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Abstract
Due to the lack of aerodynamic forces, the available propulsion for exoatmospheric pursuit-evasion problem is strictly limited,
which has not been thoroughly investigated. This paper focuses on the evasion guidance in an exoatmospheric environment
with total energy limit. A Constrained Reinforcement Learning (CRL) method is proposed to solve the problem. Firstly, the
acceleration commands of the evader are defined as cost and an Actor-Critic-Cost (AC2) network structure is established to
predict the accumulated cost of a trajectory. The learning objective of the agent becomes tomaximize cumulative rewardswhile
satisfying the cost constraint. Secondly, a Maximum-Minimum Entropy Learning (M2EL) method is proposed to minimize
the randomness of acceleration commands while preserving the agent’s exploration capability. Our approaches address two
challenges in the application of reinforcement learning: constraint specification and precise control. The well-trained agent
is capable of generating accurate commands while satisfying the specified constraints. The simulation results indicate that
the CRL and M2EL methods can effectively control the agent’s energy consumption within the specified constraints. The
robustness of the agent under information error is also validated.

Keywords Pursuit-evasion · Exoatmospheric vehicle · Guidance law · Reinforcement learning · Constraint · Energy
consumption

1 Introduction

With the development of technologies such as propulsion
systems and sensors, the intelligent game between exoat-
mospheric vehicles has become a worthwhile research topic.
Due to the extremely high speeds and the lack of aerodynamic
forces, maneuverability for these vehicles is limited by their
finite energy, making exoatmospheric pursuit-evasion game
a challenging problem.

Many researchers have studied pursuit-evasion problems
using geometry analysis method, optimal control, and differ-
ential gamemethods. Extensive research has been conducted
on the interception problem for pursuers, focusing on aspects
such as convergence of line-of-sight angle, time constraints,
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terminal angle constraints, and energy consumption. The
Apollonius circle geometry analysis method is perhaps the
most classic research approach in this field. However, this
method significantly simplifies problems by assuming a con-
stant velocity and neglecting realistic complex dynamics. In
recent years, some researchers have explored Apollonius cir-
cles geometric analysis method to address pursuit-evasion
problems with multiple participants [1]. However, the prob-
lem is still modeled as a simplified two-dimensional scene.
Liu et al. [2] addressed the problem of a low-speed missile
intercepting a hypersonic vehicle in the longitudinal plane.
The guidance system is established by defining the LOS
angular rate as the state variable. He et al. [3] and Reisner
et al. [4] studied exoatmospheric the interception problem
based on optimal control theory, taking into account finite
time and interception angle constraints. Liang et al. [5, 6]
investigated the guidance problem for interceptors against
spacecraft with active defense, considering fuel cost, control
saturation, chattering phenomenon and parameters selection.
Wang et al. [7] proposed a cooperative augmented propor-
tional guidance for proximity to uncooperative space targets.
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For the evader, the primary objective is to avoid enter-
ing the pursuer’s kill radius. However, the evader also has
an ultimate goal of striking a specific target or flying to a
particular area. Evading the pursuer becomes a necessary
condition for accomplishing the final goal. Therefore, the
evader often needs to compromise between the evasion task
and the ultimate objective. Consequently, it becomes dif-
ficult for the evader to choose a suitable evasion strategy.
Therefore, several literatures have investigated scenarios in
which the evader carries a defender for active defense [8–10].
With assistance, the evasion task for the evader becomes
significantly simpler. However, only a few studies have
focused on investigating a single evader’s strategies. Shafer-
man et al. [11] proposed aNear-optimal evasion strategies for
an evader, exploiting the inherent time delay associated with
the pursuer’s estimate of the evader’s acceleration to maxi-
mize the miss distance. Carr Ryan et al. [12] investigates]d a
scenario where proportional navigation is nearly optimal for
the pursuer and solves the differential game solution for the
evader in this scenario. Fonod Robert et al. [13] proposed a
multiple model adaptive evasion strategies and analyzed sev-
eral specific limiting cases inwhich the attackingmissile uses
proportional navigation, augmented proportional navigation,
or an optimal guidance law.

The references mentioned above mostly employ opti-
mal control or differential game approaches which had two
shortcomings. Firstly, simplifying the problem to two dimen-
sions and linearize complex dynamic equations [14] due to
the difficulty of solving nonlinear models. However, exoat-
mospheric missile engagements are characterized by high
speeds, short durations, and small kill radii. Achieving high
simulation accuracy is crucial, and any model simplification
may result in significant errors in terminalmiss distance. Sec-
ondly, previous research had focused on minimizing energy
consumption as one of the evader’s goals, but no litera-
ture considered the total energy limit as a constraint for the
evader. The two approaches are different. The former aims
tominimize energy consumption while ensuring a successful
evasion, whereas the latter tries to find the optimal evasion
strategy within the energy constraints. In exoatmospheric
environment, only direct force can be utilized as there is no
aerodynamic force. Consequently, the evader must consider
the constraint of energy consumption. Therefore, it is nec-
essary to develop a real-time decision-making method that
can directly solve the evasion guidance law with nonlinear
dynamic equations and strict energy constraint.

Reinforcement learning (RL) is an iterative decision-
making method that allows an agent to interact with its
environment in real-time, which can solve the two problems
above effectively. The decision-making entity, referred to as
an agent, observes the current state of the environment and
makes decisions based on these observations. The agent then
evaluates and enhances its strategy by receiving feedback

in the form of reward values from the environment. How-
ever, applying reinforcement learning methods to address
the problem studied in this paper encounters two significant
challenges: firstly, how to effectively handle constraints, and
secondly, how to achieve precise control. Traditional rein-
forcement learning methods typically optimize an agent’s
strategy through a reward function. However, when energy
consumption is incorporated into the reward function, ensur-
ing compliance with total energy constraints that the agent
must satisfy becomes challenging. In certain related research,
some researchers refer to the constraints an agentmust satisfy
as cost. Subsequently, the agent’s objective becomes twofold:
to maximize the expected reward value while accumulating
sufficient cost to meet the constraint. This approach is known
as constrained reinforcement learning (CRL) [15–17]. On
one hand, the evader’s acceleration command was defined as
cost. The accumulated cost of a trajectory must satisfy the
total energy constraints. On the other hand, reinforcement
learning is commonly employed with stochastic policies to
enhance the exploration capability of an agent. However, in
missile guidance problems, excessive randomness can result
in unnecessary energy consumption. Therefore, a maximum-
minimum entropy learning method is proposed to reduce
the randomness of acceleration commands without com-
promising the exploration capability of the agent. In this
game, evader’s maneuvering capability is less than that of the
pursuer. Simulation results have shown that constrained rein-
forcement learning can effectively address such constrained
decision-making problems. The evader agent is capable of
completing the evasion task while satisfying the energy con-
sumption constraint.

The main contributions of this paper are as follows:

1. Constrained reinforcement learning method was pro-
posed to solve the problem of exoatmospheric evasion
guidance with total energy constraints.

2. To minimize the randomness of acceleration commands
while preserving the agent’s exploration capability, we
introduce the Maximum-Minimum Entropy Learning
method, which is integrated into the agent’s learning
objective as a constraint term.

3. The effectiveness and robustness of the proposedmethod
have been validated on a randomly generated dataset.

2 RelatedWork

In recent years, the remarkable advancements of RL in vari-
ous domains have prompted researchers to explore its appli-
cation in computational missile guidance. The researchers
first demonstrated that reinforcement learning guidance laws
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have certain advantages compared to proportional naviga-
tion methods. He et al. [18] and Hong Daseon et al. [19]
studied the comparison between the reinforcement learning
guidance law and the traditional proportional guidance law,
and the experiment verified that the guidance law based on
reinforcement learning can be applied to the missile guid-
ance law. Gaudet et al. [20] showed that the guidance law of
reinforcement learning performs better than the proportional
guidance method and the enhanced proportional guidance
method when considering the noise and time delay of the
sensors and actuators.

Reinforcement learningmethod is also capable of address-
ing constraint problems inmissile guidance, like interception
angle constraints. Gong et al. [21] presented an all-aspect
attack guidance law for agile missiles based on deep rein-
forcement learning (DRL), which can effectively cope with
the aerodynamic uncertainty and strong nonlinearity in the
high angle-of-attack flight phase. Li et al. [22] proposed
an assisted deep reinforcement learning (ARL) algorithm
to optimize the neural network-based missile guidance
controller for head-on interception. Based on the relative
velocity, distance, and angle, ARL can control the missile
to intercept the maneuvering target and achieve large termi-
nal intercept angle.

Subsequently, reinforcement learning has been further
applied to missile active defense [23, 24], spacecraft pursuit-
evasion games [25–28], as well as exoatmospheric missile
guidance [29–31]. Shalumov et al. [24] tried to find an
optimal launch time of the defender and an optimal target
guidance law before and after launch using DRL. A policy
suggesting at each decision time the bang-bang targetmaneu-
ver and whether or not to launch the defender was obtained
and analyzed via simulations. Simulations showed the abil-
ity of the reinforcement learning based method to obtain a
close to optimal level of performance in terms of the sug-
gested cost function. Yang et al. [25] proposed a closed-loop
pursuit approach using reinforcement learning algorithms to
solve and update the pursuit trajectory for the incomplete-
information impulsive pursuit-evasion missions. Brandonsio
et al. [26] focused towards enhanced autonomy on-board
spacecrafts for on-orbit servicing activities using deep rein-
forcement learning method. Zhao et al. [27] investigated the
problem of impulsive orbital pursuit-evasion games using
Multi-Agent Deep Deterministic Policy Gradient approach.
A closed-loop pursuit approach using reinforcement learn-
ing algorithms was proposed to solve and update the pursuit
trajectory for the incomplete-information impulsive pursuit-
evasion missions. Zhang et al. [28] studied an one-to-one
orbital pursuit-evasion problem. A near-optimal guidance
law using deep learning is proposed to intercept the evader
inside the capture zone. For the games that start outside the
barrier, a learning algorithm for the capture zone embedding
strategy is presented based on deep reinforcement learning

to help the game state cross the barrier surfaces. In [30],
reinforcement learning algorithm was applied to the mid-
course penetration of extra-atmospheric ballistic missiles. In
[31], reinforcement learning combined with meta-learning is
applied to the guidance law of extra-atmospheric interceptor.
The reinforcement learning algorithm outputs four propul-
sion instructions for steering thrusters. The results show that
reinforcement learning guidance law is superior to the tra-
ditional ZEM guidance law in interception rate and energy
consumption.

3 Problem Formulation

This paper aims to analyze the terminal guidance phase of a
3Dexoatmospheric pursuit-evasion problem.The 3D relative
kinematics relationship is shown in Fig. 1. The centroid of
the evader is represented by the red dot, while the centroid of
the pursuer is represented by the blue dot. The inertial coor-
dinate system is denoted as XYZ , while the virtual inertial
coordinate system, obtained by shifting the inertial coordi-
nate system to the centroid of the evader, is denoted asX’Y’Z’.
The missile body coordinate system is denoted as XmYmZm,
where the Xm axis aligns with the missile axis, the Ym axis is
perpendicular to the missile in an upward direction, and the
Zm axis follows the right-hand rule. The line-of-sight (LOS)
coordinate system is denoted as XlY lZl, with the Xl axis
coinciding with the line of sight, the Yl axis pointing upward
in the vertical plane of the Xl axis, and the Zl axis following
the right-hand rule. θ and ϕ represent the pitch angle and
yaw angle, respectively, of the moving coordinate system in
relation to the inertial system.

Fig. 1 3D relative kinematics relationship

123



International Journal of Aeronautical and Space Sciences

3.1 Kinematic and Dynamic Formulas in the Inertial
Coordinate System

The kinematic formulas for the evader and pursuer in the
inertial frame are:

{
ṙe � ve
v̇e � ae

, (1)

{
ṙp � vp
v̇p � ap

, (2)

where r � [x , y, z], v � [
vx , vy , vz

]
, a � [

ax , ay , az
]
. The

subscripts e and p represent the evader and pursuer, respec-
tively.

Exoatmospheric hypersonic vehicles usually rely on the
divert control system located on the side of the vehicle body
and near the center of gravity to provide direct forces dur-
ing the orbit flight phase [32]. As depicted in Fig. 1, the
evader’s thrust accelerations are applied along the Ym and
Zm axes, and the thrust acceleration of the evader in the mis-
sile coordinate system can be expressed as amt � [

0, aty ,
atz
]m . Suppose there is a maximum limit on the thrust accel-

eration of the evader, denoted as at_max, that is
∣∣at y∣∣ ≤ at_max

and |at z | ≤ at_max. The thrust acceleration of the evader in
the inertial frame is denoted as ait � Cmiamt , where Cmi is
the transformation matrix from the missile body coordinate
system to the inertial coordinate system.

The exoatmospheric dynamics equation of the evader is:

aie � aig + ait , (3)

where ag represents the gravitational accelerationof theEarth
in the inertial frame, and its expression is:

ag �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GM · x√(
x2 + y2 + z2

)3
GM · y√(

x2 + y2 + z2
)3

GM · z√(
x2 + y2 + z2

)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where GM is the gravitational constant, with a value of
3.9753×1014.

Assuming that the pursuer uses proportional guidance, the
formula is [33]:

aic � N
zem

t2go
, (5)

where N is a guidance gain, zem is the Zero Effort Miss
(ZEM) [33] that is perpendicular to the LOS and tgo repre-
sents the remaining flight time, which is approximated as:

tgo � − R

Ṙ
. (6)

The exoatmospheric dynamics equation of the pursuer is:

aip � aig + aic. (7)

In this paper, it is assumed that the pursuer’s initial ZEM
is 0 [34], and the initial velocity vector of the pursuer is
determined by solving the two-body Lambert equation.

3.2 Kinematic Formulas in the LOS Coordinate
System

Denote the rotation matrices that transform the ECI coordi-
nate system to the LOS coordinate system around the Z , Y ,
and X axes as CZ ,CY , and CX , respectively. The matrix rep-
resenting the angular velocities of rotation is denoted as �i ,
which can be expressed as:

�i � CXCYCZ

⎡
⎢⎣
0

0

ϕ̇l

⎤
⎥⎦ + CXCY

⎡
⎢⎣
0

θ̇l

0

⎤
⎥⎦ �

⎡
⎢⎣

−ϕ̇l sin θl

ϕ̇l cos θl

−θ̇l

⎤
⎥⎦. (8)

The kinematic formula in the LOS coordinate system is:

Vr �
[
δR
δt

]l
+
[
�i
]l × R. (9)

Substituting Eq. 8 into Eq. 9 yields:

Vr �
⎡
⎢⎣ Ṙ

−Rθ̇l

−Rϕ̇l cos θl

⎤
⎥⎦. (10)

Assuming the pursuer utilizes a direct collision inter-
ception method with a kill radius of 0.5 m, successful
interception by the pursuer is defined when R ≤ 0.5. Con-
versely, successful evasion by the evader is defined when
Ṙ ≥ 0.

The decision time interval and simulation interval is cru-
cial for the convergence of the algorithm and the accuracy
of simulation. Considering the algorithm search space and
practical engineering conditions, we set the decision time
interval to 0.1 s, which means that an acceleration command
is output every 0.1 s. For ballistic simulation, a smaller sim-
ulation interval can improve simulation accuracy, but it also
increases the training time cost. To accelerate the training
process, we set the initial simulation step size to be the same
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Fig. 2 Diagram illustrating simulation accuracy

as the decision step size, which is 0.1 s. Meanwhile, to accu-
rately calculate the miss distance at the end, the simulation
interval is adjusted to 0.0001 s when the relative distance
is less than 2000 m, as depicted in Fig. 2. If the simulation
interval is directly set to 0.0001 s, the training time cost will
increase by more than 40 times, which would be unaccept-
able.Additionally, themotiondifferential equation is updated
using the 4th order Runge–Kutta method.

4 Method

To solve the constrained evasion problem in RL framework,
we firstly build a Constrained Markov Decision Process
(CMDP) and then present the Constrained Proximal Policy
Optimization (CPPO) based evasion guidance law.

4.1 CMDP

CMDP differs from the classical MDP by incorporating cost
as feedback during the decision-making process. A CMDP
can be represented by (S, A, P, R, C), where S is the state
space, A is the action space, R denote the reward function
and C denote the cost function, respectively, and P is the
transition probability function with p

(
s′|s, a) denoting the

transition probability from state s to state s′ given action a.
A stochastic policy π : S → A is a mapping from states to
probabilities of selecting each possible action. The goal is to
find the optimal policy π∗ that provides the highest expected
sum of rewards:

π∗ � argmax Eπ

{
T∑
t

γ t rt+1|s0 � s

}
, (11)

where γ ∈ [0, 1][0, 1] is the discount factor. The CMDP
problem can be generalized into:

max
π

Eπ

{
T∑
t

γ t rt+1|s0 � s , a0 � a

}

s.t.
T∑
t

ct+1 ≤ C ,

(12)

where C is the cost limit, and the
∑T

t ct+1 is the total cost
during a trajectory.

This paper assumes that the evasion agent canonly observe
partial information about the engagement state. Therefore,
in the subsequent description, the state s is replaced by the
observedvariable o. The observation space, action space, cost
function, and reward function of CMDP are set as follows.

4.1.1 Environment States and Agent Observations

The environment states can be described in both the inertial
coordinate system and the LOS coordinate system. In the
inertial coordinate system, the environmental state includes
the positional coordinates, velocity vectors, and acceleration
vectors of both the pursuer and the evader. In the LOS coor-
dinate system, the environmental state can be described by
relative distance and its rate, line-of-sight angles and its rate,
as well as elevation angle and its rate.

In this paper, the environment information is only par-
tially observable for the evader. Assuming that the evader
is equipped with an infrared sensor, it can directly measure
the line-of-sight angles in the missile body coordinate sys-
tem, as depicted in Fig. 3. Although these two angles can be
transformed into the inertial coordinate system or the LOS
coordinate system,we choose to directly use these two angles
as observations of the agent to minimize errors. However,
the information provided by these two angles is insufficient.
Therefore, it is assumed that the agent can estimate the
relative distance to the pursuer using a filtering algorithm,
resulting in a total of three observations, denoted as [ϕm , θm ,
R]. Furthermore, the evader does not require knowledge of
the rate of line-of-sight angle and the rate of relative distance.

Fig. 3 Diagram of observations for the evader
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4.1.2 Action Space

The action output of the actor network is the thrust accelera-
tion in the y-axis and z-axis directions defined in the missile
body coordinate system. Specifically, it can be represented as
a � [

ay , az
]m , where the superscript m denotes the missile

body coordinate system.

4.1.3 Cost Function

The role of the cost function is to calculate the cumulative
constraints. For each interaction during training, the single-
step constraint is determined by summing the absolute values
of the current thrust acceleration, which can be represented
as c � τ(|av| + |az |), where τ is a hyperparameter and is set
to 0.1 in this paper.

4.1.4 Reward Function

The reward function plays a crucial role in the reinforce-
ment learning environment as it guides the agent’s learning
process. Reward functions can be categorized into shaping
rewards and end rewards. Shaping rewards are used to guide
the agent’s exploration during training, while end rewards
indicatewhether the task has been successfully accomplished
or not. In our case, since the acceleration constraint is already
accounted for by the cost function, we only employ a sparse
reward approach, specifically using an end reward function.
If the evader is hit, the task fails and a penalty is given; if the
evader successfully avoids being hit, the task succeeds, and
a positive reward is given. The expression is as follows:

⎧⎪⎨
⎪⎩
r � −

(
1 − |R|

Rkill

)
if R ≤ Rkill

r � 0.2 log(2R) if R > Rkill and Ṙ ≥ 0

. (13)

The reward function curve is shown in Fig. 4. The rela-
tionship between terminal miss distance and reward is a
continuous curve, and the range of reward values is approx-
imately from -1 to 1. When the miss distance is equal to the
kill radius, the reward is 0. If themiss distance is smaller than
the kill radius, a penalty value is assigned, and the magnitude
of the penalty increases as the miss distance decreases. As
the miss distance approaches 100 m, the reward value gradu-
ally increases, but the rate of change becomes smaller, which
informs the agent that the current miss distance is sufficiently
large.

4.2 Traditional PPO Algorithms

The PPO [35] algorithm, which is a state-of-art reinforce-
ment learning algorithm, is used as the basic algorithm in

Fig. 4 Reward function curve

this paper. PPO is an on-policy algorithm that operateswithin
the Actor-Critic (AC) framework. The traditional framework
of continuous PPO algorithm has two main components: the
actor network and the critic network. The actor network is
responsible for outputting the distribution of actions, while
the critic network evaluates the state value function.

The PPO algorithm utilizes importance sampling method
to calculate the ratio of the old policy to the new policy to
measure the quality of the new policy, which as shown in
formula (14),

pn(θ ) � πθ (an|on )
πθold (an|on ) . (14)

The samples obtained through importance sampling can
be reused multiple times, and the number of sample usages,
denoted as nreuse in this paper, is a crucial hyperparameter in
the PPO algorithm. Following the proposal of the PPO algo-
rithm, several versions have been developed, with the clip
version being the most commonly used. The clip function
is responsible for controlling the gap between the old pol-
icy and the new policy. The objective of the PPO algorithm
is to maximize the expected value of the advantage func-
tion through importance sampling. The objective function is
shown in formula (15).

J (θ )

� Ep(τ )
[
min

[
pn(θ ), clip(pn(θ ), 1 − ε, 1 + ε)

]
Aπ
w(on , an)

]
.

(15)

The advantage function is defined as the difference
between the state-action value function and the state value
function, and it encourages actions with values greater than
the average value. There are various forms to express the
advantage function, and the Generalized Advantage Esti-
mation (GAE) is an effective method that provides a good
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balance between estimation bias and variance. Its expression
is given by formula (16).

Aπ
w(ot , at )GAE

�
T−n−1∑
t�0

(γ λ)n
[
rt+n + γ V (ot+n+1) − V (ot+n)

]
. (16)

The objective of the critic network is to predict the value
of a given state. The loss function of the critic network is
shown in formula (17).

L(w) �
M∑
i�1

(
V π
w (oin) −

[
T∑

t�n

γ t−nr (oit , a
i
t )

])2

. (17)

4.3 Maximum-Minimum Entropy Learningmethod

The formulas (15) to (17) represent the traditional PPO
algorithm, where the policy is typically described using a
Gaussian distribution. The acceleration command is gener-
ated by sampling from the policy distribution, resulting in a
certain level of randomness. In general application scenarios
like competitive games, random policies are favored because
they enhance exploration capabilities, reduce the likelihood
of getting stuck in local optima, and exhibit better robustness.
For instance, the authors of the Soft Actor-Critic (SAC)[36]
algorithmpropose incorporating themaximizationof entropy
learning into the objective of the agent. However, in missile
guidance problems, where there are strict limitations on the
sum of acceleration commands, excessive randomness can
lead to energy waste and hinder the learning of the optimal
policy under total energy constraints. Therefore, this paper
introduces the maximum-minimum entropy learningmethod
to address this issue. The idea is to encourage exploration
during the early stages of training and gradually reduce the
randomness of the policy in later stages, thus reducing the
randomness of acceleration commands without compromis-
ing the exploration capability of the agent.

The classic definition of entropy is −∑
p(x) log p(x),

andRef. [36] defined the entropy asEan∼π

[−log(π(an|sn ))
]
.

However, the former has excessively large gradients in the
direction of entropy reduction, while the latter has exces-
sively small gradients in the direction of entropy reduction.
Therefore, this paper constructs a logistic entropy function
as shown in formula (18).

H(p(an|on )) � Ean∼π

[
− kne−ηp(an |on )(

1 +
(
kn
/
k0 − 1

))
]
, (18)

where kn � 100, k0 � 2, ï� 0.2, and p(an|on ) is the value of
probability density. The images of the three entropy functions
are shown in Fig. 5. It can be observed that neither p(x) log p

Fig. 5 Comparison of three entropy functions

(x) nor log(p(x)) is suitable when the learning objective
is entropy reduction. p(x) log p(x) has a derivative that is
too large in the entropy reduction direction, while log(p(x))
has a derivative that is too small. Function p(x) log p(x)
exhibits an excessive derivative in the direction of entropy
reduction, whereas derivative of log(p(x)) is insufficient. In
contrast, the logistic entropy function exhibits a derivative
in the direction of entropy reduction that initially progresses
slowly but gradually accelerates, eventually converging. This
is in line with the requirements of the training objective.

The logistic entropy function is incorporated as a con-
straint term in the objective function of the policy network,
as shown in formula (19).

J (θ ) � −Ep(τ )

[
min

[
pn(θ ), clip(pn(θ ), 1 − ε, 1 + ε)

]

Aπ
w(on , an)

]
− αH(p(an|on )), (19)

where α is an adaptive parameter, and its value affects
whether the policy distribution increases or decreases in
entropy. The objective function of α is given by formula (20).

J (α) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
(ot , at )∼ρz

[
α
∑
t

γ t r(ot , at )

]
, if E

(
γ t r(ot , at )

) ≤ 0

E
(ot , at )∼ρz

[
α(H0 − log(p(an |on )))

]
, otherwise

,

(20)

where H0 is an objective entropy, and its value is set to 3 in
this paper. The explanation of the influence of exploration
randomness and H0 value can be found in Appendix.

4.4 CPPO Evasion Guidance Law

After controlling the randomness of the policy, we can pro-
ceed to solve the constrained optimization problemdescribed
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Fig. 6 CPPO algorithm
framework

in formular (12). The challenge lies in incorporating the cost
and cost limit within the reinforcement learning algorithm
framework. In the CMDP problem, it is crucial to calculate
the cumulative cost following a specific state. Therefore, we
propose an Actor-Critic-Cost (AC2) structure by incorpo-
rating a cost network into the traditional AC framework to
predict the cumulative cost value. The AC2 framework is
illustrated in Fig. 6.

In general, a constrained optimization problem can be
solved by the Lagrange Multiplier method. By introducing
the Lagrange Multiplier β, formula (12) becomes an uncon-
strained optimization problem:

max
π

L(π , β)
.� f (π ) − βg(π )

f (π ) � E
(ot , at )∼ρz

[∑
t

γ t r(ot , at )

]

g(π ) � E
(ot , at )∼ρπ

[∑
c(ot , at )

]
− C .

(21)

As a result, the complete objective function of the actor
network in this paper can be described by formula (22).

J (θ ) � Ep(τ )

[
min

[
pk(θ ), clip(pk(θ ), 1 − ε, 1 + ε)

]

× (
Aπ
w(ok , ak) + βQc(ok , ak)

)]− αH(p(an|on )),

(22)

where Qc(ok , uk) is obtained from the cost critic network.
Similar to the critic network, the loss function of the cost
critic network is described by formula (23).

Lc(w) �
M∑
i�1

(
Cπ
w(o

i
k) −

[
T∑
t�k

γ t−kc(oit , a
i
t )

])2

. (23)

It is worth noting that the β in formula (21) is contin-
uously updated based on the relationship between the cost
limit and the average cumulative cost of the current episode.
The objective function of β is shown in formula (24).

J (β) � β
(
C − max

(∑
c(ot , at )

))
j , (24)

where j is an adaptive parameter that adjusts the update speed
of β under different conditions. The updating process of β is
outlined in Algorithm 1.
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Algorithm 1 Adaptive update algorithm for β

In Algorithm 1, the values of j1, j2, j3 and j4 need to be
tuned, which are set to 1, − 0.1, – 1 and 5 in this paper.
The updates of parameters α and β are not synchronized
with the updates of network parameters. Network parame-
ters are updated multiple times within each episode based on
the value of parameter nreuse, while parameters α and β are
updated at a slower frequency, only once at each episode. The
complete process of the proposed CPPO algorithm is shown
in Algorithm 2.

Algorithm 2 CPPO algorithm

The complete flowchart of the proposed method is shown
in Fig. 7. The left side of the flowchart represents the interac-
tion phase, while the right side represents the training phase.
The final output is the well-trained actor network parameters,
which represent the mapping relationship between observa-
tions and actions. These parameters can be used for testing
and application purposes.

5 Experiment and Results

5.1 Training Results and Parameter Sensitivity
Experiments

In this section of the experiment, we compared the classical
PPO algorithm with the CPPO algorithm proposed in this
paper. The parameter settings and environment setup for the
PPO algorithm are consistent with CPPO. The difference
between them is that CPPO describes energy cost using a
cost function,whilePPOdescribes energy cost using a reward
function, as shown in formula (25).

r � −k

(
e

(ay/amax

)2
+ e

(az/amax

)2)
, (25)
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Fig. 7 Research methodology
flowchart

where k is a parameter that needs to be tuned, and its value
will affect the weight of energy cost in the learning objective
of the PPO agent.

Before each training episode, the situation needs to be ini-
tialized. With the evader as the center, the position vectors
[θ , ϕ, R] of the pursuer are randomly initialized in the visual
coordinate system.Assuming that themaximum thrust accel-
eration of the pursuer is greater than that of the evader, and
both sides have a decision frequency of 10 Hz. The initial
values of the situation parameters are shown in Table 1.

The hyperparameters of the CPPO algorithm have been
fine-tuned, and their corresponding values are presented in
Table 2.

To demonstrate the superiority of the proposed CPPO
algorithm in this paper, we conducted a comparison between
multiple groups of PPO and CPPO algorithms with differ-
ent energy consumption constraints. In the CPPO algorithm,

we set total energy constraints C � 5, 10, and 15, respec-
tively. As for the PPO algorithm, we set k � 0.00025, 0.0005,
and 0.001, respectively. The training results are shown in
Fig. 8. Figure 8a–d illustrate the reward curve, maximum
energy consumption curve, policy distribution standard devi-
ation curve, and penalty parameter β curve, respectively. In
Fig. 8a, both the CPPO and PPO algorithms exhibit robust
convergence. The reward curve of PPO appears relatively
stable, whereas the CPPO reward curve shows some fluctu-
ations. This can be attributed to the fact that the primary
learning objective of the PPO agent is to maximize the
reward function, whereas CPPO may encounter a reduction
in rewards due to the influence of constraints throughout the
training process. The characteristics of the CPPO algorithm
are demonstrated in Fig. 8b. The energy consumption of the
CPPO agent can converge with high accuracy to the specified
constraint C (often slightly below the C value). In contrast,
it is difficult for the PPO algorithm to precisely control
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(a) Reward curve (b) Cost curve

(c) Entropy curve (d) Penalty parameter curve

Fig. 8 Training results

the energy consumption of the agent through the parame-
ter k. For instance, when k � 0.0005 and 0.001, despite
doubling the parameter values, there is no significant dif-
ference in the energy consumption between them. Figure 8
(c) illustrates the effect of the Maximum-Minimum Entropy
Learningmethod. Themethod enables the standard deviation
of the policy distribution to converge to 0.01, which aligns
with the target value set in formula (20). However, when α is
set to 0, indicating the absence of the Maximum-Minimum
EntropyLearningmethod, the agent’s policy distributionwill
always maintain a certain level of randomness. Figure 8d
illustrates the trend of the penalty parameter β in the CPPO
algorithm. When β shows an increasing trend, it indicates
that the agent has not yet satisfied the energy consumption
constraint, requiring a further increase in the weight of the
cost loss compared to the policy loss. Conversely, when the

agent meets the energy consumption constraint, the value of
β starts to slowly decrease. Therefore, β is a crucial param-
eter in the CPPO algorithm.

5.2 Effectiveness Experiment

In this section, we introduced the classic step maneuver as a
comparativemethod and defined two sets of different maneu-
ver parameters. The expressions for twomaneuvers are given
by formulas (26) and (27) respectively. They are referred to as
“step maneuver 1” and “step maneuver 2” in the subsequent
text.

ay � az �
{
0, t ≤ 20s

amax, t >20s
, (26)
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Table 1 Initial values of the situation parameters

Parameters Symbol Value or scale

LOS azimuth angle ϕm
[− π

3 ,
π
3

]
LOS pitch angle θm

[− 2π
9 , − π

3

]
Relative distance R [200,000, 220,000]m

Maximum thrust
acceleration of the
evader

ae_max 20 m/s2

Maximum thrust
acceleration of the
pursuer

ap_max 30 m/s2

Table 2 Hyperparameters of the CPPO algorithm

Parameters Value

Clip 0.2

nreuse 5

Memory size 16,384

Minibatch 512

lr 0.0003

H0 3

α0 0.01

lrα 0.0002

β0 0.06

lrβ 0.00005

ay � az �
{
0, t ≤ 15s

0.7amax, t >15s
. (27)

5.2.1 Experiment in Typical Situations

In this section of the experiment, we compare the perfor-
mance of CPPO, PPO, and two types of step maneuvering
in specific situations, analyzing the trajectories, acceleration
commands and LOS angle rates. The situational parameters
of this scene are ϕm � 0.873, θm � − 0.261 and R=220,000.
Figure 9 displays the trajectories of evaders and pursuers
using different methods. In this particular scenario, the two
step maneuver methods are intercepted, while RL methods
successfully evade by performing slight maneuvers.

Figure 10 illustrates the acceleration and LOS angular rate
curves of the evader in this scenario. Figure 10a and b shows
the accelerations in the y-axis and z-axis directions of the
missile body coordinate system, respectively. It is apparent
that the results acquired through RL learning also demon-
strate an approximation of step maneuvering. In the initial

Fig. 9 Trajectories of evader and pursuer

stage of the game, no maneuvering is performed, and at a
specific time in the final stage, the maneuvering starts and
gradually increases until reaching maximum acceleration.
The distinction among RL methods with different param-
eters lies in the timing of maneuver initiation and the rate
of acceleration variation. Figure 10c and d depicts the LOS
angular rate curves. Due to the assumption that the ZEM
for pursuers is 0 at the beginning of the game, the LOS
angular rate remains constant at 0 until the evader initi-
ates maneuvering. In this state, the pursuer can successfully
intercept the evader without any maneuvers. The main dif-
ference between RL methods and traditional methods lies
in the rate of change of the yaw angle. In RL methods,
there is a noticeable variation in the yaw angular rate at
the end stage of game, whereas the yaw angular veloc-
ity remains almost constant at 0 in traditional maneuvering
methods.

The energy consumption and miss distance of various
methods are shown in Table 3, indicating a clear advantage
of RL methods over traditional maneuvering methods. RL
methods achieve a larger miss distance with lower energy
consumption. RL methods with larger constraint parameter
values have higher energy consumption but also result in
safer miss distances. In particular, the CPPO (C � 5) method
achieves successful evasion with only 441.41 units of energy
consumption. On the contrary, step maneuvers 1 and 2 have
energy consumptions of 2000 and 2800, respectively, but are
eventually intercepted by the pursuer.
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Table 3 Results on the typical scenario

Method Energy cost/(m/s2) Miss distance/m

CPPO(C � 5) 441.41 2.163

CPPO(C � 10) 1412.91 22.42

CPPO(C � 15) 2485.94 65.26

PPO(k � 0.001) 1388.29 16.91

PPO(k � 0.0005) 1964.11 30.63

PPO(k � 0.00025) 2625.41 77.77

Step maneuver 1 2000.00 0.12

Step maneuver 2 2800.00 0.14

5.2.2 Experiment on Test Dataset

To comprehensively evaluate the agent’s performance, we
generated a test dataset of 100 scenarios randomly, as shown
in Fig. 11.

The trained agent and the traditional step maneuvering
methodwere subjected to 100 experiments on the test dataset,
and the results are shown in Table 4. According to Table 4,
both CPPO and PPO algorithms have a success rate of 100%,
while traditional maneuvering methods, despite consuming
a large amount of energy, cannot achieve successful escape
in all situations. For instance, CPPO (C � 15) and step
maneuver 2 have similar energy consumption. However, the

Fig. 11 Test dataset

former demonstrates approximately twice the success rate of
escape and terminalmiss distance compared to the latter. This
indicates that intelligent methods can significantly enhance
maneuvering efficiency compared to traditional approaches.
Both PPO and CPPO are capable of effective maneuvering,

(a) Acceleration at body y axis (b) Acceleration at body z axis

(c) Change rate of θm (d) Change rate of φm

Fig. 10 Acceleration and LOS angle curve
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and higher energy consumption often leads to a larger termi-
nal miss distance.

Figure 12 shows the scatters of energy consumption and
terminal miss distance for CPPO agent and PPO agent on
the test dataset, clearly demonstrating the advantages and
characteristics of the CPPO algorithm. Figure 12a and c
depict scatters of the energy consumption for CPPO and
PPO, respectively. It can be observed that the energy con-
straint parameter C has a significant influence on the agent
in the CPPO algorithm. The agent is able to control its energy
consumption below the corresponding constraint value in all
situations, while obtaining the maximum terminal miss dis-
tance. Conversely, accurately controlling the agent’s energy
consumption is challenging for the PPO algorithm. The dif-
ference in miss distance scatters between CPPO and PPO is
more evident. Figure 12b demonstrates that CPPOhas amore
uniform distribution of miss distance, exhibiting noticeable
distinctions among CPPO agents with different constraint
values.

5.3 Robustness Experiments Under Information
Error Conditions

The experiments above were conducted under perfect infor-
mation conditions, where the observations of the agent were
completely accurate. However, in real-life scenarios, the
observations of the agent are often inaccurate due to the
environmental noise, and filtering algorithm performance.
Therefore, the robustness of RL algorithms in information
error conditions is also an important evaluation metric.

In the aforementioned assumptions, the LOS angles are
directly measured by the evader through an infrared sensor,
while the relative distance information is obtained through a
data fusion andfiltering algorithm.Therefore,we assume that
the angle measurements have only minor random errors that
follow a normal distribution. As for the relative distance, we
assume that errors consist of two components: random errors
that follow a normal distribution and systematic errors that

follow a uniform distribution. The error representations of
the observations are given by formulas (28) and (29).

Errϕm , Errθm ∼ N
(
0, σ 2

a

)
, (28)

ErrR ∼ N
(
0, σ 2

b

)
+U (e1, e2) × Rerr

Rmax
, (29)

where σa � 5 × 10−4, σb � 5 × 10−2, Rerr � 104m. We
have established 6 levels of error based on different values
of e1 and e2, as shown in Table 5.

The comparison between the error values and the accurate
values for a specific simulation are illustrated in Fig. 13.

The performance of CPPO agents under different error
levels is shown in Table 6.

According to Table 6, the CPPO (C � 5) agent is highly
affected by information errors. Under error level 0, the task
success rate decreases to 81%. The performance of CPPO (C
� 5) under the 4th error level and above is almost unaccept-
able. On the other hand, the CPPO (C � 10) and CPPO (C
� 15) agents demonstrate remarkable robustness, maintain-
ing a 100% task success rate under all error levels. However,
both the maximum energy consumption and terminal miss
distance are significantly impacted, as depicted in Fig. 14.

From Fig. 14, it is evident that both energy consumption
andmiss distance show considerable fluctuations under error
conditions. The energy consumption of all three CPPO algo-
rithms slightly surpasses the constraints at error levels 2 and
3. In general, larger constraint values lead to safer strategies
for the agents, which in turn enhance their robustness.

Based on the above analysis, it seems that C � 10 is a
highly balanced choice.By relying on reasonable energy con-
sumption, it not only ensures a sufficient safety margin for
themiss distance but also possesses the capability to counter-
act noise environments. Therefore,C � 10 can be considered
as the preferred option in the absence of strict energy con-
straints.However, in practical scenarios, energy reservesmay
not be sufficient, implying that energy constitutes a strict

Table 4 Results on test dataset
Method Success rate (%) Energy cost/(m/s2) Average miss distance/m

Means Max When success When fail

CPPO(C � 5) 100 558.08 896.33 3.61 \

CPPO(C � 10) 100 1387.46 1819.68 20.52 \

CPPO(C � 15) 100 2211.72 2808.82 57.75 \

PPO(k � 0.001) 100 1367.23 1813.49 18.72 \

PPO(k � 0.0005) 100 1647.64 2018.33 26.84 \

PPO(k � 0.00025) 100 2035.75 2732.56 45.40 \

Step maneuver 1 82 1994.80 2000 33.06 0.27

Step maneuver 2 62 2773.40 2800 26.94 0.23
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(a) Energy cost of CPPO (b) Miss distance of CPPO

(c) Energy cost of PPO (d) Miss distance of PPO

Fig. 12 Test dataset

Table 5 Error level
Error level 0 1 2 3 4 5

Parameter
values

e1=0,
e2=0

e1� − 1,
e2=1

e1� − 1,
e2=0

e1� − 2,
e2=0

e1=0,
e2=1

e1� 0,
e2=2

constraint. In this context, we can only determine the cor-
responding C value based on the total amount of available
energy at the time. This necessitates training multiple agents
under different C values (e.g., C � 5, 6, 7, …, 10) during the
offline training phase so that we can flexibly invoke differ-
ent agents based on varying circumstances during the online
application phase.

6 Conclusions

(1) Constrained reinforcement learning is capable of
addressing decision-making problems under con-
straints. Unlike traditional reinforcement learning algo-
rithms, constrained reinforcement learning decouples
the constraints from the decision objectives. The intel-
ligent agent trained with constrained reinforcement
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(a) LOS angle observation with noise (b) Relative distance observation with noise

Fig. 13 Observation with error

Table 6 Results on test dataset
with information error Method Error level Success rate (%) Energy cost/(m/s2) Average miss distance/m

Means Max When success When fail

CPPO
(C �
15)

0 100 2210.79 2874.65 53.14 \

1 100 2203.85 2949.96 51.78 \

2 100 2385.70 3102.44 63.73 \

3 100 2575.18 3272.22 75.35 \

4 100 2001.25 2628.75 41.43 \

5 100 1811.87 2441.56 31.13 \

CPPO
(C �
10)

0 100 1382.24 1915.54 16.38 \

1 100 1387.03 1860.88 15.37 \

2 100 1578.38 2157.35 22.63 \

3 100 1762.41 2315.65 28.33 \

4 100 1195.11 1702.19 10.51 \

5 100 999.47 1460.25 5.53 \

CPPO
(C �
5)

0 81 598.33 963.39 1.53 0.35

1 68 607.01 1041.26 1.58 0.31

2 87 768.46 1192.73 2.77 0.29

3 77 950.90 1279.39 5.26 0.26

4 55 438.08 777.90 1.02 0.28

5 16 316.64 688.18 0.69 0.28

learning knows how to find optimal policies while sat-
isfying the constraints. The learned policies can even
reflect the relationship between the constraints and deci-
sion objectives. In this paper, the agent trained with the
CPPO algorithm has learned the correlation between
energy consumption and deviation, while the PPO algo-
rithm does not produce such an effect.

(2) The constrained reinforcement learning method intro-
duced in this paper is characterized as a soft constraint
approach. Consequently, when under certain constraint

conditions, the agent will initially prioritize the reward
function and may bypass the constraints. Nevertheless,
it will gradually converge to the constraints.

(3) The constraint value is correlated with the level of risk-
taking by the intelligent agent. Agents with larger con-
straint values tend to adopt safer strategies, while agents
with smaller constraint values are inclined towardsmore
adventurous strategies. Therefore, the robustness of an
agent is also influenced by the magnitude of the con-
straint value. To obtain a more robust intelligent agent,
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(a) Maximum energy consumption (b) Average miss distance when success

Fig. 14 Agent performance under information error conditions

it is necessary to provide the agent with looser con-
straints (such as enough resources or a broader decision
space), enabling the agent to make safer decisions with-
out resorting to risky choices.

(4) Observation noise is an important factor that affects the
performance of agents, especially when the available
energy is not sufficient (e.g., C � 5), the perfor-
mance of agents under observation noise may become
unacceptable. Therefore, the development of robust
reinforcement learningguidance lawsunder observation
noise is a promising research direction for the future.
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Fig. 15 The initial policy is policyA.Under the constraint of cumulative
actions, policy A may evolve towards policy B or policy C. The effect
of the two learning directions on the policy loss function may be similar

Appendix

Influence of exploration randomness.
To encourage exploration, the initial variance of the pol-

icy distribution is usually set to 1. As the policy converges,
the policy variance gradually decreases and eventually sta-
bilizes at a certain value. In the CMDP problem, when we
regard the cumulative actions as constraints, like formula∑

c � ∑
τ |a| ≤ C , the decrease in the mean or variance of

the policy distribution achieves similar results during train-
ing, as shown in Fig. 15.

To further illustrate this problem, let us consider an exam-
ple. As shown in Table 7, suppose the mean of policy 1 is 0.4
and the standard deviation is 0.4, while the mean of policy 2
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Table 7 An example to illustrate the impact of policy variance on the
computation of cumulative constraints

Policy Action
mean

Standard
deviation

Accumulated cost
(τ � 0.1)

Policy 1 0.4 0.4 14.876

Policy 2 0.5 0.1 14.473

Fig. 16 Comparison of action outputs fromdifferent policy distributions

Table 8 The maximum deviation of cumulative sampled action values

Policy standard
deviation

0.2 0.1 0.05 0.01 0.005

Maximum cumulative
deviation

11.41 3.49 2.07 0.33 0.20

is 0.5 and the standard deviation is 0.1. We sample both pol-
icy distributions for 300 steps (roughly equal to the decision
scale of the RL environment in this paper). The cumulative
cost generated by both policies during training is approxi-
mately 15. When the C value is set to 15, the agent may
converge to policy 1. However, policy 2 is clearly the desired
result because the mean of actions is the core parameter of
the policy.

Next, we explain the choice of H0 value in formula (20).
Suppose the standard deviation of the final policy distri-
bution is 0.2, 0.1, 0.05, 0.01, and 0.005, respectively, with
action mean of 1, as shown in Fig. 16. We sample these pol-
icy distributions for 300 steps and perform 100 Monte Carlo
experiments. Themaximumdeviation of the cumulative sam-
pled action values is shown in Table 8.

It can be seen that when the standard deviation of the
policy distribution is 0.01, the deviation caused by the
randomness of the policy can be considered negligible.
Therefore, we hope that the standard deviation of the policy

distribution can ultimately converge to around 0.01. Finally,
based on the probability density formula, we can calculate
the target value H0 of log(p(a)) in formula (20). We hope
that the sampled action of the policy tends towards the mean
value, which can be described as,

log(p(a)) → log(p(μ)). (30)

When a � μ, the probability density formula is:

p(μ) � e
1

2σ2

/√
2πσ . (31)

When σ � 0.01, we get p(μ) ≈ 39.89 and H0 � � log(p
(μ)) � 3, where �x is the round down symbol.
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