Skip to main content
Log in

MgO-C Refractories: A Detailed Review of These Irreplaceable Refractories in Steelmaking

  • Research and Development
  • Published:
Interceram - International Ceramic Review

A Correction to this article was published on 15 June 2022

This article has been updated

Abstract: This paper reviews the raw materials, additives, general properties, oxidation and corrosion of MgO-C refractories, which are irreplaceable in the steelmaking process. Because it is a composite refractory, it benefits from the combined properties of magnesia and carbon. High-purity magnesia aggregates (fused as well as sintered), graphite as a carbon source, additives like antioxidants (primarily metal powders) and organic binders (resins) are used in manufacturing MgO-C refractories. The properties of the refractories may be tuned as per application demands by varying their carbon content. MgO-C refractories are majorly used in steelmaking converters for the entire lining of basic oxygen furnaces, electric arc furnaces, steel ladles and secondary steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. R. Sarkar, Refractory Technology, 2016. doi:10.1201/9781315368054.

  2. S.K. Sadrnezhaad, S. Mahshid, B. Hashemi, Z.A. Nemati, Oxidation mechanism of C in MgO-C refractory bricks, J. Am. Ceram. Soc. 89 (2006) 1308-1316. doi:10.1111/j.1551-2916.2005.00863.x.

  3. M.A. Faghihi-Sani, A. Yamaguchi, Oxidation kinetics of MgO-C refractory bricks, Ceram. Int. 28 (2002) 835-839. doi:10.1016/S0272-8842(02)00049-4.

  4. B. Hashemi, Z.A. Nemati, M.A. Faghihi-Sani, Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks, Ceram. Int. 32 (2006) 313-319. doi:10.1016/j.ceramint.2005.03.008.

  5. J. Xiao, J. Chen, Y. Wei, Y. Zhang, S. Zhang, N. Li, Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1100-1500 °C range, Ceram. Int. 45 (2019) 21099-21107. doi:10.1016/j.ceramint.2019.07.086.

  6. E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Japan. 112 (2004) 517-532. doi:10.2109/jcersj.112.517.

  7. E. Ruh, Magnesia-carbon refractories, history, development, types & applications, Int. Ceram. Monogr. 1 (1994) 772-793..

  8. C.W. Hardy, M.O. Warman, BOS Vessel Linings - Experience with magnesia carbon in the United Kingdom., Veitsch-Radex Rundschau. 75 (1987) 457-463.

  9. K. Kasai, Recent advances in refractories technology for steelmaking, Nippon Steel Tech. Rep. 61 (1994) 83-89.

  10. A.P. Luz, T.M. Souza, C. Pagliosa, M.A.M. Brito, V.C. Pandolfelli, In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants, Ceram. Int. 42 (2016) 9836-9843. doi:10.1016/j.ceramint.2016.03.080.

  11. A.S. Gokce, C. Gurcan, S. Ozgen, S. Aydin, The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks, Ceram. Int. 34 (2008) 323-330. doi:10.1016/j.ceramint.2006.10.004.

  12. S. Behera, R. Sarkar, Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: An in-depth investigation, Ceram. Int. 42 (2016) 18484-18494. doi:10.1016/j.ceramint.2016.08.185.

  13. ISO specification ISO 10081-2:2003, Publication date: 2003-12, reviewed and confirmed in 2019. https://www.iso.org/standard/36116.html (accessed May 2, 2020).

  14. M.K. Kujur, I. Roy, K. Kumar, P. Chintaiah, S. Ghosh, N.K. Ghosh, Raw materials for manufacturing of Superior quality MgO-C bricks, in: Mater. Today Proc., Elsevier Ltd, 2018: pp. 2359-2366. doi:10.1016/j.matpr.2017.09.242.

  15. J. Li, Y. Zhang, S. Shao, S. Zhang, Comparative life cycle assessment of conventional and new fused magnesia production, J. Clean. Prod. 91 (2015) 170-179. doi:10.1016/j.jclepro.2014.12.043.

  16. A.S. Bhatti, D. Dollimore, A. Dyer, Magnesia from seawater: a review, Clay Miner. 19 (1984) 865-875. doi:10.1180/claymin.1984.019.5.14.

  17. S. Mukherjee, S. Pramanik, S. Mukherjee, A comprehensive review of recent advances in magnesia carbon refractories, InterCeram Int. Ceram. Rev. 63 (2014) 90-98. doi:10.1007/bf03401039.

  18. T. Zhu, Y. Li, S. Sang, S. Jin, Y. Li, L. Zhao, X. Liang, Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories, Ceram. Int. 40 (2014) 4333-4340. doi:10.1016/j.ceramint.2013.08.101.

  19. S. Mahato, S.K. Pratihar, S.K. Behera, Fabrication and properties of MgO-C refractories improved with expanded graphite, Ceram. Int. 40 (2014) 16535-16542. doi:10.1016/j.ceramint.2014.08.007.

  20. T. Zhu, Y. Li, S. Sang, Z. Xie, A new approach to fabricate MgO-C refractories with high thermal shock resistance by adding artificial graphite, J. Eur. Ceram. Soc. 38 (2018) 2179-2185. doi:10.1016/j.jeurceramsoc.2017.10.018.

  21. T. Zhu, Y. Li, S. Sang, Z. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des. 124 (2017) 16-23. doi:10.1016/j.matdes.2017.03.054.

  22. M. Bag, S. Adak, R. Sarkar, Study on low carbon containing MgO-C refractory: Use of nano carbon, Ceram. Int. 38 (2012) 2339-2346. doi:10.1016/j.ceramint.2011.10.086.

  23. S. Behera, R. Sarkar, Low-Carbon Magnesia-Carbon Refractory: Use of N220 Nanocarbon Black, Int. J. Appl. Ceram. Technol. 11 (2014) 968-976. doi:10.1111/ijac.12324.

  24. M. Bag, S. Adak, R. Sarkar, Nano carbon containing MgO-C refractory: Effect of graphite content, Ceram. Int. 38 (2012) 4909-4914. doi:10.1016/j.ceramint.2012.02.082.

  25. S. Behera, R. Sarkar, Study on variation of graphite content in N220 nanocarbon containing low carbon MgO-C refractory, Ironmak. Steelmak. 43 (2016) 130-136. doi:10.1179/1743281215Y.0000000057.

  26. S. Zhang, N.J. Marriott, W.E. Lee, Thermochemistry and microstructures of MgO-C refractories containing various antioxidants, J. Eur. Ceram. Soc. 21 (2001) 1037-1047. doi:10.1016/S0955-2219(00)00308-3.

  27. T. Zhu, Y. Li, M. Luo, S. Sang, Q. Wang, L. Zhao, Y. Li, S. Li, Microstructure and mechanical properties of MgOC refractories containing graphite oxide nanosheets (GONs), Ceram. Int. 39 (2013) 3017-3025. doi:10.1016/j.ceramint.2012.09.080.

  28. M. Karakus, J.D. Smith, R.E. Moore, Cathodoluminescence mineralogy of used MgO-C bricks in basic oxygen furnaces, Veitsch-Radex Rundschau. (2000) 24-32.

  29. G.H. Cho, E.H. Kim, Y.G. Jung, Y.K. Byeun, Improving oxidation resistance and fracture strength of MgO-C refractory material through precursor coating, Surf. Coatings Technol. 260 (2014) 429-432. doi:10.1016/j.surfcoat.2014.11.035.

  30. S. Ghasemi-Kahrizsangi, H. Gheisari Dehsheikh, M. Boroujerdnia, Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite, Mater. Chem. Phys. 189 (2017) 230-236. doi:10.1016/j.matchemphys.2016.12.068.

  31. Y. Zhang, J. Chen, N. Li, Y. Wei, B. Han, Y. Cao, G. Li, The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry, Ceram. Int. 44 (2018) 16435-16442. doi:10.1016/j.ceramint.2018.06.057.

  32. H. Liu, F. Meng, Q. Li, Z. Huang, M. Fang, Y.G. Liu, X. Wu, Phase behavior analysis of MgO-C refractory at high temperature: Influence of Si powder additives, Ceram. Int. 41 (2015) 5186-5190. doi:10.1016/j.ceramint.2014.12.029.

  33. M. Chen, S. Gao, L. Xu, N. Wang, High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere, Ceram. Int. 45 (2019) 21023-21028. doi:10.1016/j.ceramint.2019.06.306.

  34. S. Gao, L. Xu, M. Chen, N. Wang, Effect of Fe addition on the microstructure and oxidation behavior of MgO-C refractory, Mater. Chem. Phys. 238 (2019) 121935. doi:10.1016/j.matchemphys.2019.121935.

  35. C.G. Aneziris, J. Hubálková, R. Barabás, Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions, J. Eur. Ceram. Soc. 27 (2007) 73-78. doi:10.1016/j.jeurceramsoc.2006.03.001.

  36. V. Stein, C.G. Aneziris, U. Klippel, W. Schönwelski, E. Guéguen, Reinforcement of Carbon Bonded Mgo Refractories Due To Nanometer Additions, (n.d.) 3-6.

  37. H. Gheisari Dehsheikh, S. Ghasemi-Kahrizsangi, Performance improvement of MgO-C refractory bricks by the addition of Nano-ZrSiO4, Mater. Chem. Phys. 202 (2017) 369-376. doi:10.1016/j.matchemphys.2017.09.055.

  38. S. Behera, R. Sarkar, Formation of Mg2C3 phase in N220 nanocarbon containing low carbon MgO-C composition, Bull. Mater. Sci. 40 (2017) 939-943. doi:10.1007/s12034-017-1429-6.

  39. T. Bahtli, D.Y. Hopa, V.M. Bostanci, S. YalcinYasti, Thermal conductivity of MgO-C refractory ceramics: Effects of pyrolytic liquid and pyrolytic carbon black obtained from waste tire, Ceram. Int. 44 (2018) 13848-13851. doi:10.1016/j.ceramint.2018.04.230.

  40. F.S. Bowman, R. C., Lang, E. J. and Grazen, US3852232A - Resin composition and process for bond solid particles, 1974. https://patents.google.com/patent/US3852232 (accessed May 2, 2020).

  41. A.H. Geber, US5760104A - Mixtures of phenolic novolaks for use with refractory aggregate and methods for making same, 1998. https://patents.google.com/patent/US5760104A/en (accessed May 2, 2020).

  42. G. Zoglmeyr, Technical and environmental aspects of the use of phenolic resins in modern-day refractories, InterCeram Int. Ceram. Rev. 42 (1993) 145-149. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4766543 (accessed May 2, 2020).

  43. A. Gardziella, L.A. Pilato, A. Knop, A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins: Chemistry, Reactions, Mechanism, in: Phenolic Resins, Springer Berlin Heidelberg, 2000: pp. 24-82. doi:10.1007/978-3-662-04101-7_2.

  44. W.P. Freese, Phenolic Resins, in: Butterworth-Heinemann, 1985: pp. 35-41. doi:10.1016/B978-075064132-6/50064-4.

  45. G. Tang, L. Li, Z. He, Effects of dispersion method and content of nanometer carbon black on mechanical properties of low carbon MgO - C materials, Naihuo Cailiao/Refractories. 42 (2008) 165-168.

  46. T. Bahtli, D.Y. Hopa, V.M. Bostanci, S.Y. Yasti, Investigation of thermal shock behaviour of MgO-C refractories by incorporation of pyrolytic liquid as a binder, Mater. Chem. Phys. 213 (2018) 14-22. doi:10.1016/j.matchemphys.2018.04.017.

  47. C.G. Aneziris, F. Homola, D. Borzov, Material and process development of advanced refractories for innovative metal processing, Adv. Eng. Mater. 6 (2004) 562-568+470. doi:10.1002/adem.200400417.

  48. T. Zhu, Y. Li, S. Sang, Z. Xie, Mechanical behavior and thermal shock resistance of MgO-C refractories: Influence of graphite content, Ceram. Int. 43 (2017) 7177-7183. doi:10.1016/j.ceramint.2017.03.004.

  49. K. Sung, G. Jo, Y. Jung, Y. Byeun, Effect of carbon content on the mechanical behavior of MgO - C refractories characterized by Hertzian indentation, Ceram. Int. 42 (2016) 9955-9962. doi:10.1016/j.ceramint.2016.03.097.

  50. M. Bavand-Vandchali, H. Sarpoolaky, F. Golestani-Fard, H.R. Rezaie, Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO-C refractories matrix, Ceram. Int. 35 (2009) 861-868. doi:10.1016/j.ceramint.2008.03.001.

  51. S. Hu, R. Zhu, R. Liu, K. Dong, Decarburisation behaviour of high-carbon MgO-C refractories in O2-CO2 oxidising atmospheres, Ceram. Int. 44 (2018) 20641-20647. doi:10.1016/j.ceramint.2018.08.056.

  52. X. Li, M. Rigaud, S. Palco, Oxidation Kinetics of Graphite Phase in Magnesia-Carbon Refractories, J. Am. Ceram. Soc. 78 (1995) 965-971. doi:10.1111/j.1151-2916.1995.tb08423.x.

  53. R.A. McCauley, Corrosion of ceramic materials: Third edition, CRC Press, 2016. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1439820228 (accessed May 2, 2020).

  54. W.E. Lee, S. Zhang, Melt corrosion of oxide and oxide-carbon refractories, Int. Mater. Rev. 44 (1999) 77-104. doi:10.1179/095066099101528234.

  55. K.C. Mills, Y. Su, A.B. Fox, Z. Li, R.P. Thackray, H.T. Tsai, A review of slag splashing, ISIJ Int. 45 (2005) 619-633. doi:10.2355/isijinternational.45.619.

  56. I.A. Souza Santos, V.R. De Medeiros Santos, W. Dos Reis Lima, A.L. Da Silva, B.T. Maia, J.R. De Oliveira, Slag Splashing: Simulation and analysis of the slags conditions, J. Mater. Res. Technol. 8 (2019) 6173-6176. doi:10.1016/j.jmrt.2019.10.011.

  57. S.K. Sadrnezhaad, N. Bagheri, S. Mahshid, Effect of Si antioxidant on the rate of oxidation of carbon in MgO-C refractory, Int. J. Eng. Trans. B Appl. 24 (2011) 357-366. doi:10.5829/idosi.ije.2011.24.04b.06.

  58. O. Volkova, B. Sahebkar, J. Hubalkova, C.G. Aneziris, P.R. Scheller, Ladle heating procedure and its influence on the MgO-C-oxidation, Mater. Manuf. Process. 23 (2008) 758-763. doi:10.1080/10426910802381975.

  59. Z. Liu, J. Yu, S. Yue, D. Jia, E. Jin, B. Ma, L. Yuan, Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder, Ceram. Int. 46 (2020) 3091-3098. doi:10.1016/j.ceramint.2019.10.010.

  60. S. Mahato, S.K. Behera, Oxidation resistance and microstructural evolution in MgO-C refractories with expanded graphite, Ceram. Int. 42 (2016) 7611-7619. doi:10.1016/j.ceramint.2016.01.169.

  61. T. Bahtli, D.Y. Hopa, V.M. Bostanci, N.S. Ulvan, S.Y. Yasti, Corrosion behaviours of MgO-C refractories: Incorporation of graphite or pyrolytic carbon black as a carbon source, Ceram. Int. 44 (2018) 6780-6785. doi:10.1016/j.ceramint.2018.01.097.

  62. R.A.A. Borges, G.F.B. Lenz e Silva, A statistical and post-mortem study of wear and performance of MgO-C resin bonded refractories used on the slag line ladle of a basic oxygen steelmaking plant, Eng. Fail. Anal. 78 (2017) 161-168. doi:10.1016/j.engfailanal.2017.03.020.

  63. M. Guo, S. Parada, P.T. Jones, E. Boydens, J. V Dyck, B. Blanpain, P. Wollants, Interaction of Al2O3-rich slag with MgO-C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface, J. Eur. Ceram. Soc. 29 (2009) 1053-1060. doi:10.1016/j.jeurceramsoc.2008.07.063.

  64. M. Guo, S. Parada, P.T. Jones, J. Van Dyck, E. Boydens, D. Durinck, B. Blanpain, P. Wollants, Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum, Ceram. Int. 33 (2007) 1007-1018. doi:10.1016/j.ceramint.2006.03.009.

  65. Z. Liu, L. Yuan, E. Jin, X. Yang, J. Yu, Wetting, spreading and corrosion behaviour of molten slag on dense MgO and MgO-C refractory, Ceram. Int. 45 (2019) 718-724. doi:10.1016/j.ceramint.2018.09.234.

Download references

Acknowledgment

The authors acknowledge Biju Patnaik Central Library (BPCL), NIT Rourkela, for providing access to the appropriate journals.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, R., Sarkar, R. MgO-C Refractories: A Detailed Review of These Irreplaceable Refractories in Steelmaking. Interceram. - Int. Ceram. Rev. 70, 46–55 (2021). https://doi.org/10.1007/s42411-021-0457-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-021-0457-9

Navigation