencies. Moreover, the “Change of Roles” occurs with the characteristic 
value of the stiffness coefficient of the deformable elements; the real parts of the first and second frequencies are closest. At 
the indicated characteristic value of the deformable elements, the global damping coefficient has a pronounced maximum. 
A change in the parameter, on which the global damping coefficient so substantially depends, can be achieved by varying 
physical properties or geometrical dimensions, thereby opening up the promising possibility of effectively controlling the 
damping properties of dissipative-inhomogeneous mechanical systems.
Conclusions The developed solution methods, algorithms and programs allow determining the dissipative properties of a 
mechanical system depending on various physic-mechanical parameters, geometrical dimensions and boundary conditions. 
A method for estimating the dissipative properties of the system as a whole (with forced vibrations) depending on the instan-
taneous values of the deformable elements (shock absorbers) has been developed. The developed method allows to reduce 
(several times) the amplitudes of displacements and stresses.

Keywords Rayleigh wave · Cavity · Viscoelastic medium · Dispersion equation · Oscillations

Introduction

This paper is devoted to the study of the propagation of elas-
tic waves along the axisymmetric cylindrical cavity with 
only one interface. The directional propagation of elastic 
waves in extended bodies of various profiles has been stud-
ied for a long time, but the researchers of elastic waveguides 
were initially attracted not by the shell, but by bodies with 
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one surface. In 1876, Pochgammer obtained the dispersion 
equation for waves in an extended circular cross section, 
and in 1885 J.V. Strett (Lord Rayleigh) described an elastic 
wave propagating along the flat interface between an elas-
tic half-space and a vacuum, later named after him. Thus, 
historically the first to be considered simple cross-sectional 
shapes—a line and a circle corresponding to an elastic half-
space with a flat boundary and an extended rod in a vacuum. 
Wave propagation along the border was discovered.

A feature of the Rayleigh wave is its localization near 
flat surface half-space. In the absence of losses, Rayleigh 
waves are continuous, without dispersion waves (their phase 
velocity along the surface does not depend on frequency) 
and exist in the entire frequency range in which the elastic 
medium filling the half-space can be considered uniform 
and isotropic. The oscillation equations of an elastic rod 
with a circular cross section were presented to the world in 
the classical article by Pochgammer 1876, he also analyzed 
extreme cases of low (ω → 0) and high (ω → ∞) frequencies 
[1]. Since then, many effects have been devoted to these 
effects, wave characteristics have been studied in more com-
plex structures [2], including shells, and attacks in systems 
filled with anisotropic media [3]. Separately, it should be 
noted the work of V.V. Krylov, for example [4], is devoted 
to surface acoustic waves in bodies of complex topology, 
including such elastic waveguides as the surfaces of grooves 
and rods of various profiles. The study of cylindrical wave-
guides is hampered by the presence of special functions in 
the resulting dispersion equations. A detailed study of their 
mode structure, therefore, began only from the 1950s–1960s, 
when it became possible to solve transcendental equations 
numerically on a computer [5, 6]. Interest even to the sim-
plest systems with axial symmetry has not weakened so far, 
as evidenced, for example, in [7, 8], where when consider-
ing a rather complicated case of so-called helical waves on 
cylindrical surfaces, the authors needed a powerful numeri-
cal simulation tool using cumbersome software packages.

In this paper, we consider an important special case of 
axisymmetric eigen (normal) waves localized near the sur-
face of a cylindrical cavity filled with vacuum in an infinite 
elastic medium. The fact of propagation without attenu-
ation of waves over the surface of a cylindrical cavity is 
overlooked in well-known books [9, 10] and in large review 
articles [11, 12], and articles [13, 14] and a number of others 
create the impression that surface waves in such a system is 
fundamentally damped. In this case, only nonaxisymmet-
ric waves traveling along the surface of the cavity across 
the generator are considered. Such components are present, 
obviously, in the above-mentioned helical waves, in spite of 
the decaying character, sometimes called the highest modes 
of the cylindrical cavity in the literature [15]. Further, we 
will speak only of a propagating mode, a brief description 
of which on the cavity is given only in the book [16] with 

reference to the article [15], where it was studied experimen-
tally, but the cut-off effect is described only qualitatively, 
and the equations are given without output.

Thus, the study of axisymmetric elastic waves in multi-
layer cylindrical systems with the highest possible the use of 
analytical methods is relevant for the development of a new 
generation of well sounding techniques.

Statement of the Problem and Method 
of Solution

The basic equations of motion of a viscoelastic medium, 
having cylindrical cavities with radius R, take the form in 
displacements

where

�⃗u(ur, u𝜃 , uz)—displacement vector, �—material density,�ik
—stress tensor, �̂�ik—tensor strain, �—volumetric deforma-
tion, �̃� and �̃�—operator module of elasticity [17, 18], �(t)—
arbitrary function of time; R�(t − �) and R�(t − �)—relaxa-
tion cores and �01,�01—instantaneous modulus of elasticity.

We accept the integral terms in (2) small, then the func-
tions �(t) = �(t)e−i�Rt , where �(t)—slowly changing func-
tion of time, �R—real constant.

Next, applying the freezing procedure [19], we note the 
relations (2) by approximate

where

(1)�̃�∇2u⃗ + (�̃� + �̃�)grad div u⃗ = 𝜌
𝜕2u⃗

𝜕t2
,

(2)

�̃�𝜙(t) = 𝜆01

⎡
⎢⎢⎣
𝜑(t) −

t

∫
0

R𝜆(t − 𝜏)𝜙(t)d𝜏

⎤
⎥⎥⎦
;

�̃�𝜑(t) = 𝜇01

⎡⎢⎢⎣
𝜑(t) −

t

∫
0

R𝜇(t − 𝜏)𝜑(t)d𝜏

⎤⎥⎥⎦
.

�̄�𝜑 = 𝜆01
[
1 − 𝛤 C

𝜆

(
𝜔R

)
− i𝛤 S

𝜆

(
𝜔R

)]
;

�̄�𝜑 = 𝜇01

[
1 − 𝛤 C

𝜇

(
𝜔R

)
− i𝛤 S

𝜇

(
𝜔R

)]
𝜑,

� C
�

(
�R

)
=

∞

∫
0

R�(�) cos�R� d�; � S
�

(
�R

)
=

∞

∫
0

R�(�) sin�R� d�,

� C
�

(
�R

)
=

∞

∫
0

R�(�) cos�R� d�, � S
�

(
�R

)
=

∞

∫
0

R�(�) sin�R� d�,
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—the cosine and sine Fourier images of the relaxation core 
of the material, respectively. As an example of a viscoe-
lastic material we take three parametric relaxation core 
R�(t) = R�(t) = Ae−� t∕t1−� . Influence function R(t − �) the 
usual requirements of integrability, continuity (except for 
t = � ), sign certainty, and monotony:

The relationship between stresses and strains is as follows

We set the boundary conditions in the form:

Corresponding motion of the surface of the cylindrical cav-
ity satisfies the functions of longitudinal and transverse 
potentials:

Here c̄2
s
= c2

s
𝛤 ;c̄2

p
= c2𝛤 .

The solution of Eq. (5) is sought in the form

R ⟩ 0, dR(t)

dt
≤ 0 , 0⟨

∞

�
0

R(t)dt⟨1.

(3)�̂�ik =
1

2

(
𝜕ui

𝜕xk
+

𝜕uk

𝜕xi

)
, 𝜎ik = �̃�𝜃𝛿ik + 2�̃��̂�ik

(4)r = R; �rr = 0; �r� = 0; �rz = 0.

(5)

ur =
𝜕𝜑

𝜕r
+

1

r

𝜕𝜓z

𝜕𝜃
−

𝜕𝜓𝜃

𝜕z
;

u𝜃 =
1

r

𝜕𝜑

𝜕𝜃
+

𝜕𝜓r

𝜕z
−

𝜕𝜓z

𝜕r
;

uz =
𝜕𝜑

𝜕z
+

𝜕𝜓𝜃

𝜕r
+

𝜓𝜃

r
−

1

r

𝜕𝜓r

𝜕𝜃

∇2𝜑 −
1

c̄2
p

𝜕2𝜑

𝜕t2
= 0;

∇2𝜓Z −
1

c̄2
s

𝜕2𝜓Z

𝜕t2
= 0;

∇2𝜓𝜃 −
𝜓𝜃

r2
+

2

r2

𝜕𝜓r

𝜕𝜃
−

1

c̄2
s

𝜕2𝜓𝜃

𝜕t2
= 0;

∇2𝜓r −
𝜓r

r2
−

2

r2

𝜕𝜓𝜃

𝜕𝜃
−

1

c̄2
s

𝜕2𝜓r

𝜕t2
= 0.

(6)

�(r, �, z, t) =

∞�
n=0

�n(�r)

�
cos n�

− sin n�

�
e±i�pze−i�t;

�r(r, �, z, t) =

∞�
n=0

�nr(�r)

�
sin n�

− cos n�

�
e±i�pze−i�t;

��(r, �, z, t) =

∞�
n=0

�n�(�r)

�
cos n�

− sin n�

�
e±i�pze−i�t;

�z(r, �, z, t) =

∞�
n=0

�nz(�r)

�
sin n�

cos n�

�
e±i�pze−i�t;

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

where n—integer; �p—dimensionless propagation constant; 
�—complex frequency; r = r1

a0
, z =

z1

a0
. Substituting (6) into 

(5), we obtain the following ordinary differential 
equations:

L a b e l e d  h e r e : 
𝛼2 =

�̄�2

𝛾2
− 𝛾2

p
; 𝛽2 = �̄�2 − 𝛾2

p
; �̄� =

𝜔a

c̄s
; 𝛾2 =

2(1−𝜈)
1−2𝜈

.

At infinity r → ∞ the potentials of the longitudinal and 
transverse waves at satisfy the condition of radiation Sum-
merfield [18]:

The first two equations in (7) obviously have the following 
solutions for the case of a cylindrical cavity:

here H(1)
n

(
�kr

)
—Henkel function of the nth kind of the 1st 

order.
To construct solutions of the two remaining equations in 

(7), it is advisable to consider their sum and difference. This 
results in two equations whose solutions are expressed in terms 
of different order Henkel functions

Henkel function of the nth kind of the 1st order. To con-
struct solutions of the two remaining equations in (7), it is 
advisable to consider their sum and difference. This results 
in two equations whose solutions are expressed in terms of 
different order Henkel functions: D1n = 0, then �rn = −��n. . 
This is convenient from the point of view of the subsequent 
satisfaction of the boundary conditions on the cylindrical 

(7)

d2�n

dr2
+

1

r

d�n

dr
+

(
�2 −

n2

r2

)
�n = 0;

d2�zn

dr2
+

1

r

d�zn

dr
+

(
�2 −

n2

r2

)
�zn = 0;

d2��n

dr2
+

1

r

d��n

dr
+

1

r2

(
−n2��n + 2n��n − ��n

)
+ �2��n = 0;

d2�rn

dr2
+

1

r

d�rn

dr
+

1

r2

(
−n2�rn + 2n��n − �rn

)
+ �2�rn = 0;

lim
r→∞

�n = 0, lim
r→∞

�√
r
����n

�r
+ i��n

�
= 0,

lim
r→∞

�zn = 0, lim
r→∞

�√
r
����zn

�r
+ i��zn

�
= 0.

�n(r) = F
n
H(1)

n
(�r),

�zn(r) = M
1n
H(1)

n
(�r)

�rn(r) = D
1n
H

(1)

n−1
(�r) + D

2n
H

(2)

n+1
(�r),

��n(r) = D1nH
(1)

n−1
(�r) − D

2n
H

(2)

n+1
(�r),
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surface. Thus, the components of the displacement vector 
in the vicinity of the cylindrical cavity are represented as

Expressions (4) contain three arbitrary constants. 
Fn,D2n,M1n and satisfy the equations of motion at arbitrary 
frequencies � and constant spread �̄� . In case of stress free 
cylindrical surface r = 1 , and if it is equal to zero normal 
(�rr = 0) and tangential stresses (�r� = �rz = 0) , dispersion 
equation has the form

where

Equation  (9) for each value n = 1, 2, 3, … deter-
mines the relationship of the dimensionless frequency 
for � dimensionless constant distribution �̄� at Pois-
son’s ratio. The arguments of the Henkel functions of the 
1st kind of the nth order (10) are multivolume functions 
𝛼 = (𝛺∕k2 − �̄�2)1∕2, 𝛽 = (𝛺 − �̄�2)1∕2.

The most effective way to solve Eq. (9) is the Muller 
method [18], which was used here. Without revealing the 
frequency to determine, and calculating at each step only 

(8)

ur =

∞∑
n=0

[
Fn

dH(1)
n
(𝛼r)

dr
+ D2ni�̄�H

(1)

n+1
(𝛽r) +M1nnH

(1)
n
(𝛽r)∕r

]

×

(
cos n𝜃

− sin n𝜃

)
ei(−𝜔t+�̄�z),

u𝜃 =

∞∑
n=0

[
−FnnH

(1)
n
(𝛼r)∕r + D2ni�̄�H

(1)

n+1
(𝛽r) −M1n

dH
(1)
n (𝛽r)

dr

]

×

(
sinn𝜃

cos n𝜃

)
ei(−𝜔t+�̄�z),

uz =

∞∑
n=0

[
−Fni�̄�H

(1)

n+1
(𝛼r) − D2n

[
dH

(1)

n+1
(𝛽r)

dr
+

n + 1

r
H

(1)

n+1
(𝛽r)

]]

×

(
cos n𝜃

−sinn𝜃

)
ei(−𝜔t+�̄�z).

(9)
‖‖‖cij

‖‖‖ = 0, i, j = 0, 1, 2, 3.

(10)

c
11

= (n2 − 1 −𝛺2 + �̄�2)H(1)
n
(𝛼),

c
12

= (n2 − 1 − 𝛽2)H(1)
n
(𝛽),

c
13

= 2(n2 − 1)
[
𝛽H

(1)

n−1
(𝛽) − nH(1)

n
(𝛽)

]
− 𝛽2H(1)

n
(𝛽),

c
21

= 𝛼H
(1)

n−1
(𝛼) − (n + 1)H(1)

n
(𝛼),

c
22

= 𝛽H
(1)

n−1
(𝛽) − (n + 1)H(1)

n
(𝛽),

c
23

= (2n2 + n − �̄�2)H(1)
n
(𝛽) − 2𝛽H

(1)

n−1
(𝛽),

c
31

= 𝛼H
(1)

n−1
(𝛼) − nH(1)

n
(𝛼),

c
32

= (1 −𝛺2∕2�̄�2)(H
(1)

n−1
(𝛽) − nH(1)

n
(𝛽)),

c
33

= n2H(1)
n
(𝛽).

its value for a fixed value ω, the indicated method finds its 
own complex frequencies � = �R + i�I . The damping coef-
ficients make it possible to judge the damping properties of 
the system under consideration. In the technique, another 
characteristic is used to estimate the damping rate of oscil-
latory processes, namely, the logarithmic decrement of oscil-
lation damping. It is related to the damping coefficient by 
the following formula:

Complex series calculation up to 10−8. All expressions 
for stresses and displacements are:

As you can see, the solution of the problem is expressed 
in terms of the special functions of Bessel and Henkel of the 
1st and 2nd kind. With an increase in their argument, series 
(8) converges. Therefore, on the basis of numerical experi-
ments, it was found that the accuracy of 5–6 members of 
the series accuracy reached  10−6–10−8. As a relaxation core 
of a viscoelastic material, let’s take a three-parameter core

Rzhanitsyn–Koltunov [20], having a weak singularity, where 
A, �, �—parameters materials [20]. Take the following 
parameters: A = 0.048; � = 0.05; � = 0.1.

Oscillation of a Cylindrical Hole

First, consider the natural oscillations of a cylindrical hole 
(unsupported hole) in an elastic medium. At the boundary 
r = R, we insert a stress free condition, i.e.

After substituting (8) into the boundary conditions (11), we 
obtain a system of algebraically equations with complex 
coefficients. In order for a system of algebraic equations 
to have a non-trivial solution, it is necessary that the main 
determinant must be zero. The elements of the main deter-
minant contain �. If the main determinant is equal to zero, 
the result is a transcendental equation for the frequency �, 
which describes the natural oscillations of the cavity

where x = �a(�∕(� + 2�))1∕2; y = �a(�∕�)1∕2, � and �—
Lame coefficients; �—material density. Equation (12) after 
some transformations can be written as follows:

� = 2��I∕�R.

(R + iIm)e−iwt =
(
R2 + Im2

)1∕2
e−i(wt−�).

R(t) =
Ae−�t

t1−�

(11)�rr
||r=a = �r�

||r=a = 0.

(12)

D� = xH�−1

[
(�2 − 1)yH�−1(y) − (�3 − � + y2∕2)H�(y)

]

− H�(x)
[
(�3 − � + y2∕2)yH�−1(y) − (�2 + � − y2∕4)y2H�(y)

]
,

(�2 − 1)F(x)F(y) − (y2∕2)F(x) + F(y) + �2 − (�2 − y2∕2)2 = 0,
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where F(x) = xH1
�
(x)∕H�(x), � = 1, 2, 3… .

Frequency Eq. (12) is solved numerically, i.e., Muller’s 
method [20]. Calculation results (n ≥ 0 (v1 = 0.25)) natural 
oscillations are shown in Table 1. As can be seen from the 
table, the corresponding complex frequencies increase with 
increasing number of waves around the circumference.

Complex frequencies consist of two parts, real (Re � ) 
and imaginary parts

(Im � ), which mean natural frequencies and damping 
coefficients [20]. Frequency Eq. (12) depend only on the 
parameter � (Poisson’s ratio). With an increase in Poisson’s 
ratio within 0 ≤ � ≤ 0.4 real and imaginary parts of the 
complex frequency vary up to 27%. With �1 = 0.5 the envi-
ronment becomes incompressible, the damping is naturally 
absent.

1. Axisymmetric waves in a cylinder

Representations of the components of the displacement 
vector for axisymmetric wave motions are obtained when 
n = 0. There are two different types of motions possible.

and

The first of these is associated with the propagation of 
longitudinal waves, and the second with torsional waves in 
a cylindrical cavity. As an example, consider the propagation 
of free axisymmetric waves in a cylindrical cavity located 
in an elastic medium (8). Then the corresponding radial and 
tangential stresses in the displacement potentials take the 
form

(13)

ur =

[
F0

dH
(1)

0
(𝛼r)

dr
+ D20i�̄�H

(1)

1
(𝛽r) +M10nnH

(1)
n
(𝛽r)∕r

]
ei(−𝜔t+�̄�z)

uz = −F0i�̄�H
(1)

1
(𝛼r) − D20

[
dH

(1)

1
(𝛽r)

dr
+

1

r
H

(1)

1
(𝛽r)

]
ei(−𝜔t+�̄�z)

u𝜃 = 0

(14)
u𝜃 = D20i�̄�H

(1)

1
(𝛽r)ei(−𝜔t+�̄�z),

ur = uz = 0.

where �1—medium density, cs—speed of propagation of 
transverse waves.

The solution of the equation of motion (15), taking into 
account the conditions of Sommerfeld radiation at infinity, 
takes the form

where �̄� = i𝛼, 𝛽 = i𝛽.

Then the corresponding radial and tangential stresses at 
the boundary of the cavity ( r = R ) are zero

Substituting (16) into (17) we obtain the following homoge-
neous system of algebraic equations

where b = �∕(1 − �).

If the system of homogeneous algebraic Eq. (18) has solu-
tions, then the main determinant must be zero. After some 
transformations, we obtain the following dispersion equation

(15)

�rr = �1
�

1 − �

�2�

�t2
+ 2c2

s
�1

(
�2�

�r2
−

�2�

�r�z

)
,

�rz = �1
�2�

�t2
+ 2c2

s
�1

(
�2�

�r�z
−

�2�

�z2

)
,

(16)
𝜑 = F0H0(�̄�r) exp(i(−𝜔 t + 𝛾pz)); 𝜓 = M0H0(𝛽r) exp(i(−𝜔t + 𝛾pz)),

(17)
�1

�

1 − �

�2�

�t2
+ 2c2

s
�1

(
�2�

�r2
−

�2�

�r�z

)
= 0,

�1
�2�

�t2
+ 2c2

s
�1

(
�2�

�r�z
−

�2�

�z2

)
= 0.

(18)

M
0
H

(1)

1
(𝛽a)(2c2

s
𝛾2
p
− 𝜔2) − 2c2

s
�̄�𝛾

p
F0H

(1)�

0
(�̄�a) = 0,

−𝜌
1
𝜔2bF0H

(1)

0
(�̄�a) + 2c2

s
𝜌1

[
F0�̄�

2H
(1)��

0
(�̄�a) −M

0
𝛽𝛾pH

(1)�

1
(𝛽a)

]
= 0,

(19)

4(1 − 𝜉2
1
)

[
1

𝛽a
+

H
(1)

0
(𝛽a)

H
(1)

1
(𝛽a)

]
− 2(1 − 𝜉2

1
)(1 − 𝜉2

2
)1∕2

×

[
1

�̄�a
+

H
(1)

0
(�̄�a)

H
(1)

1
(�̄�a)

]
+ b

𝜉2
1
(2 − 𝜉2

1
)

(1 − 𝜉2
2
)1∕2

H
(1)

0
(�̄�a)

H
(1)

1
(�̄�a)

= 0,

Table 1  The dependence of the 
complex natural frequencies of 
the cylindrical hole

n = 0 n = I n = 2 n = 3

0.4529D+00
−i0.47651D+00

0.10927D+01
− i0.76538D+00

0.19075D+01
− i0.89782D+00

0.27565D+01
− i0.99155D+00

0.28621D+00
− i0.17852D+00

0.72325D+01
− i0.32283D+01

0.404607D+00
− i0.178552D+00

0.12307D+00
− i0.22283D+00
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In Eq. (19) we introduce the notation � (�) , which describes 
the relation of cylindrical functions with indices 0 and 1. In 
the case of a cylindrical cavity, the waves must decrease at 
infinity (Summerfield conditions), so that the Henkel func-
tions of the first kind come �K(y) = K

0
(y)∕K

1
(y) . Solutions 

(19) describing damped waves correspond to real �p . Where 
in 𝛾p ≻ k2 ≻ k1 , a Cph ≺ cs ≺ cp . Then �, �-Imaginary and it is 
possible to transition to the functions of Macdonald:

where �K(y) = K
0
(y)∕K

1
(y).

Then, (19) takes the following form

To describe the viscoelastic properties of the material, 
the Boltzmann–Voltaire hereditary theory with the Rzha-
nitsyn–Koltunov relaxation core was used in the form 
R(t) = Ae−�tt�−1 . In this case, the sine of  G(s) and cosine Г(c) 
Fourier samples core relaxation R(t) is expressed through 
Г(α)—Gamma function:

Figure 1 shows the solution of Eq. (21) in the form of a fam-
ily of curves whose parameter is the Poisson’s ratio—the 
only elastic parameters of the relaxation core

on which depends the type of dispersion curve. Here 
U�k = Cph∕c—normalized phase velocity, � = R�∕c—
normalized quantity related to the radius of curvature and 
frequency.

It can be seen that the critical value ξ = ξZ, below which 
begins extreme mode, when no mode exists, but the phase 
velocity of the surface wave, which takes the maximum 
value at this point, is always C. For any � ≥ �Z depend-
ences are obtained rapidly decaying with distance from the 
boundary, which confirms the surface character of the waves, 
moreover, if the rate of decay ur with increasing ν decreases. 
Decay rate uz from ν does not depend. Components ur and uz 
are always in quadrature, and, thus, the movement of parti-
cles in a substance during the propagation of axisymmetric 
waves along the surface of a cylindrical cavity is completely 

(20)
�H01(�) = H

(1)

0
(�)∕H

(1)

1
(�) = −iK

0
(|�|)∕K

1
(|�|) = −i�K(|�|),

(21)

4(1 − 𝜉2
1
)

[
1

𝛽a
+ 𝛹H01(𝛽a)

]
− 2(1 − 𝜉2

1
)(1 − 𝜉2

2
)1∕2

×
[
1

�̄�a
+ 𝛹H01(�̄�a)

]
+ b

𝜉2
1
(2 − 𝜉2

1
)

(1 − 𝜉2
2
)1∕2

𝛹H01(�̄�a) = 0.

� S =
A� (�)

(�2 + �2)
�∕2

Sin

(
� arc tg

�

�

)
,

� C =
� (�)

(�2 + �2)
�∕2

s

(
� arc tg

�

�

)
.

A = 0.01; � = 0.05; � = 0.1,

analogous to the movement of particles during the propaga-
tion of an ordinary Rayleigh wave [19, 20]. The points of the 
medium move along ellipses lying in the so-called sagittal 
planes, which in this case are all the planes passing through 
the axis of the cylinder. If �pa → ∞ and use the asymptotic 
expression of the Hankel function, then from (21) and taking 
into account (22) we obtain the following Rayleigh equation

Numerical results: the dependence of the surface wave 
velocity on the wavelength at � = 0; � = 0.25; � = 0.4 
shown in Fig. 2. Despite the apparent surface character, 
axisymmetric waves on the surface of a cylindrical cavity 
differ from Rayleigh waves on a plane by the presence of 
dispersion. At the same time, as for a surface wave on a 
plane, but unlike cylindrical systems with a limited linear 
volume, in-phase (synchronous harmonic oscillations are 

(22)4(1 − �2
1
)1∕2 −

(2 − �2
1
)2

(1 − �2
2
)1∕2

= 0.

Fig. 2  The dependence of the velocity of the surface wave on the 
wavelength 1. � = 0; 2. � = 0.25; 3. � = 0.4

Fig. 1  The change in phase velocity from the radius of curvature at 
1. � = 0.1; 2. � = 0.18; 3. � = 0.25; 4. � = 0.4
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comparable at any time in phases) oscillations of the cav-
ity are impossible. In the case of a rod, it is the finite size 
of the cross section that leads to a lot of modality, since it 
forms a resonator having characteristic eigen frequencies 
at which common-mode oscillation is possible. From the 
study of the surface wave at specific values of the radius of 
curvature on the surface of an extended cylindrical cavity 
in the volume of a known material (steel) simulating a pipe 
with sufficiently thick walls, the following is obtained: for 
the central casing of an oil or gas well, which is supposed to 
be examined, in the entire range of interest frequency (from 
0 to 30 kHz) the existence of waves of this type is impos-
sible, even if these frequencies lie slightly above the cutoff. 
It can be shown that even at 30 kHz the distance over which 
the amplitude dropped at least 9 times exceeds 12 cm with 
an internal radius of about 10 cm. From the calculations it 
follows that up to 48 kHz wave attenuation at a depth equal 
to the thickness of the investigated casing string, does not 
exceed 0.76 times, i.e., from the point of view of surface 
effects, these are very thin walls. This fact is favorable for 
the development of low-frequency probing complexes, since 
allows you to choose the form and method of excitation of 
oscillations, without fear that the energy that should bring 
information about the deep layers of the system will go 
“wasted” along the axis.

Conclusions

1. The dispersion dependences of the phase velocity on fre-
quency for axisymmetric and nonaxisymmetric elastic 
waves on the surface of a cylindrical circular cavity with 
different values of the Poisson coefficient of the medium 
are constructed; a region of non-propagation of waves of 
this type at low frequencies or at small radii of curvature 
is noted.

2. The dependence of the critical value of the normalized 
radius of curvature and frequency, on the value of Pois-
son’s ratio material surrounding the cavity.
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