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Abstract
Background In general, diagnostics can be defined as the procedure of mapping the information obtained in the measure-
ment space to the presence and magnitude of faults in the fault space. These measurements, and especially their nonlinear 
features, have the potential to be exploited to detect changes in dynamics due to the faults.
Purpose We have been developing some interesting techniques for fault diagnostics with gratifying results.
Methods These techniques are fundamentally based on extracting appropriate features of nonlinear dynamical behavior of 
dynamic systems. In particular, this paper provides an overview of a technique we have developed called Phase Space Topol-
ogy (PST), which has so far displayed remarkable effectiveness in unearthing faults in machinery. Applications to bearing, 
gear and crack diagnostics are briefly discussed.

Keywords Phase Space Topology · Bearing diagnostics · Gear fault diagnostics · Crack detection · Machine learning

Introduction

Fault diagnostics of practical systems is a very important 
problem that needs to be solved robustly to be able to make 
giant leaps in reliability and safety. Diagnostics is essentially 
an epistemological problem that requires us to make intel-
ligent inferences based on data, which could be derived from 
empirical observations or computer models, and are often 
incomplete, noisy and uncertain. Although there is a rich 
and varied literature,1 we feel that many of the diagnostic 
techniques in use are quite ad hoc and heuristic, resulting in 
lack of general applicability.

This paper presents innovative and rigorous techniques 
involving the nonlinear characteristics in a computational 
intelligence setting to diagnose changes in complex systems. 
Our approach consists of developing diagnostic methods 

using a combination of nonlinear dynamic analysis and 
computational intelligence techniques. In this paper, several 
applications are chosen with sufficient generality to demon-
strate applicability to a host of disciplines.

The theoretical approaches are validated using data from 
fault simulators at Villanova University and Case Western 
University; we also validate our algorithms using experi-
mental data from practical machinery provided by United 
Technologies Research Center (UTRC, USA) and Federal 
University of Uberlândia (Brazil).

The rest of the paper is organized as follows. Section 2 
describes a family of methods that were originated and 
derived by our team called Phase Space Topology (PST). 
In Sect. 3, we present a recent development in PST using an 
example of bearing defect analysis. Section 4 summarizes 
some of the applications that were investigated to generalize 
the applicability of our developed methods. Finally, Sect. 5 
concludes the paper.
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Phase Space Topology Family of Methods

A Brief History of PST Development

The PST family of methods, which is based on characteriz-
ing the system phase space using quantitative measures, first 
originated in our previous work [1]. It should be noted that 
other studies [2–5] have also studied extraction of information 
from the system’s phase space for damage detection, although 
they have specialized it for the problem of structural health 
monitoring (SHM). They are indeed superficially similar to 
our method, but significant differences do exist. Most of these 
methods require exciting the structure by a chaotic input to 
extract a single feature and are directed toward SHM applica-
tions. In addition, the PST methods outlined below introduce 
original concepts such as Kernel density-based features, den-
sity approximation and orthogonal basis functions as a feature 
extraction technique.

We first focused on a nonlinear pendulum (shown in Fig. 1), 
which was diagnosed using a set of four features extracted 
from the phase plane trajectory of the system to characterize 
the nonlinear response in the periodic regime. The extracted 
features were related to the phase portrait eccentricity, har-
monic amplitude and excursion variation. Finally, an Artificial 
Neural Network (ANN) was built using the numerical data for 
the estimation of parameters of a defective nonlinear pendulum 
set up with acceptable accuracy.

Kernel Density‑Based Features

In Samadani et al. [6], an expansion to the previous study was 
developed to include the multi-periodic response regime of 
the pendulum which was characterized using an additional set 
of features extracted from the constructed density distribution 
of the phase space. To demonstrate how the Kernel density 
is estimated, let X = ( x1 , x2 , …, xn ) be an independent and 

identically distributed sample data drawn from a distribution 
with an unknown density function f. The shape of this func-
tion can be estimated by its kernel density estimator (the hat, 
̂ , indicates that it is an estimate, and the subscript indicates 
that its value can depend on h).

where h > 0 is a smoothing parameter called the bandwidth, 
and K (.) is the kernel function which satisfies the following 
requirements:

There is a range of kernel functions that can be used, includ-
ing uniform, triangular, biweight, triweight, Epanechnikov 
and normal. Due to its conventional and convenient math-
ematical properties, we use the normal density function in 
our approach, defined as follows:

An example of the periodic and multi-periodic phase planes 
along with their corresponding density distributions of the 
nonlinear pendulum is shown in Fig. 2. It was shown that, 
depending on the geometry and shape of the phase space, 
the density diagram contains peaks of various heights and 
sharpness at multiple locations. This stems from the fact that 
the dynamical system occupies more time at specific regions 
of the space causing higher densities in those regions. The 
additional feature set that was extracted from the density dis-
tribution included the location, the height and the sharpness 
of the peaks in the density profile. The results showed that 
the introduced features are fully capable of characterizing 
the nonlinear response of the system in the periodic and 
multi-periodic domains with high complexities. It also dem-
onstrated that the developed parameter estimation approach 
works effectively for both analytical and experimental data.

Subsequently, in [7, 8], the same approach was validated 
using a 3-DOF nonlinear mass–spring–damper system where 
the diagnostics was treated as a parameter estimation problem. 
The results showed the effectiveness of the approach in char-
acterizing the system behavior and capturing the dynamical 
changes while changing six parameters of the system simul-
taneously. Despite the success of this approach, the need to 
search for the peaks in the density diagrams made it difficult or 
sometimes even impractical to implement, especially for sys-
tems with noisy or more complex phase space patterns. This 
led to new advances continuing the development of PST, based 
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Fig. 1  The nonlinear pendulum experimental setup
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on approximating the density distribution with an orthogonal 
basis, the details of which are described below.

Recent Contributions to the Development of PST

Density Distribution Approximation

A feature set is said to be ideal when it is able to reconstruct 
the original data. This assumption motivates the approxima-
tion of the density distribution of the phase space using a series 
of orthogonal basis where the coefficients of these basis will 
be used as features.

Let z be a state of the system and yd = f̂h(z) , its density 
computed using the kernel density estimator. yd is then approx-
imated with Legendre orthogonal polynomials. Legendre pol-
ynomials can be directly obtained from Rodrigues’ formula 
which is given by

(4)
Pm(z) =

1

2mm!

dm

dzm

[

(z2 − 1)m
]

, m = 0, 1, 2,…

It can also be obtained using Bonnet’s recursion formula:

where the first two terms are given by

The coefficients of the Legendre polynomials are obtained 
using the least squares method assuming the following linear 
regression model:

Letting

the estimated coefficients are given by

(5)(m + 1)Pm+1(z) = (2m + 1)zPm(z) − mPm−1(z),
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Fig. 2  The phase plane and the corresponding density distribution for a periodic domain response and b multi-periodic domain response
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The coefficients 𝛽  constitute the features in our approach 
that can be used in classification or regression problems. 
The approximated density using Legendre polynomials is 
then calculated using the following:

Root mean square error (RMSE) and Pearson’s correlation 
coefficient (PCC) are calculated to compute the quality of 
the fit using the following equations:

where V = (yd − f ) is the residual vector, N is the number 
of points in the density function, a =

(

yd − E{yd}
)

 and 
b = (f − E{f }) , where E{.} is the expected value.

Artificial Neural Network (ANN)

ANNs are a set of computational models that are designed to 
recognize a relation or a pattern between inputs and outputs. 
Nowadays, they are widely used for regression, classifica-
tion, prediction and optimization problems. ANN consists 
of an interconnected group of nodes called artificial neurons 
and each node has a corresponding weight. The knowledge 
of the system is stored as a set of ANN connection weights. 
The process of mapping inputs to outputs is called training, 
which is performed by adjusting the weights as learning pro-
ceeds. One of the most used algorithms in training ANN is 
the backpropagation algorithm, which optimizes the weights 
of the ANN by propagating an input forward through the net-
work layers to the output layer where the calculated output 
is compared with the desired output. The error values of the 
calculated output and the desired output are then computed 
and propagated backwards. These errors are traced back to 
each associated neuron to update the weights.

In the last decade, neural networks have received con-
siderable attention in the field of fault diagnostics. One of 
the main issues in ANNs is selecting an optimal feature set 
that can represent the system in different operating domains. 
The general trend in many applications is extracting a large 
number of features to be used. On the one hand, it works in 
some scenarios because the nonlinearity of systems makes 
it hard to define the relevant information that is needed. On 
the other hand, for applications where the available data 
are small with respect to the dimensionality of the system, 
extracting all features might be impossible [9]. In many 
cases, some of the extracted features are redundant or irrel-
evant and one can achieve better performance by discarding 
such variables [10].

(9)𝛽 = (ZTZ)−1ZTyd.

(10)f = Z𝛽.

(11)RMSE =

�

1
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√
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Our goal has always been to extract just enough number of 
features that are relevant and provide rich information about 
the system. This can be achieved by combining our understand-
ing of nonlinear dynamics in the developed algorithms. In this 
study, it is demonstrated that the selected number of features 
extracted by PST method provides very high level of informa-
tion about the faults and the nonlinear effects on the system.

Example Application: Bearing Diagnostics

Rotating machinery are probably among the most important 
components in industry. Rotating machines are composed 
of different sub-systems interacting with each other in a 
nonlinear fashion; changes in any of these components can 
significantly affect the overall performance. In particular, 
rolling element bearing defects are one of the major sources 
of breakdown in rotating machinery. The rotating fault simu-
lator machine shown in Fig. 3, is considered to study a vari-
ety of different machinery defects under various operating 
conditions, such as rotational speed, load and unbalance. It 
basically consists of a motor-driven shaft mounted on two 
bearings. Shafts and bearings with different sizes and con-
ditions can be used. Various vibration sensors can be used 
such as accelerometers and proximity probes.

The PST algorithm is best explained with an example 
application; in this case, we choose the bearing diagnostics 
problem. A flowchart of the algorithm is illustrated in Fig. 4. 

Fig. 3  Rotating fault simulator machine
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Many traditional techniques that have been developed for 
bearing fault detection involve pattern recognition, which 
is only effective for an a priori defined operating condition 
set, shaft rotational speed in this case. Therefore, the clas-
sification model is required to be retrained each time the 
operating condition (rotational shaft speed) changes because 
of the dependence of the dynamic response on them. The 
lack of effective techniques under variable operating speeds 
is a well-established need, which motivates the development 
of this method.

In this study, different rotational speed configurations 
between the training and testing sets of the classification 
model are investigated in (A) known speed domains and 
(B) bounded speed domains. To achieve this goal, the clas-
sification problem was initially trained on a set of speeds 
and then the classifier was tested on the same set of speeds. 
The classifier was trained and tested at the same 19 rota-
tional speeds. In the second case, the bearing fault diagnos-
tic approach was generalized to variable operating speeds 
within a given range of speeds (i.e., 300–3000 rpm). In this 
case, the classifier was trained on one set of speeds and then 
tested on another different set of speeds in which the speed 
test domains were completely bounded by the training speed 
sets as shown in Fig. 5. The analysis of both of the afore-
mentioned procedures is described in the sequel in detail.

Case (A): Known Speed Domains

To study a variety of different bearing defects under various 
rotational speeds (300–3000 rpm), a rotating fault simulator 

machine, shown in Fig. 3, was investigated. Four bearing 
conditions were investigated: healthy bearings (H), bear-
ings with inner race defects (IR), outer race defects (OR) 
and ball defects (B). Vibration data were measured using 
two GE/Bently Nevada 7200 series proximity probe sensors 
in orthogonal directions and installed close to the bearing 
housing.

Legendre polynomials were used to approximate the esti-
mated density distribution of the horizontal vibration sig-
nal for every rotational speed and bearing condition. The 
Legendre polynomial order was selected based on the least 
polynomial order that gives a reliable fit between the esti-
mated and approximated density functions. To compute the 
quality of the fit, root mean square error and Pearson’s cor-
relation coefficient were calculated. Based on these metrics, 
Legendre polynomials of order 20 were used to approximate 
the estimated density functions. Coefficients for the Leg-
endre polynomials were computed for each of the 760 signal 
samples using the least squares method as shown in Eq. (9). 
The computed coefficients for each case, which represent 
the feature vector for that case, were saved in a 21-element 
vector (using only the horizontal vibration signal). Because 
of high impact of the rotation speed on the response of the 
dynamic behavior, it was used as an additional feature, 
making the total number of features equal to 22. From all 
available sampled data (760 samples), 50% of them (380 
samples) were used to train the ANN, 25% of them (190 
samples) were used to validate the training algorithm and 
the remaining 25% (190 samples) were used to test the clas-
sifier. The backpropagation algorithm was used for training 

Fig. 4  Flowchart of bearing 
diagnostics algorithm
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Fig. 5  Speed configurations for 
training and testing the clas-
sification model a known speed 
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the ANN. An ANN with ten hidden neurons was considered 
for this problem.

The performance of the selected classification model is pre-
sented using confusion matrices. A confusion matrix compares 
between the results of the predicted and the actual classes. Each 
row of the matrix shows the prediction results for the corre-
sponding class at that row while each column shows the actual 
class. The main diagonal elements of the matrix show the cor-
rect classified prediction for each corresponding class, which 
are known as true positives. For each row of the matrix, all ele-
ments except the main diagonal elements are the misclassified 
prediction for the corresponding class, which are known as false 
positives. For each specific class, the summation of elements 
on its corresponding column excluding the main diagonal ele-
ments are called false-positive elements. The performance of 
the classifier can be evaluated using certain evaluation matrices 
derived from the confusion matrix, such as sensitivity, precision 
and overall accuracy. Table 1 shows the predictions for test data 
using the neural network classifier for case (A).

As can be observed, the classifier has predicted all defects 
with no misclassification and with 100% sensitivity, 100% 
precision and 100% overall accuracy. These results are 
remarkable for a variety of reasons. First, it demonstrates 
that combination of the proximity sensor data and the PST 
features can address the challenges in fault identification at 
low rotational speeds (below 10 Hz). Second, no a priori 
knowledge of the system was integrated in extracted fea-
tures. Therefore, the PST approach can be applied to diverse 
dynamical systems in an automated fashion with minimal 
adaptation or dependence on expertise. In conventional bear-
ing diagnostic techniques, specific characteristics of the sys-
tem such as ball pass frequencies are searched for; however, 
the proposed methodology does not require any additional 
analysis and functioned well without it. We should be cau-
tious to note that other operating conditions may need addi-
tional feature combinations. Finally, no feature selection or 
ranking algorithm [11] was used here to select the optimal 
feature set. Since the coefficients decrease by increasing the 
number of orthogonal functions, the calculated coefficients 
are ranked naturally.

Case B: Bounded Speed Domains

For this case, density distributions were constructed using 
both horizontal and vertical vibration data for every speed and 
bearing condition. Then using Legendre polynomials of order 
20, the estimated density functions were approximated. The 
feature set was constructed using the first 15 Legendre polyno-
mial coefficients in each direction in addition to the rotational 
speed of the shaft making the total number of features equal 
to 31. The feature vector was then used as an input for train-
ing the ANN classifier. The classifier was modeled with ten 
neurons in the hidden layer and trained using backpropagation 
algorithm. For training, the classification model, four rota-
tional speeds were selected including the machine operating 
range boundaries (300 and 3000 rpm) and two middle speeds 
(1200 and 2400 rpm). For these speeds, the available vibration 
data of 160 total samples at different bearing conditions were 
used for training and the remaining 600 samples obtained at 
the other speeds (e.g., 420, 600, … , 2820 rpm) were used for 
testing the trained classifier.

The classification results for the test data are rep-
resented as a confusion matrix in Table 2. As can be 
observed, the classifier overall accuracy is 96.7% with 
20 misclassifications out of 600 predictions, which indi-
cates a high prediction rate of classifying the four bearing 
conditions. Most of the misclassifications corresponded 
to bearings with ball defects. To evaluate effectively, the 
precision and sensitivity parameters were calculated and 
presented in Table 2. In summary, the classifier had both 
high precision and sensitivity for the majority of the bear-
ing conditions. The classification model worked virtually 
perfectly in distinguishing between healthy and defective 
bearings since there were zero misclassifications.

Summary of Applications

This section presents a summary of some of the applica-
tions that we investigated including bearing fault diag-
nostics, gear fault diagnostics and crack shaft diagnostics. 

Table 1  Prediction of various defect classes for case (A)

Test Confusion Matrix Precision 

O
ut

pu
t C

la
ss

 H 44 
23.2% 

0 
0.0% 

0 
0.0% 

0 
0.0% 100.0% 100.0% 

IR 0 
0.0% 

51 
26.8% 

0 
0.0% 

0 
0.0% 100.0% 100.0% 

OR 0 
0.0% 

0 
0.0% 

48 
25.3% 

0 
0.0% 100.0% 100.0% 

B 0 
0.0% 

0 
0.0% 

0 
0.0% 

47 
24.7% 100.0% 100.0% 

H IR OR B Overall Accuracy 100.0%
Target Class 

Table 2  Prediction of various defect classes for test data, Case B
Test Confusion Matrix Precision 

O
ut

pu
t C

la
ss

 H 150 
25.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 100.0% 100.0% 

IR 0 
0.0% 

142 
23.7% 

0 
0.0% 

0 
0.0% 94.7% 100.0% 

OR 0 
0.0% 

0 
0.0% 

139 
23.2% 

1 
0.2% 92.7% 99.3% 

B 0 
0.0% 

8 
1.3% 

11 
1.8 

149 
24.8% 99.3% 88.7% 

H IR OR B Overall Accuracy 96.7%
Target Class 
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In the following subsections, a brief introduction to each 
system along with the main contributions are described. 
Table  3 summarizes the main contributions that were 
achieved.

Other Studies in Bearing Diagnostics

We have performed various investigations on the bearing set 
up (shown in Fig. 3) to develop robust techniques to diag-
nose bearings. In [11, 22–25], we have applied conventional 
methods such as fast Fourier transform, envelope spectrum, 
and discrete wavelet transform over a span of rotational 
speeds as well as nonlinear physics-based modeling [26–29]. 
Accelerometer data were used to extract features to diagnose 
bearings with inner race, outer race and ball defects. Mutual 
information was then used as a ranking technique, and the 
optimal feature subset corresponding to the highest clas-
sification accuracy was determined. An overall accuracy of 
97.0% was achieved using this procedure.

In [16, 30], we introduced the mapped density method 
to discriminate simultaneous bearing faults under vari-
ous rotational speeds. In this work, we studied the use of 
the information provided by proximity probe sensors. The 
method had significant success in fault discrimination for a 
single and two bearing fault configurations (accuracy of 97% 
for a single bearing fault and 92% for two bearing faults). 
Moreover, the results indicate that this method has high per-
formance in distinguishing between different bearing condi-
tions signatures (accuracy of 88%).

In [13–15, 31], the PST method was introduced. In this 
work, we performed bearing diagnostics on different rota-
tional speeds domains and obtained very good results (over-
all accuracy of 96.7% ). We have also applied other nonlinear 
techniques such as recurrence plots [32], Gottwald and Mel-
bourne’s 0-1 test and the Higuchi fractal dimension [33].

Gear Fault Diagnostics

Gear fault diagnostics is still a challenging task because of 
the highly nonlinear characteristics of faults and its com-
plex nonstationary dynamics. Our work investigated gear 
fault diagnostics using vibration data of a helicopter gearbox 
mock-up system provided by UTRC. The experimental setup 
is shown in Fig. 6. This work studied multiple test gears with 
different health conditions such as healthy gears (H) and 
defective gears with root crack on one tooth (SCD), multiple 
cracks on five teeth (MCD) and missing tooth (MTD). The 
vibrational signals were recorded using a triaxial accelerom-
eter installed on the test gearbox.

In [19, 34], we presented the application of recurrence 
plots (RPs) and recurrence quantification analysis (RQA) 
in the diagnostics of various faults in a gear-train system. It 
also applied mutual information to rank the extracted fea-
tures order to obtain an optimal feature set. Results indicated 
that RQA parameters provide valuable information in char-
acterizing the dynamics of various gear faults to discriminate 

Table 3  Summary of other investigations

Component Issue and failure Sensor data Operating condition Algorithm used

Nonlinear pendulum Parameter estimation Rotary motion sensor Variable lumped mass n
1
 

and number of nuts n
2

Recurrence and statistical 
analysis [12], PST [1]

Bearing Outer race, inner race and 
roller

Proximity probes and accel-
erometers

Variable speed and motor 
load

PST [13–15], mapped density 
[16], envelope analysis [17], 
statistical time analysis [14, 
17]

Gear Single crack, multiple cracks 
and missing tooth

Accelometers and tachom-
eter

Constant speed and motor 
load

PST [18], RP [19]

Shaft Propagated cracks Proximity probes Variable speed PST [20]
Servo actuator Spool friction, permanent 

magnet
Position, velocity and pres-

sure
Variable PST [21]

Fig. 6  Gear-train experimental setup
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the healthy gear condition from defective conditions. Also, 
outstanding performance was achieved using RQA param-
eters to identify various gear conditions with 100% accuracy, 
100% recall and 100% precision in detecting multiple cracks 
and missing tooth conditions.

In [18], the PST method was applied to detect anoma-
lous behavior and to diagnose various gear defects. Results 
indicates 99% accuracy in classifying between different gear 
conditions.

Crack Detection

Experiments were conducted on a crack propagation simula-
tor test rig, shown in Fig. 7, in collaboration with Federal 
University of Uberlândia, Brazil. This machine consists of 
a flexible steel shaft mounted on two roller bearings. Two 
orthogonal proximity probes oriented in the horizontal 
and vertical directions were used to measure the vibration 
response of the shaft. The crack propagator was used over 
a period of 24 h to produce a fatigue crack, which is the 
first damage condition. Then the second fatigue crack was 
produced using the crack propagator for another 24 h period.

In [20], the PST method integrated with mutual information 
was applied to detect cracks and to identify the level of degrada-
tion. Mutual information was used to only select the most rel-
evant PST-extracted features. Results show 100% performance 
using this algorithm; it is notable that only three features were 
necessary to detect cracks and identify the crack level.

Conclusion

This paper summarizes the development of a novel fam-
ily of methods that originated and developed at VCADS. It 
discusses briefly some of the applications such as nonlinear 

pendulum, gear-train, cracked shafts and electro-hydraulic 
servo actuators [21]. It also presents a recent investigation of 
PST for bearing defect analysis. These methods are based on 
the hypothesis that the nonlinear response of dynamical sys-
tems contains valuable information about the system, given 
the intrinsic nonlinear nature of real systems. We conclude 
with a strong message that the key to robust and accurate 
diagnostics is algorithms that are able to zoom in on these 
nonlinear aspects of the response and can characterize them 
effectively.
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