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Abstract
The objective of the proposed work is to perform monocular vision-based relative 6-DOF pose estimation of the non-
cooperative target spacecraft relative to the chaser satellite in rendezvous operations. In this work, the convolutional neural
network (CNN) is replaced by the high-resolution transformer network to predict the feature points of the target satellite. The
self-attention mechanism inside the transformer provides the advantage of overcoming the inadequacies of the translation
equivariance, 2D neighborhood awareness, and long-range dependencies in CNN. First, the 3D model of the target satellite is
reconstructed using the inverse direct linear transform (IDLT) method. Then, the pose estimation pipeline is developed with a
learning-based image-processing subsystem and geometric optimization of the pose solver. The image-processing subsystem
performs target localization using CNN-based architecture. Then, the key points detection network performs regression to
predict 2D key points using the transformer-based network. Afterward, the predicted key points based on their confidence
scores are projected onto the corresponding 3D points, and the pose value is computed using the efficient perspective-n-
point method. The pose is refined using the non-linear iterative Gauss–Newton method. The proposed architecture is trained
and tested on the spacecraft pose estimation dataset and it shows superior accuracy both in translation and rotation values.
The architecture has shown robustness against the drastically changing clutter background and light conditions in the space
images due to the self-attention mechanism. Moreover, this method consumes less computation resources by using fewer
floating-point operations and trainable parameters with low input image resolution.

Keywords Monocular vision · Pose estimation · Perspective-n-point · Gauss–Newton method · Convolution neural network ·
Transformer

1 Introduction

In recent times, spacecraft proximity operations have gained
importance with the increase in interest in the field of space
robotics. Space missions like Apollo, Hubble Telescope,
and the International Space Station have performed prox-
imity operations in orbit and are serviced by the onboard
astronauts that travel to these space stations from the Earth.
However, due to huge budget requirements, the demand
arises to develop unmanned autonomous systems that can
perform proximity operations [1–4]. In addition, the increas-
ing interest in space exploration and space applications has
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given a huge boost to the launch of new satellites in low
earth orbit. Few satellites complete their life cycle and go
to graveyard orbit or re-enter the earth’s atmosphere. Many
satellites become non-functional before the end of life and
turn into space debris [5]. As a result, there is a lot of con-
gestion in space and the possibility of collision between
non-cooperative andworking spacecrafts has increased enor-
mously. Currently, research is in progress to develop debris
removalmethods and ESA isworking on aClearspace-1mis-
sion to remove space debris with the help of a robotic arm
and has a plan to launch it in 2026 [6].

A key initial step to perform the above-mentioned ren-
dezvous operations is to estimate the relative position and
orientation of the non-cooperative target satellite relative to
the servicing spacecraft [7]. For close to medium-range ren-
dezvous operations, different vision sensors are used for pose
estimation of the non-cooperative target; some are active sen-
sors like LIDARS and some are passive sensors like stereo
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andmonocular sensors [8]. In this work, a monocular camera
is chosen over the others because it is a passive sensor and
less susceptible to sun illumination and it has low power and
mass budget. It is the same sensor that is used for star tracker
and it is already available on chaser satellite. However, com-
plex image-processing is required to get the desired pose [9].

The problemof estimating the pose of the non-cooperative
spacecraft using a monocular vision sensor has been
addressed in the literature through different approaches
[10–15]. The first approach is to use model-based pose esti-
mation in which 3-D model points of the target object are
known. In this method, first, the 2-D image is captured by the
camera on the chaser satellite and then the image-processing
algorithm extracts the key points in the image. Then project
the 3D model points onto the 2D key points to get the pose
value by reducing the reprojection error through the pose
solver. The key points can be extracted either through con-
ventional or learning-based methods.

Sharma et al. [13] use a conventional image-processing
method to extract 2D feature points. This method filters out
the weak gradients and then uses the Hough transform to find
out the edges of the target body. Then edges are combined in
different shapes similar to the ones already stored in themem-
ory from the 3D model. The pose is calculated using 3D–2D
projection through efficient perspective-n-point (EPnP) [14]
and Newton–Raphson method. This method can only detect
20% of the images and takes a long time to develop 3D–2D
correspondence. Chen et al. [15] propose a learning-based
convolution neural network (CNN) method for landmarks
identification. faster-RCNN along with the HRNET network
is used to localize the target and then use HRNET to extract
the landmarks position. The pose is solved using EPnP and
a simulated annealing scheme (SA-LMPE). The image res-
olution of 768 × 768 is adopted and presents a very low
pose error. They have won Kelvins pose estimation chal-
lenge in 2020. This work seems to be good for simulation
but high image resolution and the use of more floating-
point operationsmake thismethodunsuitable for space-grade
hardware. Piazza et al. [16] use CNN for key points detec-
tion. First, the target is localized using the Yolo network
and then key points are detected using HRNET architecture.
The 3D model points are projected onto the predicted 2D
key points using EPnP and Levenberg–Marquardt (LMM)
pose solvers. This work uses an image size of 416 × 416
and shows centimeter/degree-level accuracy on the space-
craft pose estimation dataset (SPEED). Thismethod achieves
less pose accuracy as compared to Chen [15] but also con-
sumes less hardware resources due to the use of a single-stage
detector for the bounded box. Wang et al. [17] replace the
CNNwith a transformer network for key features extraction.
The network is based on a detection transformer (DETR)
that was originally designed for object detection. This work
proposes a bipartite matching loss function for key points

that enables it to output the index of key points instead of a
fixed index as in CNN. This work consumes a lot of hardware
resources and hasmore than 200million trainable parameters
that make this architecture hard to use for space applications.
There are a few other architectures related to transformers
that are available in literature like a swin transformer [32],
and vision transformer [33], etc. Swin transformer [32] is
based on the hierarchical design that breaks the input image
into small patches. Then use shift windows to develop a long-
range relationship between adjacent pixels. The swin block is
also introduced which has attention layers and feed-forward
convolution layers. The other architecture is the vision trans-
former [33] which is probably the first work in vision based
on transformers. In this architecture, the input image is dis-
tributed into small patches that are called tokens, and position
is embedded in each token. Then multihead self-attention
layer is used which assigns weight to the different pixels
of the image to know about neighborhood awareness. How-
ever, transformers [32, 33] have more trainable parameters
as compared to same-size CNN architecture.

The second approach is to estimate the pose using end–end
CNN learning-based methods that do not require any sepa-
rate pose solver and directly regress the key points to get
the pose values. In this method, the prior information of
the target 3D model is not required. Sharma et al. [18, 31]
present the baseline solution on the SPEED dataset using
the end–end pose estimation approach. The spacecraft local-
ization network (SPN) is proposed to detect bounded box
through branch 1 and then branch 2 and branch 3 use classi-
fication and regression to estimate the relative attitude. The
position is determined with the help of constraint forced by
the bounded box and the relative attitude. The SPN is specif-
ically designed for the pose estimation of satellites so it has
fewer parameters to train but it is compromised on accuracy
as compared to previous commercial off-the-shelf networks.
Garcia et al. [19] propose LSPnet end-end architecture for
the pose estimation. It has the UNet network and the orienta-
tion CNN to determine position and orientation, respectively.
Both the above approaches serve the purpose of estimating
the pose; however, the combination of learning-based key
points detection and geometrical pose solver is considered
more accurate and has less trainable parameters as compared
to the end-end network.

In summary, the existing state-of-the-art methods show
progress toward solving the challenges that arise during the
rendezvous operations; however, there are a few issues that
still need consideration. First, the space environment is very
harsh due to drastic changes in background, brightness, scale
variation, contrast, and sun illumination that make it diffi-
cult to detect the boundaries of the body. Second, the order
and index of 2D points are required to develop the 3D-2D
correspondence otherwise the process will become itera-
tive. Third, deep learning-based networks usually consume
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Fig. 1 Images from the SPEED dataset that shows a challenging space environment

more hardware resources that are not suitable for space-grade
hardware. Fourth, the domain gap exists between real and
synthetically generated space-borne datasets that affect the
performance and accuracy of learning-based architectures
[21, 23]. Figure 1 shows a few challenging images in which
it is hard to identify the satellite [22].

To address these challenges, this paper presents the pose
estimation pipeline that comprises of self-attention-based
transformer architecture for key points detection along with
mathematical modeling of the pose solver. Self-attention
mechanism is useful for learning 2D neighborhood aware-
ness and translation equivariance in key points detection.
The generalization to global features enables the architecture
to detect key points efficiently in the space environment and
achieves comparable accuracy in comparison to state-of-
the-art techniques by utilizing fewer hardware resources.
Floating point operations (FLOPs) and learnable param-
eters are reduced significantly for key points detection.
Moreover, learning-based architecture has the number of
output channels equivalent to the number of key points that
enables indexing with each predicted key point and linear
mapping to the corresponding 3D point. The motivation is to
improve the existing system with the use of a deep learning
framework that can provide more accurate and robust pose
estimation results for future technology development related
to proximity operations.

The rest of the paper is organized as follows: Sect. 2
presents the perspective-n-point problem statement and
Sect. 3 describe the details of the SPEED dataset that is used
in this work for training and testing purpose. Section 4 elab-
orates on the technical design of relative pose estimation
architecture including 3D model reconstruction, image-
processing pipeline, and pose solvers. Section 5 provides
information about evaluation metrics and Sect. 6 describes
the training and testing results of the architecture. Section 7
compares the results of our architecture with state-of-the-art
methods and the conclusion is provided in Sect. 8.
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Fig. 2 Geometrical model of the PnP problem

2 Problem Statement

Suppose a rendezvous scenario has two spacecraft: one is
the non-cooperative target satellite with reference frame B
and the other one is a chaser satellite on which a camera is
attached having reference frame C. The problem is to esti-
mate the relative position and orientation of the target relative
to the camera where t BC is a translational vector that defines
the relative position from the origin of the camera to the cen-
ter of the target and RB

C is the rotation matrix that defines the
rotation of the target to the camera. The problem statement is
defined in Fig. 2. Let PB

1 , PB
2 , ....PB

i are the 3D key points
on the target body and ith 3D point PB

i can be expressed in
the camera frame as

rci � RB
C PB

i + t BC , (1)

rci � [
xci , yci , zci

]T , (2)

rci �
[
xci
zci

,
yci ,
zci

, 1

]T

, (3)
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where, rci are the points in the camera frame that represent
the 3D points PB

i on target body with respect to RB
C and

t BC .Assuming a pinhole camera,rci is expressed in the image
plane pimg � [px , py]T by using perspective-n-point (PnP)
Eq. (5) given that focal lengths of the camera are fx , fy and
camera principal points are Cx and Cy :

pimg, i � [pxi , pyi ]
T , (4)

pimg, i �
[
xci
zci

fx + Cx ,
yci ,
zci

fy + Cy , 1

]T

, (5)

where, i is the number of 3D points,px , py are aligned with
Cx , Cy respectively and Cz is pointing in the direction of
the target satellite. Equation (5) can be presented in homo-
geneous coordinates with camera intrinsic matrix K , camera
extrinsic matrix Mext, and 3D points PB as

pimg, i � K .Mext.P
B
i , (6)
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(7)

6-DOF is required to define the relative position t BC and
orientation RB

C of the target satellite as defined in Eq. (7).
Hence, a minimum of 6 points correspondence is required to
uniquely determine the pose (RB

C and t BC ) solution.

3 Spacecraft Pose Estimation Dataset

For this work, the spacecraft pose estimation dataset
(SPEED) [22] and SPEED+ [23] datasets are used to train
and test our architecture. SPEED dataset is generated by
SLAB from Stanford University in collaboration with the
European Space Agency (ESA). The first version is named
SPEED, which was released in 2019, and the 2nd version,
which was released in 2022 was named SPEED+. SPEED
dataset uses TANGO spacecraft from PRISMA mission and
all the images in the dataset are in grayscale format. The
distribution of images is shown in Table 1. The dataset only
provides ground truth labels for training and real images so
in this work test set is developed by selecting 3000 random
images from a training set of SPEED images.

The range of distance between the target satellite and the
camera is between 3 and 45 m and the relative attitude is
uniformly distributed random rotations in SO (3) space. The
synthetic images are generated using an OpenGL rendering
simulator. In the simulator, the Tango spacecraft is ren-
dered with plain black ground in almost half of the synthetic
images, and the remaining half of the images are rendered
with earth and clouds in the background. The real images are
taken in the lab environment with a 1:1 mockup model of the
Tango spacecraft. The intrinsic parameters of the camera (K)
that is used for taking pictures are displayed in [22].

4 Methodology

The spacecraft pose estimation architecture mainly consists
of the image-processing pipeline, pose solvers, and 3Dmodel
of the known target. The image-processing system takes input
images from a monocular camera and outputs specific 2D
feature points. It has deep learning-based subsystems for
satellite localization and feature points detection. The pose
solver uses these 2D feature points and a 3Dmodel of the tar-
get spacecraft to get the pose values of the target with respect
to the client satellite. The 3D model of the target satellite is
unknown and it is reconstructed using the method of trian-
gulation from 2D images. The top-level vision-based pose
estimation architecture is shown in Fig. 3.

4.1 3Dwireframemodel reconstruction

The 3D wireframe model of the target spacecraft is con-
structed using a method of triangulation. In this method, the
14 images are randomly selected from the dataset in which
the maximum number of visible features can be identified.
Then 13 key features are manually annotated in each image
that consists of four top and bottom corners of the satellite,
three corners of the antennas, and two corners of the GPS
receiver antennas. The 3D model points PB are obtained by
solving Eq. (7) using inverse direct linear transform (IDLT)
[24]. This method is used because the camera intrinsic
matrix (K) and the true pose of the selected images are
provided. The camera extrinsic matrix Mext is converted into
the pose matrix HCn

sat as shown:

HCn
sat �

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

RCn
11 RCn

12 RCn
13 tCn

x

RCn
21 RCn

22 RCn
23 tCn

y

RCn
31 RCn

32 RCn
33 tCn

z

0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (8)
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Table 1 SPEED dataset
distribution Image set Train Test Real Real_test

images 12,000 2998 05 300

Fig. 3 Vision-based pose
estimation architecture
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Fig. 4 a 14 cameras view to the target body; b a 3D reconstructed model of the target satellite

where HCn
sat is the pose of the target satellite w.r.t. nth cam-

era. The 3D reconstructed model along with the view of 14
cameras that are looking at the target from different viewing
angles is shown in Fig. 4. These cameras are the 14 images
that were selected earlier. In total, 26 equations are required
to get thirteen 3D model points. Equation (7) is re-written in
the format Ax � b for n number of cameras to get true 3D
model points PB (X, Y, Z) as presented
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⎣
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⎢⎢⎢⎢⎢
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z
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z

⎤

⎥
⎦ , for n � 14.

(9)
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Fig. 5 Target localization architecture with a feature extractor, RPN,
and object detector

4.2 Deep Learning-Based Image-Processing Pipeline

In the image-processing pipeline, the input image of size
1920×1200 is first pre-processed anddifferent data augmen-
tation techniques are applied e.g., image resizing, cropping,
rotation, randombrightness change, random contrast change,
gaussian noise, and data normalization to reduce the image
size to 256 × 192 pixels. The reduced image is passed to the
CNN-based target recognition and localization network that
separates the satellite from the image background and draws
a bounded box around it. In the next step, the area under the
bounded box is cropped, resized to 256 × 192 pixels, and
passed to the key features detection network that is based
on the transformer network. The features detection network
tries to detect the maximum possible feature points among
the 13 key points that are specified earlier.

4.2.1 Target Recognition and Localization

Target recognition and localization is an object detection
(OD) task that draws a bounded box around the region of
interest (ROI) in the image. In this work, the faster-RCNN
[25] network is used for the detection task in which the
original backbone network i.e., VGG is replaced by the
HRNET-W18 [26] network to extract feature maps in the
image. The HRNET is used because it is a high-resolution
network that downsamples the image in a parallel manner in
each layer instead of sequential downsampling as in Resnet
architecture. Parallel down sampling preserves the spatial
information of the image that is required to get better per-
formance and accuracy. The architecture of the OD network
is shown in Fig. 5. The backbone HRNET-w18 network has
four parallel branches and each subsequent branch is low in
resolution as compared to the previous branch. These four
branches are connected through fuse layers to share data.
The output of a multiresolution network is more precise even

for the cases in which the target object is very small. It is
unlike most CNN architectures that reduce the image res-
olution in each layer sequentially, extract the features, and
then upsample the image resolution to get back the original
image. For simplicity, only the last part of HRNET for fea-
ture map extraction is shown in Fig. 5 in which the output
has four heads with different resolutions. All the heads are
passed through bilinear up sampling and merged to output
feature map. The merged heads are downsampled again to
manage different sizes of feature maps.

First, the input image of size 256 × 192 is passed through
the CNN backbone (HRNET-w18) network that extracts the
feature maps and passes to two different stages; region pro-
posal network (RPN), and object detector (FAST-RCNN).
The region proposal network (RPN) takes the feature map
as input from the HRNET and the kernel runs over all the
feature maps in a sliding manner to output potential rectan-
gular object proposals along with the confidence scores. The
fixed set of 9 anchor boxes with different scales and aspect
ratios are used for each pixel to determine the presence of an
object. The RPN has convolution layers with a kernel size of
3 × 3 and two fully connected layers with a size of 1 × 1.
The predictions of the RPN for each image pixel is (H *W )
* number of anchor boxes * (2 + 4).

The FAST-RCNN (object detector) stage accepts object
proposals from the RPN network and the feature map from
the HRNET. The ROI pooling layer tries to fit region pro-
posals to the corresponding feature map by dividing the
proposals into a fixed number of windows and through max-
imum pooling. The output size of the ROI layer is (N , 7, 7,
256), where N are the proposals from the RPN stage. Then
ROI output is fed to the fully connected layers (FCN) to per-
form classification and regression in two separate branches.
The softmax classifier is used to identify the class of the
feature map along with the confidence score. The regression
branch outputs four coordinates of the bounded box. The loss
function that is used for both classification and the bounded
box is presented as:

L(cpj , b
p
j ) � 1

nclass

∑

j

Lclass(c
p
j , c

g
j ) + λ

1

nreg

∑

j

cgj L reg(b
p
j , b

g
j ),

(10)

where cpj , c
g
j are the predicted and ground truth classes and

bp
j , b

g
j are the predicted and ground truth bounded boxes

respectively.Lclass is the classification loss and L reg is L1 loss
for bounded boxes. The network outputs multiple potential
candidates for classes and bounded boxes so non-maximum
suppression (NMS) with a threshold of 75% is used to select
the ones with the highest confidence score and ignore others
to get the final output.
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Fig. 6 HRFORMER architecture
shows the four stages of the
model. The transformer blocks
are used in the areas highlighted
with blue and the information
exchange blocks are used at the
end of each stage to share
information with low-resolution
layers. a Parallel self-attention
windows; b FFN 3 × 3
depth-wise convolution block to
share information with
multiresolution layer
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4.2.2 Key Features Detection Network

The key features detection network predicts the key points
as heatmaps of size 64 × 48 in the input image of size 256
× 192. The CNN-based high-resolution network (HRNET-
w32/48) [26] has shown great performance for terrestrial
datasets in the applications of key points extraction and pose
estimation. The network is also utilized by [15, 16] for the
spaceborne SPEED dataset. However, CNN-based networks
generalize to local features and develop a bias toward train-
ing images. In this work, the CNN network is replaced with
the HRFORMER [27] transformer network. The transform-
ers are initially developed for language models but later
many architectures are proposed for vision applications as
well like ViT, DETR, and BERT, etc. The transformers have
shown better performance than CNN because they use a self-
attention mechanism that makes the network aware of its
2D neighborhood based on the similarities in different parts
of the image. Transformers not only learn about the local
features but also learn about global features of the input
and it is imperative for changing the space environment.
So, if a network learns global features or has the capabil-
ity of generalized learning then different types of inputs
can be dynamically adjusted to predict key points that can
improve accuracy. HRFORMER maintains the high resolu-
tion throughout the network using a multiresolution parallel
design that helps the architecture process different resolution

images (multiscale images). In addition, each branch start-
ing from stage 2 has local self-attention windows to develop
long-range dependencies. The architecture has a multiscale
fusion module that is used to exchange information between
different resolutions and as a result, HRFORMER has both
local and global features. TheHRFORMER [27] architecture
is shown in Fig. 6.

The architecture has four stages with four parallel mul-
tiresolution layers and it is implemented using the top-down
approach inwhichfirst the target object is isolated by drawing
a bounded box around it then key points in the localized target
are identified. The down sampling takes place with stride �
2 from high resolution to low-resolution layer at the time of
connectionwith the fuse layer. The number of channels or the
depth of the branch increases as the resolution in each sub-
sequent branch decreases. The multi-scale fusion layers help
in working on the multiresolution images as well. In the first
stage, convolution is performed that has four residual units
with a width of 64 and have convolution window of 3 × 3
to reduce the width of feature maps. The local self-attention
windows are used from stage 2 to stage 4. The architecture
in Fig. 6a shows the input feature map is broken down into
parallel localized self-attention blocks in each multiresolu-
tion layer from stage 2 to stage 4 that is further attached to
the feed-forward network (FFN) as shown in Fig. 6b. The
self-attention is performed by dividing the input feature map
Y ∈ RN∗D into small non-overlapping windows and each
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window is of size K*K . The multi-head self-attention [27] is
performed in each small window by using Eqs. (11–13):

multihead(Yp) � concatenate[head(Yp)1, ....head(Yp)H ] ∈ R(K 2)∗D ,
(11)

head(Yp)h � softmax

⎡

⎣

(
YpWh

q

)(
YpWh

k

)T

√
D/

H

⎤

⎦.(YpW
h
v ) ∈ RK 2∗(D/H ),

(12)

�

Y p � Yp + multihead(YpWo) ∈ RK 2∗(D/H ),

(13)

where Wh
v ∈ R(D/H )∗D , Wh

q ∈ R(D/H )∗D , Wh
k ∈

R(D/H )∗D , Yoo for h ∈ {1, 2, ...H}.D is a number of chan-
nels, N is input resolution,H represents the number of heads

and
�

Y p represents MHSA. All MHSA are combined to get

[
�

Y 1,
�

Y 2, ....
�

Y p] → YMHSA.
TheFFNuses 3×3depth-wise convolutions and the infor-

mation exchange block after each stage is not directly linked
with self-attention. The relative position encoding is used
to embed the position information of features in the self-
attention window. The second, third, and fourth layers have
1, 4 and 3 exchange blocks, respectivelywith a 3×3 convolu-
tion window. The architecture has a 8 fuse/exchange blocks
overall. The output of the HRFORMER has four heads in
parallel with different resolutions that can be used for differ-
ent applications. The memory and computation complexity
of the architecture is reduced from quadratic to linear due to
the use of localized parallel self-attention windows in each
stage along with depth-wise convolution in FFN blocks.

The output has 13 channels in the form of heatmaps to get
the required features. The loss function for the architecture
is formulated as mean square error and presented in Eq. (14):

lossnMSE � 1

M

M∑

i�1

v
(n)
i .(Ĥn

i − H (pni ))
2. (14)

The nth image is input to the model that has ground truth
heatmap Ĥn

i with visibility v
(n)
i of the ith heatmap. The

Adam optimizer is used to update the weights. The regressed
heatmap is then subtracted from the ground truth heatmap.
The loss over the entire batch is calculated by taking the
average over all the images N as following

lossMSE � 1

N

N∑

i�1

lossiMSE. (15)

4.3 Pose Determination

The problem of predicting the relative pose of the target with
respect to camera, given the point correspondences between
them, is known as perspective-n-point (PnP). First, the PnP
is solved by the use of a closed-form (analytical) linear pose
solver that minimizes reprojection error by solving linear
mapping between 3D model points and 2D image points in
Eq. (7). These pose solvers are computationally fast but do
not provide very accurate solutions. Second, the use of a
non-linear iterative pose solver reduces the pose error using
the least square fit. The iterative solver needs a good initial
pose guess to converge at a global minimum in fewer itera-
tions and it is more accurate than the earlier. However, these
pose solvers work when the 3D–2D correspondence already
exists. The pose value is obtained by solving Eq. (7) and a
unique result is only possible when the number of 3D–2D
correspondence points is six or greater.

4.3.1 Key Features Selection Criteria

The 3D–2D points correspondence is required before using
the pose solver. By exploiting the learning-based key features
network, the 2D predicted points are selected based on the
confidence score of the key features output. The advantage
of a learning-based keypoints network is that it predicts all
the 13 points even those that are invisible due to satellite
body orientation. However, only those key points are selected
for pose solvers whose confidence score is greater than the
threshold of 70%. The selected key points are output to the
pose solvers along with their index so that these points have
a linear mapping with the corresponding 3D model points.
The key features selection follows the criteria: (1) key feature
confidence score > 70% (2) number of key features ≥ 6.

4.3.2 Closed Form Relative Pose Estimation

First, the closed-form EPnP [14] pose solver is used to esti-
mate the initial guess and it is suitable for both coplanar and
non-coplanar 3D–2D key points. This method is considered
to be state-of-the-art due to fast convergence to globalminima
and robustness against outliers. However, 3D–2D correspon-
dence is already established and the pose solution turns out
to be accurate. In this method, all the predicted 2D key points
are represented as a weighted sum of four coplanar control
points as:

rci �
4∑

j�1

βi j c
C
j , for i � 1, 2, ....n, (16)

where rci are the points in the camera frame that represent
the 3D points on the target body with respect to RB

C and t BC .

123



International Journal of Aeronautical and Space Sciences

βi j are the homogeneous coordinates and cCj are the 4 control
points. Equation (16) is substituted into Eqs. (4) and (5) and
acquires the following Eqs. for one corresponding point:

4∑

j�1

βi j ( fx c
C
x j + (Cx − pxi )c

C
zj ) � 0, for i � 1, 2, ...n,

(17)

4∑

j�1

βi j ( fyc
C
yj + (Cy − pyi )c

C
zj ) � 0, for i � 1, 2, ...n,

(18)

So, 2n equations are used to solve 12 unknown elements
in Eq. (7) that are components of four control points with n
� 6 correspondences at least. The pose value is computed by
re-arranging the above 2n equations in the form Ax � 0 and
solving for 12 unknown elements of RB

C and t BC in x.

4.3.3 Pose Refinement

In the second phase, a non-linear iterative pose solver
is adapted to further refine the pose values using the
Gauss–Newton method (GNM) [31]. The pose values from
EPnP are used as an initial guess for the pose refinement
process. GNM is a first-order approximation technique in
the Taylor series expansion. The pose error is computed by
taking the Euclidean distance between the normalized 2D
observed points and projected 3D to 2D points which are
expressed as:

Pose error � eP � min
R, t

N∑

i�1

∥∥∥pin − Mext ∗ PB(i)
∥∥∥
2
, for N ≥ 6,

(19)

where, PB(i) are the 3Dmodel points on the body of the target
satellite, Mext is comprised of RB

C and t BC but converted to x

� [
θT tT

]T
, pin are the normalized 2D image points that are

obtained by taking the product between the inverse of camera
intrinsic matrix (K) and 2D predicted points as given by

pinorm � inv(K ) ∗ pi . (20)

GNM solves Eq. (16) by continuously updating the objec-
tive function as given below

dx � (J T J )−1 J T dy,

where dy � eP ,

dx �
[
θT tT

]T
, (21)

and J is the Jacobianmatrix that consists of the partial deriva-
tives as shown in Eq. (22). The values of partial derivatives
are obtained from Eqs. (1) to (7):

J � ∂eT
∂x

�

⎡

⎢⎢
⎢
⎣

∂PB
1

∂rc1
∂rc1
∂t BC

∂PB
1

∂rc1
∂rc1
∂θ B

C

..... .....
∂PB

n
∂rcn

∂rcn
∂t BC

∂PB
n

∂rcn
∂rcn
∂θ B

C

⎤

⎥⎥
⎥
⎦
, (22)

∂PB
1

∂rc1
�

[ fx
zc

0 fx xc
(zc)2

0 fy yc
zc

− fy
(zc)2

]

, (23)

∂rc1
∂t BC

� RB
C .PB � ∂RB

C

∂θ B
C

PB .
(24)

GNM algorithm initializes with the values x � [
θT tT

]T

from EPnP pose solver and finds the initial pose error dy.
Then dx value is determined using Eq. (21) and x values are
updated as x � x + dx . The iterative process will continue
until the pose error falls to 10–10 or reaches a set number of
iterations.

5 EvaluationMetrics

In this section, the discussion about evaluationmetrics is pre-
sented about each subsystem. The first subsystem spacecraft
recognition and localization are evaluated based on Intersec-
tion over union (IOU) and average precision (AP) metrics.
IOU predicts the overlapping area between the predicted box
and the ground truth box and its range is from 0 to 1. AP is a
metric that tells how many predictions are valid on the scale
[0–1]. It is desired to have predicted values close to ground
truth but it is hard to achieve. In this scenario, the average
precision is calculated based on different threshold values of
true positives e.g., AP50, AP75, AP50–95, etc. The thresh-
old is based on IOU values. The second subsystem keypoints
detection network is evaluated based on object keypoint sim-
ilarity (OKS) and average precision (AP). OKS is calculated
by comparing the Euclidean distance between ground truth
key points and predicted key points in a per keypoint manner
on the scale [0–1] as given by

oks �
m∑

n�1

vn exp

( − d2n
2 ∗ s2 k2n

)
, (25)

here, d2n is Euclidean distance between nth predicted and
ground truth keypoint, s2 is a scaling factor depends on the
size of the object and s2 is the area of the object under
consideration, k2n is the constant and adjusted based on the
application that controls the fall off,vn is a visibility index
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Fig. 7 a Training loss of target localization network; b training accuracy of target localization network

per keypoint and m is a total number of keypoints. The pose
solvermodule is evaluated based on translation and rotational
error and then both errors are combined to get the pose error.
The translation error is calculated by taking the Euclidean
distance between the predicted and ground truth translation
vector using Eq. (26). The normalized translation error is
calculated by dividing the absolute translation error by the
Euclidean distance of the ground truth translation vector as
presented in Eq. (27):

Et �
∥∥∥t pC/B − t gC/B

∥∥∥, (26)

et � Et∥∥
∥t gC/B

∥∥
∥
, (27)

here, t pC/B is the predicted position vector from the camera

to the target body frame, t gC/B is the ground truth position
vector from the camera to the target body frame,Et is the
translation error, and et is the normalized translation error.
The rotational error is measured both in terms of quaternions
and Euler angles and is calculated as:

Eq � 2. arccos(
∣∣q p, qg

∣∣), (28)

Eθx � ∣∣θ p
x − θ

g
x
∣∣, Eθy � ∣∣θ p

y − θ
g
y
∣∣, Eθ z � ∣∣θ p

z − θ
g
z
∣∣,
(29)

where qg , q p are the ground truth and predicted
quaternions,Eq is the rotational error and θ

g
x , y, z , θ

p
x , y, z are

the ground truth and predicted Euler angles, respectively.
The pose error is the sum of translation and rotation error per
image and it is calculated by using Eq. (30). Also, the pose
error of the entire dataset is calculated by summation of all

Fig. 8 Bounded box average precision vs epochs

pose errors and divided by the total number of images in the
dataset. It is given by Eq. (31):

ep � Et + Eq ,

eT � 1

n

n∑

p�1

(E p
t + E p

q ),

where ep is the pose error per image and eT is the total pose
error over the entire dataset.

6 Training and Results

The target localization network is trained and tested using
high resolution network (HRNET-w18) as a backbone and
faster-RCNN as a detection head. The training loss of the
network is shown in Fig. 7a. The graph shows that the loss
dropped significantly during the first 10 iterations because
the pre-trained model was used. Then the loss is reduced
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smoothly over the remaining iterations and becomes stable at
10,000 iterations. Contrarily, the training accuracy is increas-
ing as loss is in decreasing trend. The training accuracy is
shown in Fig. 7b. The sinusoidal type behavior is observed
due to a small log time of 10 iterations.

The average precision ofAP50,AP75, andAP50-95on the
test dataset is shown in Fig. 8. The graph shows the increase
in average precision values over the epochs. The network
has shown an average precision of almost 99% and 98%
for the threshold of AP50 and AP75. However, AP50-95 is
averaged to 93%, approximately. The network is also tested
by computingmean andmedian IOU values. The IOU values
depict that 95% of the predicted bounded boxes overlap with
the ground truth bounded boxes both in mean and median
IOU as shown in Table 2.

The key features detection network is trained and tested
with (HRFORMER) network. Figure 9a shows that the key
points loss converged to global minima almost after 9000
steps. There is a sudden drop in the start of training the trans-
former due to the use of the pre-trained model. The network
takes a few iterations to adapt to the new dataset. The learn-
ing rate of the transformer is lr � 0.000125 and the batch
size is 25 images. These are the maximum number of images
in a batch size that can be used on the NVIDIA-TITAN XP
GPU. The accuracy of the key points detection network on
the training set is also monitored along with the loss values
as shown in Fig. 9b. The initial accuracy rate is slow and
gradually improves over the epochs. This slow accuracy rate

at the start may be due to due to the self-attention mechanism
of the transformer. After the training, the average precision
and average recall values are computed for the test dataset
to assess the performance of the network. The average pre-
cision and recall values are calculated for the same three
threshold values as discussed above and plotted in Fig. 10a.
The HRFORMER network attains an accuracy of 98% for
AP/AR50 and AP/AR75. However, it has shown an accuracy
of 94.2% and 95.87% for AP50:95 and AR50:95, respec-
tively. The AP/AR50:95 is also plotted against the epochs
in Fig. 10b to check the performance of the test dataset.
The transformer network has attained an accuracy of 95.87%
respectively over the period and then gets stable.

The accuracy and OKS values for CNN-based HRNET-
w32 are also computed along with the values of HRFOM-
RER. The OKS values for both CNN and transformer are
almost similar and close to 98% accuracy. The OKS value
alongwithAP andAR values are shown in Table 3. The num-
ber of flops and training parameters based on the same input
image size is also calculated for both CNN and transformer
network. The transformer network uses almost half the flops
as compared to CNN. Also, the number of parameters in the
transformer is 4 times less in comparison to CNN. In a trans-
former, the reduction in flops and parameters is due to the
use of local self-attention windows in parallel with depth-
wise convolution in the feed-forward network at stages 2, 3
and 4 of the architecture. The resource utilization summary
is shown in Table 4.

Fig. 9 a Training loss to detect key points; b keypoints training accuracy

Table 2 Bounded box precision, intersection over union

% AP50-95 AP50 AP75 Mean IOU Median IOU

CNN (HRNET-w18 + faster-RCNN) 93 98.8 97.9 95 96
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Fig. 10 a Average precision vs average recall; b average precision-recall vs epochs

Table 3 Precision-recall, OKS
transformer % AP50-95 AP50 AP75 AR50-95 AR50 AR75 OKS

Transformer 94.20 98 98 95.87 98.67 98.67 98.47

CNN 93.61 98 97.99 94.7 98.6 98 98

Table 4 Resource utilization transformer

Resources Transformer CNN

Input image size 256 × 192 256 × 192

Flops 3.33G 7.68G

Parameters 7.73 M 28.53 M

The output images from the image-processing pipeline are
shown in Fig. 11. HRFORMER has performed better than
HRNET where key points are not visible. The images are of
three types: in the first type, the background is plain black and
the satellite is at a near distance (4–8m) from the camera. The
detected key points in these images have shown more OKS
errors. Figure 11 shows that img000028 and img001718 are
almost at a 4-m distance from the camera and a few predicted
yellow key points are at some distance from the ground truth
key points in red. In the second type, the background of the
image is again plain black but the target is at a far distance
from the camera that is within range of almost 14–25 m. In
this range, almost all the key points are detected accurately
as depicted in img001159 and img014902 of Fig. 11. In the
third type, the background of the target satellite has earth and
clouds for both near and far distances from the camera. The
output behavior is almost similar to the black background.
The cases inwhich the target’s body is in the dark it is slightly
difficult for the camera to accurately detect the key points i.e.,

the target in img007574 is under a dark area resulting in low
accuracy of key points detection.

The last part of the architecture is the computation of pose
values and pose errors. During the reconstruction of the 3D
model, all 13 key points are indexed to know the location of
each 3D point. Also, the output of the transformer model is
labeled for all 13 2D key points. This indexing for both 3D
and 2D points helps to quickly establish the correspondence
between them without running the iterative process. The 13
predicted 2D keypoints are not available for all the images
because sometimes a few 2D points cannot be detected due to
contrast and light conditions or sometimes the target satellite
is moving in such an orientation that few of the 2D keypoints
will be invisible. So, the number of key points predicted by
the HRFORMER has the confidence score that depicts how
accurate is the specific key point. So, in our case, the thresh-
old of 70% is set for confidence scores. The 2D key points
that have a confidence score greater than 0.7 are kept for
pose estimation along with their index and the remaining
key points are discarded. If all the key points are fed to the
pose estimation part then it will increase the pose error. At
this stage, the index of 2D and 3D key points arematched and
as a result, those 3D points are removed whose correspond-
ing index is not detected in 2D key points. Then use camera
matrix K, 3D model points, and 2D image points to mini-
mize the error using the EPnP method. The EPnP algorithm
outputs 3 Euler angles and 3 position values in the x, y, and
z axis. These six values are then fed to the non-linear least
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Fig. 11 Output images of key points detection network. The red color indicates ground truth values and yellow indicates predicted values
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Table 5 Pose error metrics
% Metrics Unit PnP + GNM PnP

Translation error Mean Et cm 6.48 10

Median Et cm 3.78 6.62

Norm. mean et cm 0.84 1.24

Mean
∥∥
∥t pC/B − t gC/B

∥∥
∥ cm [0.54,0.51,6.32] [0.78,0.75,9.53]

Median
∥∥
∥t pC/B − t gC/B

∥∥
∥ cm [0.39,0.40,3.61] [0.61,0.64,6.55]

Rotation error Mean Eq ° 1.52 2.22

Mean
∣
∣θ p

xyz − θ
g
xyz

∣
∣ ° [1.11,0.98,0.61] [1.7,1.4,1]

Median
∣
∣θ p

xyz − θ
g
xyz

∣
∣ ° [0.89,0.78,0.43] [1.37,1.07,0.75]

Mean pose error eT 0.0349 0.0525

square iterativeGauss–Newtonmethod (GNM). The iterative
process further refines the 6 values and ends up with the least
pose error. The output of pose values using EPnP and a com-
bination of EPnP plus GNM is shown in Table 5. The mean,
median, and normalized values for translation and rotation
are computed first then the mean pose error is calculated at
the end. The maximum mean position error is along the z-
axis and it may be because the camera is directly pointed to
the target in this direction. The mean position error is 6.4 cm
while the mean rotation error in terms of quaternions is 1.52
degrees. The mean rotation error in terms of Euler angles is
maximum along the x-axis which is 1.11 degrees.

The error distribution of rotation and translation motion
over the test dataset is shown in Fig. 12. The histogram plots
show that error is mostly distributed around the mean value
and only a few outliers are present. The standard deviation
values are plotted that show the fluctuation of error regard-
ing mean value over the entire dataset. The error distribution
graph gives information about the frequency of each error
when only the EPnP pose solver is used for 3D-2D reprojec-
tion. The reprojection error is further improved by adding a
non-linear pose solver Gauss–Newtonmethod (GNM) on top
of the EPnP solver. The GNM iteratively reduces the error
as shown by histograms in Fig. 13 and numerical values in
Table 5. The reprojection error is almost reduced to half as
compared to the EPnP solver. The final output images of our
architecture along with key points and pose values are plot-
ted in Fig. 14. The subset of images from the dataset are
randomly chosen for different environments and their pre-
dicted translation and rotation values along with their errors
are formulated in Table 6. It is depicted that if the target body
is between the range of 4–5 m from the target then the pre-
diction of key points is relatively less accurate in comparison
when the distance is 6–30 m. The same pattern is observed
for pose errors as well. The reason for having less accuracy
in the near distance is maybe because the field of view of the
camera is at its minimal value.

In conclusion, the feature points predicted by the key
points detection network are projected onto the 3D model
after 3D-2D linear correspondence between the features. The
linear correspondence is only possible because the position
of 2D key points is known due to the use of learning-based
architecture. The reprojection error is reduced by using EPnP
solver and then pose values are further refined by using the
GNM method. The pose values, error metrics, and standard
deviation for the dataset are formulated to validate the obser-
vations.

7 Comparison

The results of the learning-based bounded box and key points
detection subsystems are compared in Table 7. Our architec-
ture is thoroughly tested on standard evaluation metrics for
precision, recall, IOU, and OKS. The results from related
methods are not available for all evaluation metrics. The
mean IOU and median IOU for our bounded box subsys-
tem are 95 and 96% respectively which is almost similar to
the work presented by Chen et al. [15] and Massimo et al.
[16]. However, the size of the input image is variable for
all architectures and it is observed that image resolution has
a strong impact on learning-based detection architectures.
Chen et al. [15] image size is 768 × 768, Massimo et al.
[16] worked with 416× 416 image resolution and our image
size is 256× 192. The high image resolution helps in getting
better accuracy and high IOU values. In our case, the same
IOU value is achieved using a smaller image resolution, and
that resulted in less utilization of memory and FLOPs. Our
IOU values are better than the work presented by SPN [22]
and Stanford_lab [30].

The results of key points detection are also compared with
the related works. Only Massimo et al. [16] discussed the
precision of key points and his AP50:95 is 98.97%. The
AP50:95 of our architecture is 94% which is less than the
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Fig. 12 Error distribution graphs of pose errors using EPnP method

Massimo but the mean OKS of our architecture is 98.5%.
The OKS value tells how much the detected key points are
close to the ground truth values and due to the high OKS
value our pose error is less than Massimo et al. [16]. No
other author has discussed the results of their accuracy. The
resource utilization of the key points detection architectures
is also compared.Our architecture is based on the transformer
that uses localized parallel self-attentionwindows in themul-
tiresolution branches at different stages of the network along
with depth-wise convolution in feed forward network layers.
The information exchange between layers is only possible
through convolution exchange blocks that isolate the trans-
former from other layers and that is the reason it uses almost
half Flops as compared to the CNN-based HRNET architec-
ture used by [15] and [16]. Also, the trainable parameters are
reduced by four in our architecture i.e., 28.53–7.68 M So,
the same or better accuracy is achieved in our work by using
a smaller number of parameters and less memory.

The final pose values are also compared in Table 8 with
the available related works in the literature. Our work has
performed better than [13, 16, 31] in translation and rota-
tional errors. Our mean translation error is 6.48 cm which is
less than [16]. Also, the mean translation value is calculated
separately for each axis and it outperformed [16] and [31]. A

similar pattern is followed in comparing mean rotation error
results both in terms of quaternions and Euler angles. The
results are also compared in terms of median values to give
a better idea of the errors. Chen et al. [15] mean rotation and
translation errors are less than our work because they were
participants of the KELVIN POSE estimation challenge and
their focus is to perform well in the challenge. So, they have
used a higher image resolution of 768× 768 and a simulated
annealing pose solver to reduce the pose error. This high-
resolution image and computationally complex pose solver
is not feasible for space-grade applications. In comparison,
our work is based on a smaller image resolution of 256× 192
and uses a first-order GNM pose solver that is more feasible
for space applications. Wang et al. [17] proposed a trans-
former architecture based on the DETR transformer. DETR
was developed for object detection tasks and performed well
on COCO datasets but it is again very hungry for resources.
Wang et al. [17] work is good for simulation but it would not
be feasible for space application. Our pose error is 0.0349
as compared to Wang’s 0.0123 and Chen’s 0.0094 but with
more practical application for space missions.

The standard deviation of the translation and rotation error
is computed and compared with the only available work of
Massimo et al. [16]. Our work has significant improvement
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Fig. 13 Error distribution graphs of pose errors using EPnP + GNM method

Fig. 14 The sample images from
the test dataset show the output
key points and axis directions.
These are images after the final
pose estimation. The pose values
are shown in Table 6
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Table 6 Pose values and pose
errors of the images shown in
Fig. 14

Images Distance (m) Distance error (m) Attitude (degree) Attitude error
(degree)

img000028 7.15, − 3.55,
467.53

0.55, 0.19, 0.49 170, 16, 89 2.0, 1.17, 0.05

img000213 − 7.50, − 4.25,
428.30

0.40, 0.74, 7.01 − 81, − 56, − 68 0.80, 1.98, 0.72

img000791 − 5.55, − 4.08,
313.71

0.46, 0.55, 0.52 − 3.36, 30.27, −
54.5

0.43, 1.64, 0.25

img000986 7.2, − 39.4, 492.3 0.28, 0.24, 6.23 16.05, − 17.38,
40.50

2.25, 0.09, 0.29

img007543 − 20.9, 0.29, 391.3 0.89, 0.52, 9.13 93.6, − 3.29, 52.0 0.97, 1.01, 0.64

img008262 7.4, 19.3, 82.2 0.80, 0.12, 7.60 78.89, 22.80, 136.64 0.13, 0.47,
0.004

img009793 − 1.63, − 5.8,
524.0

0.91, 0.27, 4.6 90.1, − 50.51, 173.5 1.84, 1.03, 0.68

Table 7 Bounded box and key
points detection evaluation
metrics

Metrics Unit Ours Massimo
et al. [16]

Stanford_lab
[30]

Chen et al.
[15]

SPN
[22]

Bounded
box

AP50 % 98.8 – – – –

AP75 % 97.9 – – – –

AP50–95 % 93 – – – –

Mean IOU % 95 95.38 91.9 95.34 85.82

Median
IOU

% 95 96.50 93.6 96.34 89.08

Key points AP50 % 98 99.74 – – –

AP75 % 98 99.53 – – –

AP50–95 % 94.2 98.97 – – –

Mean OKS % 98.5 – – – –

Median
OKS

% 96 – – – –

Resource
utiliza-
tion

Image size pixel 256 ×
192

416 × 416 – 768 × 768 224 ×
224

Flops Giga 3.33 7.68 – 7.68 –

Parameters M 7.73 28.53 – 60 –

in comparison to [16]. The standard deviation for all six pose
values in our case is much smaller as compared to [16] which
shows our method of pose estimation is performing better on
all types of images in the dataset. We have also compared our
learning-basedworkwith the conventional image-processing
method [13]. The results show that 100% solution is provided
by learning architectures in comparison to only 20% in con-
ventional methods with very little pose error.

In our work, the image-processing part is based on the
learning-based method that provides an inherited advantage
of the one–one linear mapping in the pose solver block
as shown in Fig. 15. Learning-based key points detection
method provides both index and confidence scores of each
key point. However, it is not possible to know the position and

confidence score in a conventional method that may result in
large iterative search space with no reliability of convergence
on exact 3D points. The work proposed by Sharma et al. [13]
uses a conventional key points detectionmethod that can only
provide 20% of the solution due to this issue.

8 Conclusion

The deep learning-based pose estimation pipeline for non-
cooperative spacecraft is successfully implemented using a
monocular vision sensor. The proposed work is based on
the high-resolution transformer architecture for key points
detection and according to my knowledge it is the first
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Table 8 Comparison of pose error metrics with the related works available in the literature

Metrics Unit Our Massimo et al.
[16]

Wang et al.
[17]

Chen et al.
[15]

SPN [31] Sharma et al.
[13]

Mean Et cm 6.48 10.36 3.91 3.5 – 51

Median Et cm 3.78 3.58 2.19 1.5 – –

Norm. mean et cm 0.84 – – – – –

Mean∥∥
∥t pC/B − t gC/B

∥∥
∥

cm 0.54, 0.51,
6.32

0.52, 0.56, 10.25 0.3, 0.3, 0.4 0.4, 0.4, 3.46 5.5, 4.6, 7.8 14, 6, 51

Median∥∥
∥t pC/B − t gC/B

∥∥
∥

cm 0.39, 0.40,
3.61

0.24, 0.27, 3.50 0.18, 0.16, 2.1 0.31, 0.30,
1.34

2.4, 2.1,
49.6

–

Mean Eq ° 1.52 2.24 0.66 0.73 8.4 2.76

Mean∣
∣θ p

xyz − θ
g
xyz

∣
∣

° 1.11, 0.98,
0.61

1.57, 0.84, 1.72 – – – – 0.6, 0.6,
– 1.4

Median∣
∣θ p

xyz − θ
g
xyz

∣
∣

° 0.89, 0.78,
0.43

0.52, 0.33, 0.34 – – – –

Mean eT 0.0349 0.04627 0.0123 0.0094 0.0626 –

Image size pixel 256 × 192 416 × 416 336 × 336 768 × 768 224 × 224 –

Solution available % 100 100 100 100 100 20

σET cm 0.7, 0.7, 9.6 1.62, 1.71, 30.44 – – – –

σEθ ° 1.4, 1.3, 0.9 8.92, 5.11, 10.82 – – – –
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Fig. 15 3D-2D one–one linear mapping of key points a learning-based based keypoints network output b conventional method key points output
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time implemented for the space application. The results
have shown that it provides comparable accuracy by using
less memory and computation resources on low-resolution
images. The pose estimation results have also shown a signif-
icant improvement in terms of translation and rotation errors.
There are few scenarios in the testing where a satellite seems
invisible to the naked eye but it is easily detected by our archi-
tecture. The results achieved in this work will help in taking
a step further to solve the challenges in this area of research.
The use of learning-based architecture for image-processing
work has played a significant role in achieving those results.
It not only reduces the 3D–2D correspondence time but also
significantly improves the accuracy and availability of the
solution.

The proposed work is based on images from a single
domain dataset however it is not possible to get real space
environment images that can be used for training deep
learning-based models. In this scenario, there is a require-
ment to train the model based on datasets that belong to
different domains so that the model can learn domain invari-
ant features. This problem is identified as a domain gap in
which one dataset belongs to synthetic images or source
domain and the other dataset belongs to real images or tar-
get domain. In this work, the transformer-based approach is
preferred over the CNN to solve this issue to some extent but
there is no significant change in results. However, in future
work, the domain gap issue can be addressed through differ-
ent approaches: (1) different data augmentation techniques
can be applied to the source domain dataset for generalized
model training (2) use of adversarial training either online or
offline on source and target datasets so that the features from
target domain are projected onto the source domain that will
result in domain invariant-based learning (3) use of multi-
modal training in which model can perform multiple tasks at
one time.
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